Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Groups Acting on Cat(0) Cube Complexes with Uniform Exponential Growth
GROUPS ACTING ON CAT(0) CUBE COMPLEXES WITH UNIFORM EXPONENTIAL GROWTH RADHIKA GUPTA, KASIA JANKIEWICZ, AND THOMAS NG Abstract. We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth. 1. Introduction In this article, we continue the inquiry to determine which groups that act on CAT(0) cube complexes have uniform exponential growth. Let G be a group with finite generating set S and corresponding Cayley graph Cay(G; S) equipped with the word metric. Let B(n; S) be the ball of radius n in Cay(G; S). The exponential growth rate of G with respect to S is defined as w(G; S) := lim jB(n; S)j1=n: n!1 The exponential growth rate of G is defined as w(G) := inf fw(G; S) j S finite generating setg : We say a group G has exponential growth if w(G; S) > 1 for some (hence every) finite generating set S. A group G is said to have uniform exponential growth if w(G) > 1. -
Local Connectivity of Right-Angled Coxeter Group Boundaries
LOCAL CONNECTIVITY OF RIGHT-ANGLED COXETER GROUP BOUNDARIES MICHAEL MIHALIK, KIM RUANE, AND STEVE TSCHANTZ Abstract. We provide conditions on the defining graph of a right- angled Coxeter group presentation that guarantees the boundary of any CAT (0) space on which the group acts geometrically will be locally connected. 0. Introduction This is an edited version of the published version of our paper. The changes are minor, but clean up the paper quite a bit: the proof of lemma 5.8 is reworded and a figure is added showing where (in the published version) some undefined vertices of the Cayley graph are locate, the proof of theorem 3.2 is simplified by using lemma 4.2 (allowing us to eliminate four lemmas that appeared near the end of section 1). In [BM],the authors ask whether all one-ended word hyperbolic groups have locally connected boundary. In that paper, they relate the existence of global cut points in the boundary to local connectivity of the boundary. In [Bo], Bowditch gives a correspondence between local cut points in the bound- ary and splittings of the group over one-ended subgroups. In [S], Swarup uses the work of Bowditch and others to prove that the boundary of such a group cannot contain a global cut point, thus proving these boundaries are locally connected. The situation is quite different in the setting of CAT (0) groups. If G is a one-ended group acting geometrically on a CAT (0) space X, then @X can indeed be non-locally connected. For example, consider the group G = F2 × Z where F2 denotes the non-abelian free group of rank 2, acting on X = T ×R where T is the tree of valence 4 (or the Cayley graph of F2 with the standard generating set). -
3-Manifold Groups
3-Manifold Groups Matthias Aschenbrenner Stefan Friedl Henry Wilton University of California, Los Angeles, California, USA E-mail address: [email protected] Fakultat¨ fur¨ Mathematik, Universitat¨ Regensburg, Germany E-mail address: [email protected] Department of Pure Mathematics and Mathematical Statistics, Cam- bridge University, United Kingdom E-mail address: [email protected] Abstract. We summarize properties of 3-manifold groups, with a particular focus on the consequences of the recent results of Ian Agol, Jeremy Kahn, Vladimir Markovic and Dani Wise. Contents Introduction 1 Chapter 1. Decomposition Theorems 7 1.1. Topological and smooth 3-manifolds 7 1.2. The Prime Decomposition Theorem 8 1.3. The Loop Theorem and the Sphere Theorem 9 1.4. Preliminary observations about 3-manifold groups 10 1.5. Seifert fibered manifolds 11 1.6. The JSJ-Decomposition Theorem 14 1.7. The Geometrization Theorem 16 1.8. Geometric 3-manifolds 20 1.9. The Geometric Decomposition Theorem 21 1.10. The Geometrization Theorem for fibered 3-manifolds 24 1.11. 3-manifolds with (virtually) solvable fundamental group 26 Chapter 2. The Classification of 3-Manifolds by their Fundamental Groups 29 2.1. Closed 3-manifolds and fundamental groups 29 2.2. Peripheral structures and 3-manifolds with boundary 31 2.3. Submanifolds and subgroups 32 2.4. Properties of 3-manifolds and their fundamental groups 32 2.5. Centralizers 35 Chapter 3. 3-manifold groups after Geometrization 41 3.1. Definitions and conventions 42 3.2. Justifications 45 3.3. Additional results and implications 59 Chapter 4. The Work of Agol, Kahn{Markovic, and Wise 63 4.1. -
Groups Acting on CAT (0) Cube Complexes with Uniform Exponential
GROUPS ACTING ON CAT(0) CUBE COMPLEXES WITH UNIFORM EXPONENTIAL GROWTH RADHIKA GUPTA, KASIA JANKIEWICZ, AND THOMAS NG Abstract. We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generalizes the work of Kar and Sageev considers free actions. Our result lets us show uniform exponential growth for certain groups that act improperly on CAT(0) square complexes, namely, finitely generated subgroups of the Higman group and triangle-free Artin groups. We also obtain that non-virtually abelian groups acting freely on CAT(0) cube complexes of any dimension with isolated flats that admit a geometric group action have uniform exponential growth. 1. Introduction In this article, we continue the inquiry to determine which groups that act on CAT(0) cube complexes have uniform exponential growth. Let G be a group with finite generating set S and corresponding Cayley graph Cay(G; S) equipped with the word metric. Let B(n; S) be the ball of radius n in Cay(G; S). The exponential growth rate of G with respect to S is defined as w(G; S) := lim jB(n; S)j1=n: n!1 The exponential growth rate of G is defined as w(G) := inf fw(G; S) j S finite generating setg : We say a group G has exponential growth if w(G; S) > 1 for some (hence every) finite generating set S. A group G is said to have uniform exponential growth if w(G) > 1. -
Hyperbolic Geometry
Flavors of Geometry MSRI Publications Volume 31,1997 Hyperbolic Geometry JAMES W. CANNON, WILLIAM J. FLOYD, RICHARD KENYON, AND WALTER R. PARRY Contents 1. Introduction 59 2. The Origins of Hyperbolic Geometry 60 3. Why Call it Hyperbolic Geometry? 63 4. Understanding the One-Dimensional Case 65 5. Generalizing to Higher Dimensions 67 6. Rudiments of Riemannian Geometry 68 7. Five Models of Hyperbolic Space 69 8. Stereographic Projection 72 9. Geodesics 77 10. Isometries and Distances in the Hyperboloid Model 80 11. The Space at Infinity 84 12. The Geometric Classification of Isometries 84 13. Curious Facts about Hyperbolic Space 86 14. The Sixth Model 95 15. Why Study Hyperbolic Geometry? 98 16. When Does a Manifold Have a Hyperbolic Structure? 103 17. How to Get Analytic Coordinates at Infinity? 106 References 108 Index 110 1. Introduction Hyperbolic geometry was created in the first half of the nineteenth century in the midst of attempts to understand Euclid’s axiomatic basis for geometry. It is one type of non-Euclidean geometry, that is, a geometry that discards one of Euclid’s axioms. Einstein and Minkowski found in non-Euclidean geometry a This work was supported in part by The Geometry Center, University of Minnesota, an STC funded by NSF, DOE, and Minnesota Technology, Inc., by the Mathematical Sciences Research Institute, and by NSF research grants. 59 60 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY geometric basis for the understanding of physical time and space. In the early part of the twentieth century every serious student of mathematics and physics studied non-Euclidean geometry. -
Topology and Robot Motion Planning
Topology and robot motion planning Mark Grant (University of Aberdeen) Maths Club talk 18th November 2015 Plan 1 What is Topology? Topological spaces Continuity Algebraic Topology 2 Topology and Robotics Configuration spaces End-effector maps Kinematics The motion planning problem What is Topology? What is Topology? It is the branch of mathematics concerned with properties of shapes which remain unchanged under continuous deformations. What is Topology? What is Topology? Like Geometry, but exact distances and angles don't matter. What is Topology? What is Topology? The name derives from Greek (τoπoζ´ means place and λoγoζ´ means study). Not to be confused with topography! What is Topology? Topological spaces Topological spaces Topological spaces arise naturally: I as configuration spaces of mechanical or physical systems; I as solution sets of differential equations; I in other branches of mathematics (eg, Geometry, Analysis or Algebra). M¨obiusstrip Torus Klein bottle What is Topology? Topological spaces Topological spaces A topological space consists of: I a set X of points; I a collection of subsets of X which are declared to be open. This collection must satisfy certain axioms (not given here). The collection of open sets is called a topology on X. It gives a notion of \nearness" of points. What is Topology? Topological spaces Topological spaces Usually the topology comes from a metric|a measure of distance between points. 2 For example, the plane R has a topology coming from the usual Euclidean metric. y y x x f(x; y) j x2 + y2 < 1g is open. f(x; y) j x2 + y2 ≤ 1g is not. -
Uniform Exponential Growth of Non-Positively Curved Groups
Uniform exponential growth of non-positively curved groups A Dissertation Submitted to the Temple University Graduate Board in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Thomas Ng May, 2020 Dissertation Examining Committee: David Futer, Advisory Chair, Mathematics Matthew Stover, Mathematics Samuel Taylor, Mathematics Tarik Aougab, Haverford College, Mathematics and Statistics iii c by Thomas Ng May, 2020 All Rights Reserved iv ABSTRACT Uniform exponential growth of non-positively curved groups Thomas Ng DOCTOR OF PHILOSOPHY Temple University, May, 2020 Professor David Futer, Chair The ping-pong lemma was introduced by Klein in the late 1800s to show that certain subgroups of isometries of hyperbolic 3-space are free and remains one of very few tools that certify when a pair of group elements generate a free subgroup or semigroup. Quantitatively applying the ping-pong lemma to more general group actions on metric spaces requires a blend of understanding the large-scale global geometry of the underlying space with local combinatorial and dynamical behavior of the action. In the 1980s, Gromov publish a sequence of seminal works introducing several metric notions of non-positive curvature in group theory where he asked which finitely generated groups have uniform exponential growth. We give an overview of various developments of non- positive curvature in group theory and past results related to building free semigroups in the setting of non-positive curvature. We highlight joint work with Radhika Gupta and Kasia Jankiewicz and with Carolyn Abbott and v Davide Spriano that extends these tools and techniques to show several groups with that act on cube complexes and many hierarchically hyperbolic groups have uniform exponential growth. -
Ends of Complexes Contents
Bruce Hughes Andrew Ranicki Vanderbilt University University of Edinburgh Ends of complexes Contents Introduction page ix Chapter summaries xxii Part one Topology at in¯nity 1 1 End spaces 1 2 Limits 13 3 Homology at in¯nity 29 4 Cellular homology 43 5 Homology of covers 56 6 Projective class and torsion 65 7 Forward tameness 75 8 Reverse tameness 92 9 Homotopy at in¯nity 97 10 Projective class at in¯nity 109 11 In¯nite torsion 122 12 Forward tameness is a homotopy pushout 137 Part two Topology over the real line 147 13 In¯nite cyclic covers 147 14 The mapping torus 168 15 Geometric ribbons and bands 173 16 Approximate ¯brations 187 17 Geometric wrapping up 197 18 Geometric relaxation 214 19 Homotopy theoretic twist glueing 222 20 Homotopy theoretic wrapping up and relaxation 244 Part three The algebraic theory 255 21 Polynomial extensions 255 22 Algebraic bands 263 23 Algebraic tameness 268 24 Relaxation techniques 288 25 Algebraic ribbons 300 26 Algebraic twist glueing 306 27 Wrapping up in algebraic K- and L-theory 318 vii viii Ends of complexes Part four Appendices 325 Appendix A. Locally ¯nite homology with local coe±cients 325 Appendix B. A brief history of end spaces 335 Appendix C. A brief history of wrapping up 338 References 341 Index 351 Introduction We take `complex' to mean both a CW (or simplicial) complex in topology and a chain complex in algebra. An `end' of a complex is a subcomplex with a particular type of in¯nite behaviour, involving non-compactness in topology and in¯nite generation in algebra. -
16. Compactness
16. Compactness 1 Motivation While metrizability is the analyst's favourite topological property, compactness is surely the topologist's favourite topological property. Metric spaces have many nice properties, like being first countable, very separative, and so on, but compact spaces facilitate easy proofs. They allow you to do all the proofs you wished you could do, but never could. The definition of compactness, which we will see shortly, is quite innocuous looking. What compactness does for us is allow us to turn infinite collections of open sets into finite collections of open sets that do essentially the same thing. Compact spaces can be very large, as we will see in the next section, but in a strong sense every compact space acts like a finite space. This behaviour allows us to do a lot of hands-on, constructive proofs in compact spaces. For example, we can often take maxima and minima where in a non-compact space we would have to take suprema and infima. We will be able to intersect \all the open sets" in certain situations and end up with an open set, because finitely many open sets capture all the information in the whole collection. We will specifically prove an important result from analysis called the Heine-Borel theorem n that characterizes the compact subsets of R . This result is so fundamental to early analysis courses that it is often given as the definition of compactness in that context. 2 Basic definitions and examples Compactness is defined in terms of open covers, which we have talked about before in the context of bases but which we formally define here. -
A Primer on Homotopy Colimits
A PRIMER ON HOMOTOPY COLIMITS DANIEL DUGGER Contents 1. Introduction2 Part 1. Getting started 4 2. First examples4 3. Simplicial spaces9 4. Construction of homotopy colimits 16 5. Homotopy limits and some useful adjunctions 21 6. Changing the indexing category 25 7. A few examples 29 Part 2. A closer look 30 8. Brief review of model categories 31 9. The derived functor perspective 34 10. More on changing the indexing category 40 11. The two-sided bar construction 44 12. Function spaces and the two-sided cobar construction 49 Part 3. The homotopy theory of diagrams 52 13. Model structures on diagram categories 53 14. Cofibrant diagrams 60 15. Diagrams in the homotopy category 66 16. Homotopy coherent diagrams 69 Part 4. Other useful tools 76 17. Homology and cohomology of categories 77 18. Spectral sequences for holims and hocolims 85 19. Homotopy limits and colimits in other model categories 90 20. Various results concerning simplicial objects 94 Part 5. Examples 96 21. Homotopy initial and terminal functors 96 22. Homotopical decompositions of spaces 103 23. A survey of other applications 108 Appendix A. The simplicial cone construction 108 References 108 1 2 DANIEL DUGGER 1. Introduction This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist, yet there does not seem to be a place in the literature where a graduate student can easily read about them. Certainly there are many fine sources: [BK], [DwS], [H], [HV], [V1], [V2], [CS], [S], among others. -
Profunctors, Open Maps and Bisimulation
BRICS RS-04-22 Cattani & Winskel: Profunctors, Open Maps and Bisimulation BRICS Basic Research in Computer Science Profunctors, Open Maps and Bisimulation Gian Luca Cattani Glynn Winskel BRICS Report Series RS-04-22 ISSN 0909-0878 October 2004 Copyright c 2004, Gian Luca Cattani & Glynn Winskel. BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Report Series publications. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK–8000 Aarhus C Denmark Telephone: +45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] BRICS publications are in general accessible through the World Wide Web and anonymous FTP through these URLs: http://www.brics.dk ftp://ftp.brics.dk This document in subdirectory RS/04/22/ Profunctors, Open Maps and Bisimulation∗ Gian Luca Cattani DS Data Systems S.p.A., Via Ugozzolo 121/A, I-43100 Parma, Italy. Email: [email protected]. Glynn Winskel University of Cambridge Computer Laboratory, Cambridge CB3 0FD, England. Email: [email protected]. October 2004 Abstract This paper studies fundamental connections between profunctors (i.e., dis- tributors, or bimodules), open maps and bisimulation. In particular, it proves that a colimit preserving functor between presheaf categories (corresponding to a profunctor) preserves open maps and open map bisimulation. Consequently, the composition of profunctors preserves open maps as 2-cells. -
Limit Roots of Lorentzian Coxeter Systems
UNIVERSITY OF CALIFORNIA Santa Barbara Limit Roots of Lorentzian Coxeter Systems A Thesis submitted in partial satisfaction of the requirements for the degree of Master of Arts in Mathematics by Nicolas R. Brody Committee in Charge: Professor Jon McCammond, Chair Professor Darren Long Professor Stephen Bigelow June 2016 The Thesis of Nicolas R. Brody is approved: Professor Darren Long Professor Stephen Bigelow Professor Jon McCammond, Committee Chairperson May 2016 Limit Roots of Lorentzian Coxeter Systems Copyright c 2016 by Nicolas R. Brody iii Acknowledgements My time at UC Santa Barbara has been inundated with wonderful friends, teachers, mentors, and mathematicians. I am especially indebted to Jon McCammond, Jordan Schettler, and Maribel Cachadia. A very special thanks to Jean-Phillippe Labb for sharing his code which was used to produce Figures 7.1, 7.3, and 7.4. This thesis is dedicated to my three roommates: Viki, Luna, and Layla. I hope we can all be roommates again soon. iv Abstract Limit Roots of Lorentzian Coxeter Systems Nicolas R. Brody A reflection in a real vector space equipped with a positive definite symmetric bilinear form is any automorphism that sends some nonzero vector v to its negative and pointwise fixes its orthogonal complement, and a finite reflection group is a group generated by such transformations that acts properly on the sphere of unit vectors. We note two important classes of groups which occur as finite reflection groups: for a 2-dimensional vector space, we recover precisely the finite dihedral groups as reflection groups, and permuting basis vectors in an n-dimensional vector space gives a way of viewing a symmetric group as a reflection group.