Yoneda's Lemma for Internal Higher Categories

Total Page:16

File Type:pdf, Size:1020Kb

Yoneda's Lemma for Internal Higher Categories YONEDA'S LEMMA FOR INTERNAL HIGHER CATEGORIES LOUIS MARTINI Abstract. We develop some basic concepts in the theory of higher categories internal to an arbitrary 1- topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yoneda's lemma for internal categories. Contents 1. Introduction 2 Motivation 2 Main results 3 Related work 4 Acknowledgment 4 2. Preliminaries 4 2.1. General conventions and notation4 2.2. Set theoretical foundations5 2.3. 1-topoi 5 2.4. Universe enlargement 5 2.5. Factorisation systems 8 3. Categories in an 1-topos 10 3.1. Simplicial objects in an 1-topos 10 3.2. Categories in an 1-topos 12 3.3. Functoriality and base change 16 3.4. The (1; 2)-categorical structure of Cat(B) 18 3.5. Cat(S)-valued sheaves on an 1-topos 19 3.6. Objects and morphisms 21 3.7. The universe for groupoids 23 3.8. Fully faithful and essentially surjective functors 26 arXiv:2103.17141v2 [math.CT] 2 May 2021 3.9. Subcategories 31 4. Groupoidal fibrations and Yoneda's lemma 36 4.1. Left fibrations 36 4.2. Slice categories 38 4.3. Initial functors 42 4.4. Covariant equivalences 49 4.5. The Grothendieck construction 54 4.6. Yoneda's lemma 61 References 71 Date: May 4, 2021. 1 2 LOUIS MARTINI 1. Introduction Motivation. In various areas of geometry, one of the principal strategies is to study geometric objects by means of algebraic invariants such as cohomology, K-theory and (stable or unstable) homotopy groups. Usually these invariants are constructed in a functorial way, in the sense that they define (possibly higher) presheaves on a suitable (higher) category C of the geometric objects of interest. Usually, C is equipped with a Grothendieck topology that encodes the topological behaviour of the geometric objects contained in C, and one typically expects reasonable algebraic invariants to respect this topology in that they should define (higher) sheaves on C. In that way, one can study the global nature of these objects by means of their local behaviour. For example, if A is an abelian group and if n ≥ 0 is an integer, there is a higher sheaf Hn(−;A) for the ´etaletopology on the category Sch of schemes that takes values in the 1-category Grp(S) of group n objects in 1-groupoids, such that for any scheme X the group π0H (X; A) 2 Grp(Set) is the nth ´etale cohomology group of X with coefficients in A [Lur09a, Section 7]. In modern flavours of geometry, the study of categorified invariants has come more and more into focus. For example, one of the fundamental invariants that one can associate to a scheme X is its unbounded derived category D(X). In order to turn this construction into a sheaf on Sch, i.e. in order to be able to glue derived categories, one first passes to an 1-categorical enhancement: there is a sheaf X 7! QCoh(X) on Sch that sends X to the symmetric monoidal stable 1-category of quasi-coherent sheaves on X such that the homotopy category of QCoh(X) recovers the derived category D(X) of X. The properties of QCoh and their relations to the geometry of the scheme X have been investigated by numerous authors, for example by Lurie in [Lur18] and by Ben-Zvi, Francis and Nadler in [BZFN10]. Furthermore, the sheaf QCoh plays a fundamental role in geometric representation theory; in [Gai14] Gaitsgory studies section-wise module 1- categories over the sheaf QCoh, i.e. the sheaf of 1-categories that are acted on by QCoh. Another categorical invariant on schemes comes from motivic homotopy theory: the assignment that sends a scheme X to its unstable motivic homotopy 1-category H(X) defines a sheaf for the Nisnevich topology on Sch, and similarly the assignment X 7! SH(X) in which SH(X) is the stable motivic homotopy 1-category on X defines a sheaf for the Nisnevich topology on Sch [Hoy17]. The latter plays a prominent role in the formalisation of the six operations in motivic homotopy theory, see for example [CD19] for an overview. It has been long known that for many choices of an (a priori higher) category A, the datum of an A-valued sheaf on Sch is equivalent to that of an A-object internal to the 1-topos ShS(Sch), or the 1-topos ShSet(Sch) in the case that A is actually a 1-category. For example, a sheaf of abelian groups on Sch is simply an abelian group internal to ShSet(Sch), and the collection of structure sheaves OX for X 2 Sch are encoded by a single ring object in ShSet(Sch), the sheaf represented by the affine line. By making use of the internal logic of the 1-topos of sheaves on Sch, one can therefore study such invariants in the same way as one studies their non-parametrized counterpart in the 1-category of 1-groupoids, see for example the PhD thesis of Blechschmidt [Ble17] for an application of these ideas to algebraic geometry in the 1-categorical case. The study of higher invariants, i.e. sheaves on Sch that take values in a reasonable 1-category A, thus naturally leads to the emerging field of homotopy type theory [Uni13]. In fact, it is now known [Shu19] that much of homotopy type theory has a model in an arbitrary 1-topos. By extending the same line of thought to the case of categorical invariants on schemes, the datum of a sheaf of 1-categories on Sch is equivalent to that of a category internal to the 1-topos ShS(Sch). One should therefore be able to formulate and study the properties of such sheaves by means of studying their categorical properties when viewed internally in the 1-topos ShS(Sch). Such an internal perspective on category theory is not only useful for the study of categorical invariants on schemes, but in other situations as well. For example, work of Barkwick, Glasman and Haines [BGH20, BH19] shows that the pro´etale 1- topos Spro´et of any coherent scheme S can be naturally regarded as a pyknotic 1-category, i.e. as a category YONEDA'S LEMMA FOR INTERNAL HIGHER CATEGORIES 3 internal to the 1-topos Pyk(S) of pyknotic 1-groupoids. Moreover, Sebastian Wolf shows in [Wol20] that internally in Pyk(S) the 1-topos Spro´et turns out to simply be given by a presheaf category, which amounts to a significant simplification of the structure of Spro´et. Although bare homotopy type theory is insufficient to argue synthetically about such structures (owing to the presence of non-invertible arrows), Riehl and Shulman [RS17] have proposed an additional layer to homotopy type theory that rectifies this problem and that is powerful enough to support a synthetic formulation of basic higher categorical constructions. In the present paper, our goal is to study sheaves of 1-categories from a semantic point of view: as categories internal to an 1-topos B. On the one hand, this is meant to provide tools for studying categorical invariants in geometry, such as those that are mentioned above. On the other hand, the study of categories in an 1-topos B should provide categorical semantics for the type theory developed by Riehl and Shulman. We do not aim to turn this into a formal statement, nevertheless we believe that developing the semantical side of the story might serve as a bridge to foster future development of the syntactic theory as well. Main results. The present paper constitutes the first in a series of papers aimed at developing the theory of categories internal to an arbitrary 1-topos B. Arguably, Yoneda's lemma is at the very core of any flavour of category theory, so in this paper we will focus on a proof of this result in the context of internal higher categories. We define the 1-category Cat(B) of categories in B as the full subcategory of the 1-category of simplicial objects in B that satisfy the Segal condition and univalence, mimicking the definition of complete Segal spaces given by Rezk [Rez01] as previously done by Lurie [Lur09b] and Rasekh [Ras18]. Since complete Segal spaces provide a model for the 1-category of 1-categories, the latter can be identified with Cat(S), and one obtains an equivalence Cat(B) ' ShCat(S)(B) between the 1-category of categories in B and the 1-category of Cat(S)-valued sheaves on B. Consequently, the sheaf B=− that sends an object A 2 B to the slice 1-category B=A defines a (large) category Ω in B that we will refer to as the internal universe of B and which represents the reflection of B within itself. We furthermore show that Cat(B) is cartesian closed, hence that for any two categories C and D in B there is a category [C; D] 2 Cat(B) of functors between C and D. The first of the two main results in this paper is an internal version of the Grothendieck construction: For any category C in B, we define a large category LFibC in B whose objects are given by left fibrations over C. We then show: Theorem 4.5.2. There is a canonical equivalence [C; Ω] ' LFibC that is natural in C. By making use of the Grothendieck construction, we derive our second main result, an internal version op of Yoneda's lemma. For any category C in B, we construct a mapping bifunctor mapC(−; −): C × C ! Ω whose transpose gives rise to the Yoneda embedding h: C ! [Cop; Ω].
Recommended publications
  • Experience Implementing a Performant Category-Theory Library in Coq
    Experience Implementing a Performant Category-Theory Library in Coq Jason Gross, Adam Chlipala, and David I. Spivak Massachusetts Institute of Technology, Cambridge, MA, USA [email protected], [email protected], [email protected] Abstract. We describe our experience implementing a broad category- theory library in Coq. Category theory and computational performance are not usually mentioned in the same breath, but we have needed sub- stantial engineering effort to teach Coq to cope with large categorical constructions without slowing proof script processing unacceptably. In this paper, we share the lessons we have learned about how to repre- sent very abstract mathematical objects and arguments in Coq and how future proof assistants might be designed to better support such rea- soning. One particular encoding trick to which we draw attention al- lows category-theoretic arguments involving duality to be internalized in Coq's logic with definitional equality. Ours may be the largest Coq development to date that uses the relatively new Coq version developed by homotopy type theorists, and we reflect on which new features were especially helpful. Keywords: Coq · category theory · homotopy type theory · duality · performance 1 Introduction Category theory [36] is a popular all-encompassing mathematical formalism that casts familiar mathematical ideas from many domains in terms of a few unifying concepts. A category can be described as a directed graph plus algebraic laws stating equivalences between paths through the graph. Because of this spar- tan philosophical grounding, category theory is sometimes referred to in good humor as \formal abstract nonsense." Certainly the popular perception of cat- egory theory is quite far from pragmatic issues of implementation.
    [Show full text]
  • Fibrations and Yoneda's Lemma in An
    Journal of Pure and Applied Algebra 221 (2017) 499–564 Contents lists available at ScienceDirect Journal of Pure and Applied Algebra www.elsevier.com/locate/jpaa Fibrations and Yoneda’s lemma in an ∞-cosmos Emily Riehl a,∗, Dominic Verity b a Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA b Centre of Australian Category Theory, Macquarie University, NSW 2109, Australia a r t i c l e i n f o a b s t r a c t Article history: We use the terms ∞-categories and ∞-functors to mean the objects and morphisms Received 14 October 2015 in an ∞-cosmos: a simplicially enriched category satisfying a few axioms, reminiscent Received in revised form 13 June of an enriched category of fibrant objects. Quasi-categories, Segal categories, 2016 complete Segal spaces, marked simplicial sets, iterated complete Segal spaces, Available online 29 July 2016 θ -spaces, and fibered versions of each of these are all ∞-categories in this sense. Communicated by J. Adámek n Previous work in this series shows that the basic category theory of ∞-categories and ∞-functors can be developed only in reference to the axioms of an ∞-cosmos; indeed, most of the work is internal to the homotopy 2-category, astrict 2-category of ∞-categories, ∞-functors, and natural transformations. In the ∞-cosmos of quasi- categories, we recapture precisely the same category theory developed by Joyal and Lurie, although our definitions are 2-categorical in natural, making no use of the combinatorial details that differentiate each model. In this paper, we introduce cartesian fibrations, a certain class of ∞-functors, and their groupoidal variants.
    [Show full text]
  • Simplicial Sets, Nerves of Categories, Kan Complexes, Etc
    SIMPLICIAL SETS, NERVES OF CATEGORIES, KAN COMPLEXES, ETC FOLING ZOU These notes are taken from Peter May's classes in REU 2018. Some notations may be changed to the note taker's preference and some detailed definitions may be skipped and can be found in other good notes such as [2] or [3]. The note taker is responsible for any mistakes. 1. simplicial approach to defining homology Defnition 1. A simplical set/group/object K is a sequence of sets/groups/objects Kn for each n ≥ 0 with face maps: di : Kn ! Kn−1; 0 ≤ i ≤ n and degeneracy maps: si : Kn ! Kn+1; 0 ≤ i ≤ n satisfying certain commutation equalities. Images of degeneracy maps are said to be degenerate. We can define a functor: ordered abstract simplicial complex ! sSet; K 7! Ks; where s Kn = fv0 ≤ · · · ≤ vnjfv0; ··· ; vng (may have repetition) is a simplex in Kg: s s Face maps: di : Kn ! Kn−1; 0 ≤ i ≤ n is by deleting vi; s s Degeneracy maps: si : Kn ! Kn+1; 0 ≤ i ≤ n is by repeating vi: In this way it is very straightforward to remember the equalities that face maps and degeneracy maps have to satisfy. The simplical viewpoint is helpful in establishing invariants and comparing different categories. For example, we are going to define the integral homology of a simplicial set, which will agree with the simplicial homology on a simplical complex, but have the virtue of avoiding the barycentric subdivision in showing functoriality and homotopy invariance of homology. This is an observation made by Samuel Eilenberg. To start, we construct functors: F C sSet sAb ChZ: The functor F is the free abelian group functor applied levelwise to a simplical set.
    [Show full text]
  • AN INTRODUCTION to CATEGORY THEORY and the YONEDA LEMMA Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transfo
    AN INTRODUCTION TO CATEGORY THEORY AND THE YONEDA LEMMA SHU-NAN JUSTIN CHANG Abstract. We begin this introduction to category theory with definitions of categories, functors, and natural transformations. We provide many examples of each construct and discuss interesting relations between them. We proceed to prove the Yoneda Lemma, a central concept in category theory, and motivate its significance. We conclude with some results and applications of the Yoneda Lemma. Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transformations 6 4. The Yoneda Lemma 9 5. Corollaries and Applications 10 Acknowledgments 12 References 13 Introduction Category theory is an interdisciplinary field of mathematics which takes on a new perspective to understanding mathematical phenomena. Unlike most other branches of mathematics, category theory is rather uninterested in the objects be- ing considered themselves. Instead, it focuses on the relations between objects of the same type and objects of different types. Its abstract and broad nature allows it to reach into and connect several different branches of mathematics: algebra, geometry, topology, analysis, etc. A central theme of category theory is abstraction, understanding objects by gen- eralizing rather than focusing on them individually. Similar to taxonomy, category theory offers a way for mathematical concepts to be abstracted and unified. What makes category theory more than just an organizational system, however, is its abil- ity to generate information about these abstract objects by studying their relations to each other. This ability comes from what Emily Riehl calls \arguably the most important result in category theory"[4], the Yoneda Lemma. The Yoneda Lemma allows us to formally define an object by its relations to other objects, which is central to the relation-oriented perspective taken by category theory.
    [Show full text]
  • Homotopical Categories: from Model Categories to ( ,)-Categories ∞
    HOMOTOPICAL CATEGORIES: FROM MODEL CATEGORIES TO ( ;1)-CATEGORIES 1 EMILY RIEHL Abstract. This chapter, written for Stable categories and structured ring spectra, edited by Andrew J. Blumberg, Teena Gerhardt, and Michael A. Hill, surveys the history of homotopical categories, from Gabriel and Zisman’s categories of frac- tions to Quillen’s model categories, through Dwyer and Kan’s simplicial localiza- tions and culminating in ( ;1)-categories, first introduced through concrete mod- 1 els and later re-conceptualized in a model-independent framework. This reader is not presumed to have prior acquaintance with any of these concepts. Suggested exercises are included to fertilize intuitions and copious references point to exter- nal sources with more details. A running theme of homotopy limits and colimits is included to explain the kinds of problems homotopical categories are designed to solve as well as technical approaches to these problems. Contents 1. The history of homotopical categories 2 2. Categories of fractions and localization 5 2.1. The Gabriel–Zisman category of fractions 5 3. Model category presentations of homotopical categories 7 3.1. Model category structures via weak factorization systems 8 3.2. On functoriality of factorizations 12 3.3. The homotopy relation on arrows 13 3.4. The homotopy category of a model category 17 3.5. Quillen’s model structure on simplicial sets 19 4. Derived functors between model categories 20 4.1. Derived functors and equivalence of homotopy theories 21 4.2. Quillen functors 24 4.3. Derived composites and derived adjunctions 25 4.4. Monoidal and enriched model categories 27 4.5.
    [Show full text]
  • Parametrized Higher Category Theory
    Parametrized higher category theory Jay Shah MIT May 1, 2017 Jay Shah (MIT) Parametrized higher category theory May 1, 2017 1 / 32 Answer: depends on the class of weak equivalences one inverts in the larger category of G-spaces. Inverting the class of maps that induce a weak equivalence of underlying spaces, X ; the homotopy type of the underlying space X , together with the homotopy coherent G-action. Can extract homotopy fixed points and hG orbits X , XhG from this. Equivariant homotopy theory Let G be a finite group and let X be a topological space with G-action (e.g. G = C2 and X = U(n) with the complex conjugation action). What is the \homotopy type" of X ? Jay Shah (MIT) Parametrized higher category theory May 1, 2017 2 / 32 Inverting the class of maps that induce a weak equivalence of underlying spaces, X ; the homotopy type of the underlying space X , together with the homotopy coherent G-action. Can extract homotopy fixed points and hG orbits X , XhG from this. Equivariant homotopy theory Let G be a finite group and let X be a topological space with G-action (e.g. G = C2 and X = U(n) with the complex conjugation action). What is the \homotopy type" of X ? Answer: depends on the class of weak equivalences one inverts in the larger category of G-spaces. Jay Shah (MIT) Parametrized higher category theory May 1, 2017 2 / 32 Equivariant homotopy theory Let G be a finite group and let X be a topological space with G-action (e.g.
    [Show full text]
  • Cubical Sets and the Topological Topos Arxiv:1610.05270V1 [Cs.LO]
    Cubical sets and the topological topos Bas Spitters Aarhus University October 18, 2016 Abstract Coquand's cubical set model for homotopy type theory provides the basis for a com- putational interpretation of the univalence axiom and some higher inductive types, as implemented in the cubical proof assistant. This paper contributes to the understand- ing of this model. We make three contributions: 1. Johnstone's topological topos was created to present the geometric realization of simplicial sets as a geometric morphism between toposes. Johnstone shows that simplicial sets classify strict linear orders with disjoint endpoints and that (classically) the unit interval is such an order. Here we show that it can also be a target for cubical realization by showing that Coquand's cubical sets classify the geometric theory of flat distributive lattices. As a side result, we obtain a simplicial realization of a cubical set. 2. Using the internal `interval' in the topos of cubical sets, we construct a Moore path model of identity types. 3. We construct a premodel structure internally in the cubical type theory and hence on the fibrant objects in cubical sets. 1 Introduction Simplicial sets from a standard framework for homotopy theory. The topos of simplicial sets is the classifying topos of the theory of strict linear orders with endpoints. Cubical arXiv:1610.05270v1 [cs.LO] 17 Oct 2016 sets turn out to be more amenable to a constructive treatment of homotopy type theory. We consider the cubical set model in [CCHM15]. This consists of symmetric cubical sets with connections (^; _), reversions ( ) and diagonals. In fact, to present the geometric realization clearly, we will leave out the reversions.
    [Show full text]
  • INTRODUCTION to TEST CATEGORIES These Notes Were
    INTRODUCTION TO TEST CATEGORIES TALK BY MAREK ZAWADOWSKI; NOTES BY CHRIS KAPULKIN These notes were taken and LATEX'd by Chris Kapulkin, from Marek Za- wadowski's lecture that was an introduction to the theory of test categories. In modern homotopy theory it is common to work with the category op Sets∆ of simplicial sets instead of the category category Top of topo- logical spaces. These categories are Quillen equivalent, however the former enjoys many good properties that the latter lacks and which make it a good framework to address many homotopy-theoretic questions. It is natural to ask: what is so special about the category ∆? In these notes we will try to characterize categories that can equally well as ∆ serve as an environ- ment for homotopy theory. The examples of such categories include, among others, the cube category and Joyal's Θ. These notes are organized as follows. In sections1 and2 we review some standard results about the nerve functor(s) and the homotopy category, re- spectively. In section3 we introduce test categories, provide their character- ization, and give some examples. In section4 we define test functors and as in the previous section: provide their characterization and some examples. 1. Background on Nerve Functors op The nerve functor N : Cat / Sets∆ is given by: N (C)n = Cat(j[n];C); where j : ∆ ,−! Cat is the obvious inclusion. It has a left adjoint given by the left Kan extension: C:=Lanyj op ? ) Sets∆ o Cat c N = y j ∆ Note that this basic setup depends only on Cat being cocomplete and j being an arbitrary covariant functor.
    [Show full text]
  • Notes on Categorical Logic
    Notes on Categorical Logic Anand Pillay & Friends Spring 2017 These notes are based on a course given by Anand Pillay in the Spring of 2017 at the University of Notre Dame. The notes were transcribed by Greg Cousins, Tim Campion, L´eoJimenez, Jinhe Ye (Vincent), Kyle Gannon, Rachael Alvir, Rose Weisshaar, Paul McEldowney, Mike Haskel, ADD YOUR NAMES HERE. 1 Contents Introduction . .3 I A Brief Survey of Contemporary Model Theory 4 I.1 Some History . .4 I.2 Model Theory Basics . .4 I.3 Morleyization and the T eq Construction . .8 II Introduction to Category Theory and Toposes 9 II.1 Categories, functors, and natural transformations . .9 II.2 Yoneda's Lemma . 14 II.3 Equivalence of categories . 17 II.4 Product, Pullbacks, Equalizers . 20 IIIMore Advanced Category Theoy and Toposes 29 III.1 Subobject classifiers . 29 III.2 Elementary topos and Heyting algebra . 31 III.3 More on limits . 33 III.4 Elementary Topos . 36 III.5 Grothendieck Topologies and Sheaves . 40 IV Categorical Logic 46 IV.1 Categorical Semantics . 46 IV.2 Geometric Theories . 48 2 Introduction The purpose of this course was to explore connections between contemporary model theory and category theory. By model theory we will mostly mean first order, finitary model theory. Categorical model theory (or, more generally, categorical logic) is a general category-theoretic approach to logic that includes infinitary, intuitionistic, and even multi-valued logics. Say More Later. 3 Chapter I A Brief Survey of Contemporary Model Theory I.1 Some History Up until to the seventies and early eighties, model theory was a very broad subject, including topics such as infinitary logics, generalized quantifiers, and probability logics (which are actually back in fashion today in the form of con- tinuous model theory), and had a very set-theoretic flavour.
    [Show full text]
  • Lecture Notes on Simplicial Homotopy Theory
    Lectures on Homotopy Theory The links below are to pdf files, which comprise my lecture notes for a first course on Homotopy Theory. I last gave this course at the University of Western Ontario during the Winter term of 2018. The course material is widely applicable, in fields including Topology, Geometry, Number Theory, Mathematical Pysics, and some forms of data analysis. This collection of files is the basic source material for the course, and this page is an outline of the course contents. In practice, some of this is elective - I usually don't get much beyond proving the Hurewicz Theorem in classroom lectures. Also, despite the titles, each of the files covers much more material than one can usually present in a single lecture. More detail on topics covered here can be found in the Goerss-Jardine book Simplicial Homotopy Theory, which appears in the References. It would be quite helpful for a student to have a background in basic Algebraic Topology and/or Homological Algebra prior to working through this course. J.F. Jardine Office: Middlesex College 118 Phone: 519-661-2111 x86512 E-mail: [email protected] Homotopy theories Lecture 01: Homological algebra Section 1: Chain complexes Section 2: Ordinary chain complexes Section 3: Closed model categories Lecture 02: Spaces Section 4: Spaces and homotopy groups Section 5: Serre fibrations and a model structure for spaces Lecture 03: Homotopical algebra Section 6: Example: Chain homotopy Section 7: Homotopical algebra Section 8: The homotopy category Lecture 04: Simplicial sets Section 9:
    [Show full text]
  • Exposé I – Elements of Parametrized Higher Category Theory
    PARAMETRIZED HIGHER CATEGORY THEORY AND HIGHER ALGEBRA: EXPOSÉ I – ELEMENTS OF PARAMETRIZED HIGHER CATEGORY THEORY CLARK BARWICK, EMANUELE DOTTO, SAUL GLASMAN, DENIS NARDIN, AND JAY SHAH Abstract. We introduce the basic elements of the theory of parametrized ∞-categories and functors between them. These notions are defined as suitable fibrations of ∞-categories and functors between them. We give as many examples as we are able at this stage. Simple operations, such as the formation of opposites and the formation of functor ∞-categories, become slightly more involved in the parametrized setting, but we explain precisely how to perform these constructions. All of these constructions can be performed explicitly, without resorting to such acts of desperation as straightening. The key results of this Exposé are: (1) a universal characterization of the 푇-∞-category of 푇-objects in any ∞-category, (2) the existence of an internal Hom for 푇-∞-categories, and (3) a parametrized Yoneda lemma. Contents 1. Parametrized ∞-categories 1 2. Examples of parametrized ∞-categories 3 3. Parametrized opposites 7 4. Parametrized subcategories 7 5. Constructing 푇-∞-categories via pairings 8 6. A technical result: the strong pushforward 9 7. 푇-objects in ∞-categories 11 8. Parametrized fibrations 14 9. Parametrized functor categories 15 10. The parametrized Yoneda embedding 19 Appendix A. Notational glossary 20 References 21 1. Parametrized ∞-categories Suppose 퐺 a finite group. At a minimum, a 퐺-∞-category should consist of an ∞- category 퐶 along with a weak action 휌 of 퐺. In particular, for every element 푔 ∈ 퐺, one should have an equivalence 휌(푔)∶ 퐶 ∼ 퐶, and for every 푔, ℎ ∈ 퐺, one should have a natu- ral equivalence 휌(푔ℎ) ≃ 휌(푔) ∘ 휌(ℎ), and these natural equivalences should then in turn be constrained by an infinite family of homotopies that express the higher associativity of 휌.
    [Show full text]
  • GROUPOID SCHEMES 022L Contents 1. Introduction 1 2
    GROUPOID SCHEMES 022L Contents 1. Introduction 1 2. Notation 1 3. Equivalence relations 2 4. Group schemes 4 5. Examples of group schemes 5 6. Properties of group schemes 7 7. Properties of group schemes over a field 8 8. Properties of algebraic group schemes 14 9. Abelian varieties 18 10. Actions of group schemes 21 11. Principal homogeneous spaces 22 12. Equivariant quasi-coherent sheaves 23 13. Groupoids 25 14. Quasi-coherent sheaves on groupoids 27 15. Colimits of quasi-coherent modules 29 16. Groupoids and group schemes 34 17. The stabilizer group scheme 34 18. Restricting groupoids 35 19. Invariant subschemes 36 20. Quotient sheaves 38 21. Descent in terms of groupoids 41 22. Separation conditions 42 23. Finite flat groupoids, affine case 43 24. Finite flat groupoids 50 25. Descending quasi-projective schemes 51 26. Other chapters 52 References 54 1. Introduction 022M This chapter is devoted to generalities concerning groupoid schemes. See for exam- ple the beautiful paper [KM97] by Keel and Mori. 2. Notation 022N Let S be a scheme. If U, T are schemes over S we denote U(T ) for the set of T -valued points of U over S. In a formula: U(T ) = MorS(T,U). We try to reserve This is a chapter of the Stacks Project, version fac02ecd, compiled on Sep 14, 2021. 1 GROUPOID SCHEMES 2 the letter T to denote a “test scheme” over S, as in the discussion that follows. Suppose we are given schemes X, Y over S and a morphism of schemes f : X → Y over S.
    [Show full text]