Topics in Combinatorial Group Theory

Total Page:16

File Type:pdf, Size:1020Kb

Topics in Combinatorial Group Theory Topics in Combinatorial Group Theory Preface I gave a course on Combinatorial Group Theory at ETH, Zurich, in the Winter term of 1987/88. The notes of that course have been reproduced here, essentially without change. I have made no attempt to improve on those notes, nor have I made any real attempt to provide a complete list of references. I have, however, included some general references which should make it possible for the interested reader to obtain easy access to any one of the topics treated here. In notes of this kind, it may happen that an idea or a theorem that is due to someone other than the author, has inadvertently been improperly acknowledged, if at all. If indeed that is the case here, I trust that I will be forgiven in view of the informal nature of these notes. Acknowledgements I would like to thank R. Suter for taking notes of the course and for his many comments and corrections and M. Schunemann for a superb job of “TEX-ing” the manuscript. I would also like to acknowledge the help and insightful comments of Urs Stammbach. In addition, I would like to take this opportunity to express my thanks and appreciation to him and his wife Irene, for their friendship and their hospitality over many years, and to him, in particular, for all of the work that he has done on my behalf, making it possible for me to spend so many pleasurable months in Zurich. Combinatorial Group Theory iii CONTENTS Chapter I History 1. Introduction ..................................................................1 2. The beginnings ...............................................................1 3. Finitely presented groups ......................................................3 4. More history..................................................................5 5. Higman’s marvellous theorem..................................................9 6. Varieties of groups ...........................................................11 7. Small Cancellation Theory....................................................16 Chapter II The Weak Burnside Problem 1. Introduction .................................................................20 2. The Grigorchuk-Gupta-Sidki groups ...........................................22 3. An application to associative algebras .........................................33 Chapter III Free groups, the calculus of presentations and the method of Reide- meister and Schreier 1. Frobenius’ representation.....................................................35 Combinatorial Group Theory iv 2. Semidirect products..........................................................40 3. Subgroups of free groups are free .............................................45 4. The calculus of presentations .................................................57 5. The calculus of presentations (continued) .....................................62 6. The Reidemeister-Schreier method ............................................70 7. Generalized free products.....................................................73 Chapter IV Recursively presented groups, word problems and some applications of the Reidemeister-Schreier method 1. Recursively presented groups .................................................76 2. Some word problems .........................................................79 3. Groups with free subgroups...................................................80 Chapter V Ane algebraic sets and the representative theory of nitely generated groups 1. Background .................................................................93 2. Some basic algebraic geometry ...............................................94 3. More basic algebraic geometry................................................99 4. Useful notions from topology ................................................101 5. Morphisms .................................................................105 6. Dimension .................................................................112 7. Representations of the free group of rank two in SL(2,C) .....................116 8. Ane algebraic sets of characters............................................122 Chapter VI Generalized free products and HNN extensions 1. Applications................................................................128 2. Back to basics..............................................................132 3. More applicatons ...........................................................137 4. Some word, conjugacy and isomorphism problems ............................147 Chapter VII Groups acting on trees 1. Basic denitions ............................................................151 Combinatorial Group Theory v 2. Covering space theory ......................................................159 3. Graphs of groups ...........................................................161 4. Trees ......................................................................164 5. The fundamental group of a graph of groups .................................167 6. The fundamental group of a graph of groups (continued) .....................169 7. Group actions and graphs of groups..........................................174 8. Universal covers ............................................................180 9. The proof of Theorem 2 ....................................................184 10. Some consequences of Theorem 2 and 3 .....................................185 11. The tree of SL2 ............................................................189 CHAPTER I History 1. Introduction This course will be devoted to a number of topics in combinatorial group theory. I want to begin with a short historical account of the subject itself. This account, besides being of interest in its own right, will help to explain what the subject is all about. 2. The Beginnings Combinatorial group theory is a loosely dened subject, with close connections to topology and logic. Its origins can be traced back to the middle of the 19th century. With surprising frequency problems in a wide variety of disciplines, including dierential equations, automorphic functions and geometry, were distilled into explicit questions about groups. The groups involved took many forms – matrix groups, groups preserving e.g. quadratic forms, isometry groups and Combinatorial Group Theory: Chapter I 2 numerous others. The introduction of the fundamental group by Poincare in 1895, the discovery of knot groups by Wirtinger in 1905 and the proof by Tietze in 1908 that the fundamental group of a compact nite dimensional arcwise connected manifold is nitely presented served to underline the importance of nitely presented groups. Just a short time earlier, in 1902, Burnside posed his now celebrated problem. Problem 1 Suppose that the group G is nitely generated and that for a xed positive integer n xn =1forall x ∈ G. Is G nite? Thus Burnside raised for the rst time the idea of a niteness condition on a group. Then, in a series of extraordinarily inuential papers between 1910 and 1914, Max Dehn proposed and partly solved a number of problems about nitely presented groups, thereby heralding in the birth of a new subject, combinatorial group theory. Thus the subject came endowed and encumbered by many of the problems that had stimulated its birth. The problems were generally concerned with various classes of groups and were of the following kind: Are all the groups in a given class nite (e.g., the Burnside Problem)? Finitely generated? Finitely presented? What are the conjugates of a given element in a given group? What are the subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given class whether or not they are isomorphic? And so on. The objective of combinatorial group theory is the systematic development of algebraic techniques to settle such questions. In view of the scope of the subject and the extraordinary variety of groups involved, it is not surprising that no really general theory exists. However much has been accomplished and a wide variety of techniques and methods has been developed with wide application and potential. Some of these techniques have even found a wider use e.g. in the study of so-called free rings and their relations, in generalisations of commutative ring theory, in logic, in topology and in the theory of computing. The reader might wish to consult the book by Chandler, Bruce and Wilhelm Magnus, The History of Combinatorial Group Theory: A Case Study in the History of Ideas, Studies in the History of Mathermatics and the Physical Sciences 9 (1982), Springer-Verlag, New York, Heidelberg, Berlin. Combinatorial Group Theory: Chapter I 3 I do not want to stop my historical account at this point. However, in order to make it intelligible also to those who are not altogether familiar with some of the terms and notation I will invoke, as well as some of the theorems and denitions I will later take for granted, I want to continue my discussion interspersing it with ingredients that I will call to mind as I need them. 3. Finitely presented groups Let G be a group. We express the fact that H is a subgroup of G by writing H G;ifH is a normal subgroup of G we write H/G. Let X G. Then the subgroup of G generated by X is denoted by gp(X). Thus, by denition, gp(X) is the least subgroup of G containing X. It follows that ε1 εn gp(X)={x1 ...xn | xi ∈ X, εi = 1}. We call the product ε1 εn x1 ...xn (xi ∈ X, εi = 1) an X-product. An X-product is termed reduced if xi = xi+1 implies εi + εi+1 =06 (i =1,...,n 1). If G =gp(X) and every non-empty reduced X-product
Recommended publications
  • 18.703 Modern Algebra, Presentations and Groups of Small
    12. Presentations and Groups of small order Definition-Lemma 12.1. Let A be a set. A word in A is a string of 0 elements of A and their inverses. We say that the word w is obtained 0 from w by a reduction, if we can get from w to w by repeatedly applying the following rule, −1 −1 • replace aa (or a a) by the empty string. 0 Given any word w, the reduced word w associated to w is any 0 word obtained from w by reduction, such that w cannot be reduced any further. Given two words w1 and w2 of A, the concatenation of w1 and w2 is the word w = w1w2. The empty word is denoted e. The set of all reduced words is denoted FA. With product defined as the reduced concatenation, this set becomes a group, called the free group with generators A. It is interesting to look at examples. Suppose that A contains one element a. An element of FA = Fa is a reduced word, using only a and a−1 . The word w = aaaa−1 a−1 aaa is a string using a and a−1. Given any such word, we pass to the reduction w0 of w. This means cancelling as much as we can, and replacing strings of a’s by the corresponding power. Thus w = aaa −1 aaa = aaaa = a 4 = w0 ; where equality means up to reduction. Thus the free group on one generator is isomorphic to Z. The free group on two generators is much more complicated and it is not abelian.
    [Show full text]
  • These Links No Longer Work. Springer Have Pulled the Free Plug
    Sign up for a GitHub account Sign in Instantly share code, notes, and snippets. Create a gist now bishboria / springer-free-maths-books.md Last active 10 minutes ago Code Revisions 7 Stars 2104 Forks 417 Embed <script src="https://gist.githu b .coDmo/wbinslohabodr ZiIaP/8326b17bbd652f34566a.js"></script> Springer made a bunch of books available for free, these were the direct links springer-free-maths-books.md Raw These links no longer work. Springer have pulled the free plug. Graduate texts in mathematics duplicates = multiple editions A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Classical Introduction to Modern Number Theory, Kenneth Ireland Michael Rosen A Course in Arithmetic, Jean-Pierre Serre A Course in Computational Algebraic Number Theory, Henri Cohen A Course in Differential Geometry, Wilhelm Klingenberg A Course in Functional Analysis, John B. Conway A Course in Homological Algebra, P. J. Hilton U. Stammbach A Course in Homological Algebra, Peter J. Hilton Urs Stammbach A Course in Mathematical Logic, Yu. I. Manin A Course in Number Theory and Cryptography, Neal Koblitz A Course in Number Theory and Cryptography, Neal Koblitz A Course in Simple-Homotopy Theory, Marshall M. Cohen A Course in p-adic Analysis, Alain M. Robert A Course in the Theory of Groups, Derek J. S. Robinson A Course in the Theory of Groups, Derek J. S. Robinson A Course on Borel Sets, S. M. Srivastava A Course on Borel Sets, S. M. Srivastava A First Course in Noncommutative Rings, T. Y. Lam A First Course in Noncommutative Rings, T. Y. Lam A Hilbert Space Problem Book, P.
    [Show full text]
  • Some Remarks on Semigroup Presentations
    SOME REMARKS ON SEMIGROUP PRESENTATIONS B. H. NEUMANN Dedicated to H. S. M. Coxeter 1. Let a semigroup A be given by generators ai, a2, . , ad and defining relations U\ — V\yu2 = v2, ... , ue = ve between these generators, the uu vt being words in the generators. We then have a presentation of A, and write A = sgp(ai, . , ad, «i = vu . , ue = ve). The same generators with the same relations can also be interpreted as the presentation of a group, for which we write A* = gpOi, . , ad\ «i = vu . , ue = ve). There is a unique homomorphism <£: A—* A* which maps each generator at G A on the same generator at G 4*. This is a monomorphism if, and only if, A is embeddable in a group; and, equally obviously, it is an epimorphism if, and only if, the image A<j> in A* is a group. This is the case in particular if A<j> is finite, as a finite subsemigroup of a group is itself a group. Thus we see that A(j> and A* are both finite (in which case they coincide) or both infinite (in which case they may or may not coincide). If A*, and thus also Acfr, is finite, A may be finite or infinite; but if A*, and thus also A<p, is infinite, then A must be infinite too. It follows in particular that A is infinite if e, the number of defining relations, is strictly less than d, the number of generators. 2. We now assume that d is chosen minimal, so that A cannot be generated by fewer than d elements.
    [Show full text]
  • Knapsack Problems in Groups
    MATHEMATICS OF COMPUTATION Volume 84, Number 292, March 2015, Pages 987–1016 S 0025-5718(2014)02880-9 Article electronically published on July 30, 2014 KNAPSACK PROBLEMS IN GROUPS ALEXEI MYASNIKOV, ANDREY NIKOLAEV, AND ALEXANDER USHAKOV Abstract. We generalize the classical knapsack and subset sum problems to arbitrary groups and study the computational complexity of these new problems. We show that these problems, as well as the bounded submonoid membership problem, are P-time decidable in hyperbolic groups and give var- ious examples of finitely presented groups where the subset sum problem is NP-complete. 1. Introduction 1.1. Motivation. This is the first in a series of papers on non-commutative discrete (combinatorial) optimization. In this series we propose to study complexity of the classical discrete optimization (DO) problems in their most general form — in non- commutative groups. For example, DO problems concerning integers (subset sum, knapsack problem, etc.) make perfect sense when the group of additive integers is replaced by an arbitrary (non-commutative) group G. The classical lattice problems are about subgroups (integer lattices) of the additive groups Zn or Qn, their non- commutative versions deal with arbitrary finitely generated subgroups of a group G. The travelling salesman problem or the Steiner tree problem make sense for arbitrary finite subsets of vertices in a given Cayley graph of a non-commutative infinite group (with the natural graph metric). The Post correspondence problem carries over in a straightforward fashion from a free monoid to an arbitrary group. This list of examples can be easily extended, but the point here is that many classical DO problems have natural and interesting non-commutative versions.
    [Show full text]
  • Bibliography
    Bibliography [AK98] V. I. Arnold and B. A. Khesin, Topological methods in hydrodynamics, Springer- Verlag, New York, 1998. [AL65] Holt Ashley and Marten Landahl, Aerodynamics of wings and bodies, Addison- Wesley, Reading, MA, 1965, Section 2-7. [Alt55] M. Altman, A generalization of Newton's method, Bulletin de l'academie Polonaise des sciences III (1955), no. 4, 189{193, Cl.III. [Arm83] M.A. Armstrong, Basic topology, Springer-Verlag, New York, 1983. [Bat10] H. Bateman, The transformation of the electrodynamical equations, Proc. Lond. Math. Soc., II, vol. 8, 1910, pp. 223{264. [BB69] N. Balabanian and T.A. Bickart, Electrical network theory, John Wiley, New York, 1969. [BLG70] N. N. Balasubramanian, J. W. Lynn, and D. P. Sen Gupta, Differential forms on electromagnetic networks, Butterworths, London, 1970. [Bos81] A. Bossavit, On the numerical analysis of eddy-current problems, Computer Methods in Applied Mechanics and Engineering 27 (1981), 303{318. [Bos82] A. Bossavit, On finite elements for the electricity equation, The Mathematics of Fi- nite Elements and Applications IV (MAFELAP 81) (J.R. Whiteman, ed.), Academic Press, 1982, pp. 85{91. [Bos98] , Computational electromagnetism: Variational formulations, complementar- ity, edge elements, Academic Press, San Diego, 1998. [Bra66] F.H. Branin, The algebraic-topological basis for network analogies and the vector cal- culus, Proc. Symp. Generalised Networks, Microwave Research, Institute Symposium Series, vol. 16, Polytechnic Institute of Brooklyn, April 1966, pp. 453{491. [Bra77] , The network concept as a unifying principle in engineering and physical sciences, Problem Analysis in Science and Engineering (K. Husseyin F.H. Branin Jr., ed.), Academic Press, New York, 1977.
    [Show full text]
  • Combinatorial Group Theory
    Combinatorial Group Theory Charles F. Miller III March 5, 2002 Abstract These notes were prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2002 by C. F. Miller. Contents 1 Free groups and presentations 3 1.1 Free groups . 3 1.2 Presentations by generators and relations . 7 1.3 Dehn’s fundamental problems . 9 1.4 Homomorphisms . 10 1.5 Presentations and fundamental groups . 12 1.6 Tietze transformations . 14 1.7 Extraction principles . 15 2 Construction of new groups 17 2.1 Direct products . 17 2.2 Free products . 19 2.3 Free products with amalgamation . 21 2.4 HNN extensions . 24 3 Properties, embeddings and examples 27 3.1 Countable groups embed in 2-generator groups . 27 3.2 Non-finite presentability of subgroups . 29 3.3 Hopfian and residually finite groups . 31 4 Subgroup Theory 35 4.1 Subgroups of Free Groups . 35 4.1.1 The general case . 35 4.1.2 Finitely generated subgroups of free groups . 35 4.2 Subgroups of presented groups . 41 4.3 Subgroups of free products . 43 4.4 Groups acting on trees . 44 5 Decision Problems 45 5.1 The word and conjugacy problems . 45 5.2 Higman’s embedding theorem . 51 1 5.3 The isomorphism problem and recognizing properties . 52 2 Chapter 1 Free groups and presentations In introductory courses on abstract algebra one is likely to encounter the dihedral group D3 consisting of the rigid motions of an equilateral triangle onto itself.
    [Show full text]
  • Introduction to Representation Theory
    STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina with historical interludes by Slava Gerovitch http://dx.doi.org/10.1090/stml/059 STUDENT MATHEMATICAL LIBRARY Volume 59 Introduction to Representation Theory Pavel Etingof Oleg Golberg Sebastian Hensel Tiankai Liu Alex Schwendner Dmitry Vaintrob Elena Yudovina with historical interludes by Slava Gerovitch American Mathematical Society Providence, Rhode Island Editorial Board Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell 2010 Mathematics Subject Classification. Primary 16Gxx, 20Gxx. For additional information and updates on this book, visit www.ams.org/bookpages/stml-59 Library of Congress Cataloging-in-Publication Data Introduction to representation theory / Pavel Etingof ...[et al.] ; with historical interludes by Slava Gerovitch. p. cm. — (Student mathematical library ; v. 59) Includes bibliographical references and index. ISBN 978-0-8218-5351-1 (alk. paper) 1. Representations of algebras. 2. Representations of groups. I. Etingof, P. I. (Pavel I.), 1969– QA155.I586 2011 512.46—dc22 2011004787 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904- 2294 USA.
    [Show full text]
  • E6-132-29.Pdf
    HISTORY OF MATHEMATICS – The Number Concept and Number Systems - John Stillwell THE NUMBER CONCEPT AND NUMBER SYSTEMS John Stillwell Department of Mathematics, University of San Francisco, U.S.A. School of Mathematical Sciences, Monash University Australia. Keywords: History of mathematics, number theory, foundations of mathematics, complex numbers, quaternions, octonions, geometry. Contents 1. Introduction 2. Arithmetic 3. Length and area 4. Algebra and geometry 5. Real numbers 6. Imaginary numbers 7. Geometry of complex numbers 8. Algebra of complex numbers 9. Quaternions 10. Geometry of quaternions 11. Octonions 12. Incidence geometry Glossary Bibliography Biographical Sketch Summary A survey of the number concept, from its prehistoric origins to its many applications in mathematics today. The emphasis is on how the number concept was expanded to meet the demands of arithmetic, geometry and algebra. 1. Introduction The first numbers we all meet are the positive integers 1, 2, 3, 4, … We use them for countingUNESCO – that is, for measuring the size– of collectionsEOLSS – and no doubt integers were first invented for that purpose. Counting seems to be a simple process, but it leads to more complex processes,SAMPLE such as addition (if CHAPTERSI have 19 sheep and you have 26 sheep, how many do we have altogether?) and multiplication ( if seven people each have 13 sheep, how many do they have altogether?). Addition leads in turn to the idea of subtraction, which raises questions that have no answers in the positive integers. For example, what is the result of subtracting 7 from 5? To answer such questions we introduce negative integers and thus make an extension of the system of positive integers.
    [Show full text]
  • Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) Is a Series of Graduate-Level Textbooks in Mathematics Published by Springer-Verlag
    欢迎加入数学专业竞赛及考研群:681325984 Graduate Texts in Mathematics - Wikipedia Graduate Texts in Mathematics Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. Contents List of books See also Notes External links List of books 1. Introduction to Axiomatic Set Theory, Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ISBN 978-1-4613- 8170-9) 2. Measure and Category - A Survey of the Analogies between Topological and Measure Spaces, John C. Oxtoby (1980, 2nd ed., ISBN 978-0-387-90508-2) 3. Topological Vector Spaces, H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ISBN 978-0-387-98726-2) 4. A Course in Homological Algebra, Peter Hilton, Urs Stammbach (1997, 2nd ed., ISBN 978-0-387-94823-2) 5. Categories for the Working Mathematician, Saunders Mac Lane (1998, 2nd ed., ISBN 978-0-387-98403-2) 6. Projective Planes, Daniel R. Hughes, Fred C. Piper, (1982, ISBN 978-3-540-90043-6) 7. A Course in Arithmetic, Jean-Pierre Serre (1996, ISBN 978-0-387-90040-7) 8.
    [Show full text]
  • Deforming Discrete Groups Into Lie Groups
    Deforming discrete groups into Lie groups March 18, 2019 2 General motivation The framework of the course is the following: we start with a semisimple Lie group G. We will come back to the precise definition. For the moment, one can think of the following examples: • The group SL(n; R) n × n matrices of determinent 1, n • The group Isom(H ) of isometries of the n-dimensional hyperbolic space. Such a group can be seen as the transformation group of certain homoge- neous spaces, meaning that G acts transitively on some manifold X. A pair (G; X) is what Klein defines as “a geometry” in its famous Erlangen program [Kle72]. For instance: n n • SL(n; R) acts transitively on the space P(R ) of lines inR , n n • The group Isom(H ) obviously acts on H by isometries, but also on n n−1 @1H ' S by conformal transformations. On the other side, we consider a group Γ, preferably of finite type (i.e. admitting a finite generating set). Γ may for instance be the fundamental group of a compact manifold (possibly with boundary). We will be interested in representations (i.e. homomorphisms) from Γ to G, and in particular those representations for which the intrinsic geometry of Γ and that of G interact well. Such representations may not exist. Indeed, there are groups of finite type for which every linear representation is trivial ! This groups won’t be of much interest for us here. We will often start with a group of which we know at least one “geometric” representation.
    [Show full text]
  • Combinatorial Group Theory
    Combinatorial Group Theory Charles F. Miller III 7 March, 2004 Abstract An early version of these notes was prepared for use by the participants in the Workshop on Algebra, Geometry and Topology held at the Australian National University, 22 January to 9 February, 1996. They have subsequently been updated and expanded many times for use by students in the subject 620-421 Combinatorial Group Theory at the University of Melbourne. Copyright 1996-2004 by C. F. Miller III. Contents 1 Preliminaries 3 1.1 About groups . 3 1.2 About fundamental groups and covering spaces . 5 2 Free groups and presentations 11 2.1 Free groups . 12 2.2 Presentations by generators and relations . 16 2.3 Dehn’s fundamental problems . 19 2.4 Homomorphisms . 20 2.5 Presentations and fundamental groups . 22 2.6 Tietze transformations . 24 2.7 Extraction principles . 27 3 Construction of new groups 30 3.1 Direct products . 30 3.2 Free products . 32 3.3 Free products with amalgamation . 36 3.4 HNN extensions . 43 3.5 HNN related to amalgams . 48 3.6 Semi-direct products and wreath products . 50 4 Properties, embeddings and examples 53 4.1 Countable groups embed in 2-generator groups . 53 4.2 Non-finite presentability of subgroups . 56 4.3 Hopfian and residually finite groups . 58 4.4 Local and poly properties . 61 4.5 Finitely presented coherent by cyclic groups . 63 1 5 Subgroup Theory 68 5.1 Subgroups of Free Groups . 68 5.1.1 The general case . 68 5.1.2 Finitely generated subgroups of free groups .
    [Show full text]
  • Chapter 1 GENERAL STRUCTURE and PROPERTIES
    Chapter 1 GENERAL STRUCTURE AND PROPERTIES 1.1 Introduction In this Chapter we would like to introduce the main de¯nitions and describe the main properties of groups, providing examples to illustrate them. The detailed discussion of representations is however demanded to later Chapters, and so is the treatment of Lie groups based on their relation with Lie algebras. We would also like to introduce several explicit groups, or classes of groups, which are often encountered in Physics (and not only). On the one hand, these \applications" should motivate the more abstract study of the general properties of groups; on the other hand, the knowledge of the more important and common explicit instances of groups is essential for developing an e®ective understanding of the subject beyond the purely formal level. 1.2 Some basic de¯nitions In this Section we give some essential de¯nitions, illustrating them with simple examples. 1.2.1 De¯nition of a group A group G is a set equipped with a binary operation , the group product, such that1 ¢ (i) the group product is associative, namely a; b; c G ; a (b c) = (a b) c ; (1.2.1) 8 2 ¢ ¢ ¢ ¢ (ii) there is in G an identity element e: e G such that a e = e a = a a G ; (1.2.2) 9 2 ¢ ¢ 8 2 (iii) each element a admits an inverse, which is usually denoted as a¡1: a G a¡1 G such that a a¡1 = a¡1 a = e : (1.2.3) 8 2 9 2 ¢ ¢ 1 Notice that the axioms (ii) and (iii) above are in fact redundant.
    [Show full text]