Ends and Coends
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Types Are Internal Infinity-Groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau
Types are internal infinity-groupoids Antoine Allioux, Eric Finster, Matthieu Sozeau To cite this version: Antoine Allioux, Eric Finster, Matthieu Sozeau. Types are internal infinity-groupoids. 2021. hal- 03133144 HAL Id: hal-03133144 https://hal.inria.fr/hal-03133144 Preprint submitted on 5 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Types are Internal 1-groupoids Antoine Allioux∗, Eric Finstery, Matthieu Sozeauz ∗Inria & University of Paris, France [email protected] yUniversity of Birmingham, United Kingdom ericfi[email protected] zInria, France [email protected] Abstract—By extending type theory with a universe of defini- attempts to import these ideas into plain homotopy type theory tionally associative and unital polynomial monads, we show how have, so far, failed. This appears to be a result of a kind of to arrive at a definition of opetopic type which is able to encode circularity: all of the known classical techniques at some point a number of fully coherent algebraic structures. In particular, our approach leads to a definition of 1-groupoid internal to rely on set-level algebraic structures themselves (presheaves, type theory and we prove that the type of such 1-groupoids is operads, or something similar) as a means of presenting or equivalent to the universe of types. -
Fibrations and Yoneda's Lemma in An
Journal of Pure and Applied Algebra 221 (2017) 499–564 Contents lists available at ScienceDirect Journal of Pure and Applied Algebra www.elsevier.com/locate/jpaa Fibrations and Yoneda’s lemma in an ∞-cosmos Emily Riehl a,∗, Dominic Verity b a Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA b Centre of Australian Category Theory, Macquarie University, NSW 2109, Australia a r t i c l e i n f o a b s t r a c t Article history: We use the terms ∞-categories and ∞-functors to mean the objects and morphisms Received 14 October 2015 in an ∞-cosmos: a simplicially enriched category satisfying a few axioms, reminiscent Received in revised form 13 June of an enriched category of fibrant objects. Quasi-categories, Segal categories, 2016 complete Segal spaces, marked simplicial sets, iterated complete Segal spaces, Available online 29 July 2016 θ -spaces, and fibered versions of each of these are all ∞-categories in this sense. Communicated by J. Adámek n Previous work in this series shows that the basic category theory of ∞-categories and ∞-functors can be developed only in reference to the axioms of an ∞-cosmos; indeed, most of the work is internal to the homotopy 2-category, astrict 2-category of ∞-categories, ∞-functors, and natural transformations. In the ∞-cosmos of quasi- categories, we recapture precisely the same category theory developed by Joyal and Lurie, although our definitions are 2-categorical in natural, making no use of the combinatorial details that differentiate each model. In this paper, we introduce cartesian fibrations, a certain class of ∞-functors, and their groupoidal variants. -
Compositional Game Theory, Compositionally
Compositional Game Theory, Compositionally Robert Atkey Bruno Gavranovic´ Neil Ghani Clemens Kupke Jérémy Ledent Fredrik Nordvall Forsberg The MSP Group, University of Strathclyde Glasgow, Écosse Libre We present a new compositional approach to compositional game theory (CGT) based upon Arrows, a concept originally from functional programming, closely related to Tambara modules, and operators to build new Arrows from old. We model equilibria as a module over an Arrow and define an operator to build a new Arrow from such a module over an existing Arrow. We also model strategies as graded Arrows and define an operator which builds a new Arrow by taking the colimit of a graded Arrow. A final operator builds a graded Arrow from a graded bimodule. We use this compositional approach to CGT to show how known and previously unknown variants of open games can be proven to form symmetric monoidal categories. 1 Introduction A new strain of game theory — Compositional Game Theory (CGT) — was introduced recently [9]. At its core, CGT involves a completely new representation of games — open games — with operators for constructing larger and more complex games from smaller, simpler (and hence easier to reason about) ones. Despite recent substantial interest and further development [13, 10, 7, 6, 4, 11, 14], open games remain complex structures, e.g. the simplest form of an open game is an 8-tuple consisting of 4 ports, a set of strategies, play and coplay functions and an equilibrium predicate. More advanced versions [4] require sophisticated structures such as coends. This causes problems: (i) complex definitions lead to complex and even error prone proofs; (ii) proofs are programs and overly complex proofs turn into overly complex programs; (iii) even worse, this complexity deters experimentation and innovation, for instance the authors of [10] were deterred from trying alternative definitions as the work became prohibitive; and (iv) worse still, this complexity suggests we do not fully understand the mathematical structure of open games. -
Nearly Locally Presentable Categories Are Locally Presentable Is Equivalent to Vopˇenka’S Principle
NEARLY LOCALLY PRESENTABLE CATEGORIES L. POSITSELSKI AND J. ROSICKY´ Abstract. We introduce a new class of categories generalizing locally presentable ones. The distinction does not manifest in the abelian case and, assuming Vopˇenka’s principle, the same happens in the regular case. The category of complete partial orders is the natural example of a nearly locally finitely presentable category which is not locally presentable. 1. Introduction Locally presentable categories were introduced by P. Gabriel and F. Ulmer in [6]. A category K is locally λ-presentable if it is cocomplete and has a strong generator consisting of λ-presentable objects. Here, λ is a regular cardinal and an object A is λ-presentable if its hom-functor K(A, −): K → Set preserves λ-directed colimits. A category is locally presentable if it is locally λ-presentable for some λ. This con- cept of presentability formalizes the usual practice – for instance, finitely presentable groups are precisely groups given by finitely many generators and finitely many re- lations. Locally presentable categories have many nice properties, in particular they are complete and co-wellpowered. Gabriel and Ulmer [6] also showed that one can define locally presentable categories by using just monomorphisms instead all morphisms. They defined λ-generated ob- jects as those whose hom-functor K(A, −) preserves λ-directed colimits of monomor- phisms. Again, this concept formalizes the usual practice – finitely generated groups are precisely groups admitting a finite set of generators. This leads to locally gener- ated categories, where a cocomplete category K is locally λ-generated if it has a strong arXiv:1710.10476v2 [math.CT] 2 Apr 2018 generator consisting of λ-generated objects and every object of K has only a set of strong quotients. -
Category Theory
Michael Paluch Category Theory April 29, 2014 Preface These note are based in part on the the book [2] by Saunders Mac Lane and on the book [3] by Saunders Mac Lane and Ieke Moerdijk. v Contents 1 Foundations ....................................................... 1 1.1 Extensionality and comprehension . .1 1.2 Zermelo Frankel set theory . .3 1.3 Universes.....................................................5 1.4 Classes and Gödel-Bernays . .5 1.5 Categories....................................................6 1.6 Functors .....................................................7 1.7 Natural Transformations. .8 1.8 Basic terminology . 10 2 Constructions on Categories ....................................... 11 2.1 Contravariance and Opposites . 11 2.2 Products of Categories . 13 2.3 Functor Categories . 15 2.4 The category of all categories . 16 2.5 Comma categories . 17 3 Universals and Limits .............................................. 19 3.1 Universal Morphisms. 19 3.2 Products, Coproducts, Limits and Colimits . 20 3.3 YonedaLemma ............................................... 24 3.4 Free cocompletion . 28 4 Adjoints ........................................................... 31 4.1 Adjoint functors and universal morphisms . 31 4.2 Freyd’s adjoint functor theorem . 38 5 Topos Theory ...................................................... 43 5.1 Subobject classifier . 43 5.2 Sieves........................................................ 45 5.3 Exponentials . 47 vii viii Contents Index .................................................................. 53 Acronyms List of categories. Ab The category of small abelian groups and group homomorphisms. AlgA The category of commutative A-algebras. Cb The category Func(Cop,Sets). Cat The category of small categories and functors. CRings The category of commutative ring with an identity and ring homomor- phisms which preserve identities. Grp The category of small groups and group homomorphisms. Sets Category of small set and functions. Sets Category of small pointed set and pointed functions. -
Giraud's Theorem
Giraud’s Theorem 25 February and 4 March 2019 The Giraud’s axioms allow us to determine when a category is a topos. Lurie’s version indicates the equivalence between the axioms, the left exact localizations, and Grothendieck topologies, i.e. Proposition 1. [2] Let X be a category. The following conditions are equivalent: 1. The category X is equivalent to the category of sheaves of sets of some Grothendieck site. 2. The category X is equivalent to a left exact localization of the category of presheaves of sets on some small category C. 3. Giraud’s axiom are satisfied: (a) The category X is presentable. (b) Colimits in X are universal. (c) Coproducts in X are disjoint. (d) Equivalence relations in X are effective. 1 Sheaf and Grothendieck topologies This section is based in [4]. The continuity of a reald-valued function on topological space can be determined locally. Let (X;t) be a topological space and U an open subset of X. If U is S covered by open subsets Ui, i.e. U = i2I Ui and fi : Ui ! R are continuos functions then there exist a continuos function f : U ! R if and only if the fi match on all the overlaps Ui \Uj and f jUi = fi. The previuos paragraph is so technical, let us see a more enjoyable example. Example 1. Let (X;t) be a topological space such that X = U1 [U2 then X can be seen as the following diagram: X s O e U1 tU1\U2 U2 o U1 O O U2 o U1 \U2 If we form the category OX (the objects are the open sets and the morphisms are given by the op inclusion), the previous paragraph defined a functor between OX and Set i.e it sends an open set U to the set of all continuos functions of domain U and codomain the real numbers, F : op OX ! Set where F(U) = f f j f : U ! Rg, so the initial diagram can be seen as the following: / (?) FX / FU1 ×F(U1\U2) FU2 / F(U1 \U2) then the condition of the paragraph states that the map e : FX ! FU1 ×F(U1\U2) FU2 given by f 7! f jUi is the equalizer of the previous diagram. -
Quasi-Categories Vs Simplicial Categories
Quasi-categories vs Simplicial categories Andr´eJoyal January 07 2007 Abstract We show that the coherent nerve functor from simplicial categories to simplicial sets is the right adjoint in a Quillen equivalence between the model category for simplicial categories and the model category for quasi-categories. Introduction A quasi-category is a simplicial set which satisfies a set of conditions introduced by Boardman and Vogt in their work on homotopy invariant algebraic structures [BV]. A quasi-category is often called a weak Kan complex in the literature. The category of simplicial sets S admits a Quillen model structure in which the cofibrations are the monomorphisms and the fibrant objects are the quasi- categories [J2]. We call it the model structure for quasi-categories. The resulting model category is Quillen equivalent to the model category for complete Segal spaces and also to the model category for Segal categories [JT2]. The goal of this paper is to show that it is also Quillen equivalent to the model category for simplicial categories via the coherent nerve functor of Cordier. We recall that a simplicial category is a category enriched over the category of simplicial sets S. To every simplicial category X we can associate a category X0 enriched over the homotopy category of simplicial sets Ho(S). A simplicial functor f : X → Y is called a Dwyer-Kan equivalence if the functor f 0 : X0 → Y 0 is an equivalence of Ho(S)-categories. It was proved by Bergner, that the category of (small) simplicial categories SCat admits a Quillen model structure in which the weak equivalences are the Dwyer-Kan equivalences [B1]. -
Left Kan Extensions Preserving Finite Products
Left Kan Extensions Preserving Finite Products Panagis Karazeris, Department of Mathematics, University of Patras, Patras, Greece Grigoris Protsonis, Department of Mathematics, University of Patras, Patras, Greece 1 Introduction In many situations in mathematics we want to know whether the left Kan extension LanjF of a functor F : C!E, along a functor j : C!D, where C is a small category and E is locally small and cocomplete, preserves the limits of various types Φ of diagrams. The answer to this general question is reducible to whether the left Kan extension LanyF of F , along the Yoneda embedding y : C! [Cop; Set] preserves those limits (see [12] x3). Such questions arise in the classical context of comparing the homotopy of simplicial sets to that of spaces but are also vital in comparing, more generally, homotopical notions on various combinatorial models (e.g simplicial, bisimplicial, cubical, globular, etc, sets) on the one hand, and various \realizations" of them as spaces, categories, higher categories, simplicial categories, relative categories etc, on the other (see [8], [4], [15], [2]). In the case where E = Set the answer is classical and well-known for the question of preservation of all finite limits (see [5], Chapter 6), the question of finite products (see [1]) as well as for the case of various types of finite connected limits (see [11]). The answer to such questions is also well-known in the case E is a Grothendieck topos, for the class of all finite limits or all finite connected limits (see [14], chapter 7 x 8 and [9]). -
AN INTRODUCTION to CATEGORY THEORY and the YONEDA LEMMA Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transfo
AN INTRODUCTION TO CATEGORY THEORY AND THE YONEDA LEMMA SHU-NAN JUSTIN CHANG Abstract. We begin this introduction to category theory with definitions of categories, functors, and natural transformations. We provide many examples of each construct and discuss interesting relations between them. We proceed to prove the Yoneda Lemma, a central concept in category theory, and motivate its significance. We conclude with some results and applications of the Yoneda Lemma. Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transformations 6 4. The Yoneda Lemma 9 5. Corollaries and Applications 10 Acknowledgments 12 References 13 Introduction Category theory is an interdisciplinary field of mathematics which takes on a new perspective to understanding mathematical phenomena. Unlike most other branches of mathematics, category theory is rather uninterested in the objects be- ing considered themselves. Instead, it focuses on the relations between objects of the same type and objects of different types. Its abstract and broad nature allows it to reach into and connect several different branches of mathematics: algebra, geometry, topology, analysis, etc. A central theme of category theory is abstraction, understanding objects by gen- eralizing rather than focusing on them individually. Similar to taxonomy, category theory offers a way for mathematical concepts to be abstracted and unified. What makes category theory more than just an organizational system, however, is its abil- ity to generate information about these abstract objects by studying their relations to each other. This ability comes from what Emily Riehl calls \arguably the most important result in category theory"[4], the Yoneda Lemma. The Yoneda Lemma allows us to formally define an object by its relations to other objects, which is central to the relation-oriented perspective taken by category theory. -
Monads and Interpolads in Bicategories
Theory and Applications of Categories, Vol. 3, No. 8, 1997, pp. 182{212. MONADS AND INTERPOLADS IN BICATEGORIES JURGEN¨ KOSLOWSKI Transmitted by R. J. Wood ABSTRACT. Given a bicategory, Y , with stable local coequalizers, we construct a bicategory of monads Y -mnd by using lax functors from the generic 0-cell, 1-cell and 2-cell, respectively, into Y . Any lax functor into Y factors through Y -mnd and the 1-cells turn out to be the familiar bimodules. The locally ordered bicategory rel and its bicategory of monads both fail to be Cauchy-complete, but have a well-known Cauchy- completion in common. This prompts us to formulate a concept of Cauchy-completeness for bicategories that are not locally ordered and suggests a weakening of the notion of monad. For this purpose, we develop a calculus of general modules between unstruc- tured endo-1-cells. These behave well with respect to composition, but in general fail to have identities. To overcome this problem, we do not need to impose the full struc- ture of a monad on endo-1-cells. We show that associative coequalizing multiplications suffice and call the resulting structures interpolads. Together with structure-preserving i-modules these form a bicategory Y -int that is indeed Cauchy-complete, in our sense, and contains the bicategory of monads as a not necessarily full sub-bicategory. Inter- polads over rel are idempotent relations, over the suspension of set they correspond to interpolative semi-groups, and over spn they lead to a notion of \category without identities" also known as \taxonomy". -
Comparison of Waldhausen Constructions
COMPARISON OF WALDHAUSEN CONSTRUCTIONS JULIA E. BERGNER, ANGELICA´ M. OSORNO, VIKTORIYA OZORNOVA, MARTINA ROVELLI, AND CLAUDIA I. SCHEIMBAUER Dedicated to the memory of Thomas Poguntke Abstract. In previous work, we develop a generalized Waldhausen S•- construction whose input is an augmented stable double Segal space and whose output is a 2-Segal space. Here, we prove that this construc- tion recovers the previously known S•-constructions for exact categories and for stable and exact (∞, 1)-categories, as well as the relative S•- construction for exact functors. Contents Introduction 2 1. Augmented stable double Segal objects 3 2. The S•-construction for exact categories 7 3. The S•-construction for stable (∞, 1)-categories 17 4. The S•-construction for proto-exact (∞, 1)-categories 23 5. The relative S•-construction 26 Appendix: Some results on quasi-categories 33 References 38 Date: May 29, 2020. 2010 Mathematics Subject Classification. 55U10, 55U35, 55U40, 18D05, 18G55, 18G30, arXiv:1901.03606v2 [math.AT] 28 May 2020 19D10. Key words and phrases. 2-Segal spaces, Waldhausen S•-construction, double Segal spaces, model categories. The first-named author was partially supported by NSF CAREER award DMS- 1659931. The second-named author was partially supported by a grant from the Simons Foundation (#359449, Ang´elica Osorno), the Woodrow Wilson Career Enhancement Fel- lowship and NSF grant DMS-1709302. The fourth-named and fifth-named authors were partially funded by the Swiss National Science Foundation, grants P2ELP2 172086 and P300P2 164652. The fifth-named author was partially funded by the Bergen Research Foundation and would like to thank the University of Oxford for its hospitality. -
Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
Contents Lectures on quasi-isometric rigidity Michael Kapovich 1 Lectures on quasi-isometric rigidity 3 Introduction: What is Geometric Group Theory? 3 Lecture 1. Groups and Spaces 5 1. Cayley graphs and other metric spaces 5 2. Quasi-isometries 6 3. Virtual isomorphisms and QI rigidity problem 9 4. Examples and non-examples of QI rigidity 10 Lecture 2. Ultralimits and Morse Lemma 13 1. Ultralimits of sequences in topological spaces. 13 2. Ultralimits of sequences of metric spaces 14 3. Ultralimits and CAT(0) metric spaces 14 4. Asymptotic Cones 15 5. Quasi-isometries and asymptotic cones 15 6. Morse Lemma 16 Lecture 3. Boundary extension and quasi-conformal maps 19 1. Boundary extension of QI maps of hyperbolic spaces 19 2. Quasi-actions 20 3. Conical limit points of quasi-actions 21 4. Quasiconformality of the boundary extension 21 Lecture 4. Quasiconformal groups and Tukia's rigidity theorem 27 1. Quasiconformal groups 27 2. Invariant measurable conformal structure for qc groups 28 3. Proof of Tukia's theorem 29 4. QI rigidity for surface groups 31 Lecture 5. Appendix 33 1. Appendix 1: Hyperbolic space 33 2. Appendix 2: Least volume ellipsoids 35 3. Appendix 3: Different measures of quasiconformality 35 Bibliography 37 i Lectures on quasi-isometric rigidity Michael Kapovich IAS/Park City Mathematics Series Volume XX, XXXX Lectures on quasi-isometric rigidity Michael Kapovich Introduction: What is Geometric Group Theory? Historically (in the 19th century), groups appeared as automorphism groups of some structures: • Polynomials (field extensions) | Galois groups. • Vector spaces, possibly equipped with a bilinear form| Matrix groups.