The Inverse Limits Approach to Chaos Judy Kennedy A,B, David R

Total Page:16

File Type:pdf, Size:1020Kb

The Inverse Limits Approach to Chaos Judy Kennedy A,B, David R Available online at www.sciencedirect.com Journal of Mathematical Economics 44 (2008) 423–444 The inverse limits approach to chaos Judy Kennedy a,b, David R. Stockman c,∗, James A. Yorke d a Departmentof Mathematical Sciences, University of Delaware, Newark, DE 19716, United States b Department of Mathematics, Lamar University, Beaumont, TX 77710, United States c Department of Economics, University of Delaware, Newark, DE 19716, United States d Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States Received 27 March 2006; received in revised form 31 October 2007; accepted 3 November 2007 Available online 22 November 2007 Abstract When analyzing a dynamic economic model, one fundamental question is are the dynamics simple or chaotic? Inverse limits,as an area of topology, has its origins in the 1920s and since the 1950s has been very useful as a means of constructing “pathological” continua. However, since the 1980s, there is a growing literature linking dynamical systems with inverse limits. In this paper, we review some results from this literature and apply them to the cash-in-advance model of money. In particular, we analyze the inverse limit of the cash-in-advance model of money and illustrate how information about the inverse limit is useful for detecting or ruling out complicated dynamics. © 2007 Elsevier B.V. All rights reserved. JEL Classification: C6; E3; E4 Keywords: Chaos; Inverse limits; Continuum theory; Topological entropy; Cash-in-advance 1. Introduction An equilibrium of a dynamic economic model can often be characterized as a solution to a dynamical system. One fundamental question when analyzing such a model is are the dynamics simple or chaotic? There are numerous definitions and measurements for chaos. Two of the more popular definitions are those of Devaney (2003) and Li and Yorke (1975). Given a definition of chaos, one still needs a means for establishing or ruling out chaos. For example, Li and Yorke (1975) show that for a continuous map on an interval, a three cycle is sufficient for establishing chaos. Other measures of complicated dynamics include topological entropy, measure-theoretic entropy, zeta function, Liapunov exponents and box dimension. In this paper, we focus on inverse limits as a method of detecting or ruling out chaotic behavior. As an area in topology, inverse limits has its origins in the 1920s and since the 1950s has been very useful as a means of constructing “pathological” continua. However, since the 1980s there is a growing literature that looks at the connection between inverse limits and topological dynamics. In this paper, we review some results from this literature and apply them to the cash-in-advance model of money. In particular, we analyze the inverse limit of the ∗ Corresponding author. E-mail address: [email protected] (D.R. Stockman). 0304-4068/$ – see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jmateco.2007.11.001 424 J. Kennedy et al. / Journal of Mathematical Economics 44 (2008) 423–444 cash-in-advance model of money and illustrate how information about the inverse limit is useful for detecting or ruling out complicated dynamics. Inverse limits is a relatively new tool to economic theory that has recently been used to understand models with backward dynamics. Many nonlinear dynamical systems are single-valued moving forward, but multi-valued going backward. However, in economics we sometimes have just the opposite, namely dynamics that are multi-valued going forward, but are single-valued going backward. In such instances, we say the model (or dynamical system) has backward dynamics. Two economic models that may have backward dynamics include the overlapping generations (OLG) model and the cash-in-advance (CIA) model.1Medio and Raines (2007, 2006) use inverse limits to analyze the long-run behavior of an OLG model with backward dynamics. Even though the forward dynamics are multi-valued, they show that long-run behavior of equilibria in the model corresponds to an “attractor” of the shift map on the inverse limit space. Kennedy and Stockman (2007) use the inverse limit space to show that a model with backward dynamics is chaotic going forward in time if and only if it is chaotic going backward in time. Though inverse limits have been used to analyze models with backward dynamics, the results in this paper apply to models with forward dynamics as well. Heuristically, the inverse limit of a dynamical system is a subset of an infinite dimensional space (e.g. the Hilbert cube) where each point in the inverse limit corresponds to a backward solution (backward orbit) of the dynamical system. When considering the inverse limit space of a dynamic economic model, two questions naturally arise: (1) what does the structure of the inverse limit tell us about the underlying dynamics, and (2) what does the underlying dynamics imply for the inverse limit? Ingram and Mahavier (2004) explore the connections between these two aspects of dynamical systems for maps on the unit interval. Working within a family of one-dimensional maps, they illustrate that restrictions on parameters that lead to simple/complicated dynamics also lead to simple/complicated inverse limits. Consequently, by analyzing the inverse limit one can detect chaotic/complicated dynamics or rule out such behavior. The inverse limit approach offers an alternative method of exploring chaotic behavior that does not work directly with establishing a 3-cycle (or some other cycle and using Sarkovskii’s ordering on the integers) or calculating some measure of entropy. Moreover, when the topology of the inverse limit space changes there is a qualitative change in the dynamics. Thus the inverse limit space can be used to detect qualitative changes in chaotic behavior. The paper is organized as follows. We provide the necessary background material from dynamical systems and inverse limits in Section 2. In Section 3, we illustrate how inverse limits can be applied to the CIA model of money to establish or rule out complicated dynamics. We conclude in Section 4. 2. Dynamics, continuum theory, and inverse limits The applicability of inverse limits to detecting or ruling out chaotic behavior in a dynamic economics model like the CIA model depends on the relationship between equilibria in the model, the inverse limit, continuum theory and dynamics. In this section we discuss the necessary background from dynamics, inverse limits and continuum theory for our application to the CIA model. We do not express definitions or theorems in their most general form, but at a level sufficient for our purposes. 2.1. Dynamics In this subsection, we discuss some definitions and facts from dynamics that we will use later. Throughout this paper, we will suppose X is a compact metric space and f : X → X is continuous. We are interested in using the inverse limit space to establish or rule out complicated dynamics. What does one mean by complicated? One can say that the dynamics are complicated if the dynamical system is chaotic. There are several definitions of chaotic in the dynamical systems literature. Two properties that most definitions include are topological transitivity and sensitive dependence on initial conditions. Definition 1. A map f : X → X is topologically transitive if whenever U and V are nonempty open subsets of X, there is some integer n such that f n(U) ∩ V =∅. 1 See Grandmont (1985) for the OLG model and Michener and Ravikumar (1998) for the CIA model. J. Kennedy et al. / Journal of Mathematical Economics 44 (2008) 423–444 425 Definition 2. A map f : X → X, where X is a metric space has sensitive dependence on initial conditions on an invariant closed subset H of X if there is some number r>0 such that for each point x in H and for each >0, there is a point y in H with d(x, y) <and an integer k ≥ 0 such that d(f k(x),fk(y)) ≥ r. Two of the more commonly used definitions of chaotic are those of Li and Yorke (1975) and Devaney (2003). Definition 3. The map f : X → X is chaotic in the sense of Li and Yorke (1975) if f has sensitive dependence on initial conditions on X. The map f is chaotic in the sense of Devaney (2003) if (1) f is topologically transitive, (2) the set of periodic points in X is dense in X, and (3) f has sensitive dependence on initial conditions. Three more concepts used to indicate that a system has complicated dynamics are a homoclinic fixed point,a horseshoe and topological entropy. Definition 4. Suppose that x is a fixed point of f. We say that y is homoclinic to the fixed point x if x = y such that f n(y) → x and that there is a choice of inverse images f −1(y), f −2(y),...with f −n(y) → x.Ifx is a periodic point of period n under f,wesayy is homoclinic to x if y is homoclinic to x under f n. Definition 5. Let f : I → I be continuous where I := [a, b]. We say that f has a (one-dimensional) horseshoe if there n n are disjoint subintervals I0 and I1 of I and n0 ∈ N such that I0 ∪ I1 ⊂ f 0 (I0) and I0 ∪ I1 ⊂ f 0 (I1). The notion of topological entropy involves the concept of an (n, )-separated set. Let f : X → X be a continuous map on a compact metric space X with metric d. Let A, E ⊂ X. We say that E is (d, , A)-spanning if E is finite and f for every y ∈ A, there exists an x ∈ E such that d(x, y) <.Givenf, for n ∈ N we define a new metric dn on X given f i i f by dn (x, y):= max0≤i≤n−1d(f (x),f (y)).
Recommended publications
  • Lectures on Quasi-Isometric Rigidity Michael Kapovich 1 Lectures on Quasi-Isometric Rigidity 3 Introduction: What Is Geometric Group Theory? 3 Lecture 1
    Contents Lectures on quasi-isometric rigidity Michael Kapovich 1 Lectures on quasi-isometric rigidity 3 Introduction: What is Geometric Group Theory? 3 Lecture 1. Groups and Spaces 5 1. Cayley graphs and other metric spaces 5 2. Quasi-isometries 6 3. Virtual isomorphisms and QI rigidity problem 9 4. Examples and non-examples of QI rigidity 10 Lecture 2. Ultralimits and Morse Lemma 13 1. Ultralimits of sequences in topological spaces. 13 2. Ultralimits of sequences of metric spaces 14 3. Ultralimits and CAT(0) metric spaces 14 4. Asymptotic Cones 15 5. Quasi-isometries and asymptotic cones 15 6. Morse Lemma 16 Lecture 3. Boundary extension and quasi-conformal maps 19 1. Boundary extension of QI maps of hyperbolic spaces 19 2. Quasi-actions 20 3. Conical limit points of quasi-actions 21 4. Quasiconformality of the boundary extension 21 Lecture 4. Quasiconformal groups and Tukia's rigidity theorem 27 1. Quasiconformal groups 27 2. Invariant measurable conformal structure for qc groups 28 3. Proof of Tukia's theorem 29 4. QI rigidity for surface groups 31 Lecture 5. Appendix 33 1. Appendix 1: Hyperbolic space 33 2. Appendix 2: Least volume ellipsoids 35 3. Appendix 3: Different measures of quasiconformality 35 Bibliography 37 i Lectures on quasi-isometric rigidity Michael Kapovich IAS/Park City Mathematics Series Volume XX, XXXX Lectures on quasi-isometric rigidity Michael Kapovich Introduction: What is Geometric Group Theory? Historically (in the 19th century), groups appeared as automorphism groups of some structures: • Polynomials (field extensions) | Galois groups. • Vector spaces, possibly equipped with a bilinear form| Matrix groups.
    [Show full text]
  • The Space of Composants of an Indecomposable Continuum
    Advances in Mathematics 166, 149–192 (2002) doi:10.1006/aima.2001.2002, available online at http://www.idealibrary.comon The Space of Composants of an Indecomposable Continuum Sławomir Solecki1 Department of Mathematics, Indiana University, Bloomington, Indiana 47405 E-mail: [email protected] Communicated by R. Daniel Mauldin Received October 20, 2000; accepted April 20, 2001 The family of all composants of an indecomposable continuum is studied. We investigate the equivalence relation induced on an indecomposable continuum by its partition into composants. We show that up to Borel bireducibility such an equiva- lence relation can be of only two types: E0 and E1 , the E0 type being ‘‘simple’’ and the E1 type being ‘‘complicated.’’ As a consequence of this, we show that each View metadata,indecomposable citation continuumand similar carriespapers a at Borel core.ac.uk probability measure which assigns 0 to brought to you by CORE each composant and 0 or 1 to each Borel set which is the union of a family of provided by Elsevier - Publisher Connector composants. In particular, it follows that there is no Borel transversal for the family of all composants. This solves an old problem in the theory of continua. We prove that all hereditarily indecomposable continua are of the complicated type, that is, they fall into the E1 type. We analyze the properties of being of type E1 or of type E0 . We show, using effective descriptive set theory, that the first of these properties is analytic and so the second one is coanalytic. We construct examples of continua of both types; in fact, we produce a family of indecomposable continua and use it to prove that these properties are complete analytic and complete coanalytic, respectively, hence non-Borel, so they do not admit simple topological charac- terizations.
    [Show full text]
  • Topology and Robot Motion Planning
    Topology and robot motion planning Mark Grant (University of Aberdeen) Maths Club talk 18th November 2015 Plan 1 What is Topology? Topological spaces Continuity Algebraic Topology 2 Topology and Robotics Configuration spaces End-effector maps Kinematics The motion planning problem What is Topology? What is Topology? It is the branch of mathematics concerned with properties of shapes which remain unchanged under continuous deformations. What is Topology? What is Topology? Like Geometry, but exact distances and angles don't matter. What is Topology? What is Topology? The name derives from Greek (τoπoζ´ means place and λoγoζ´ means study). Not to be confused with topography! What is Topology? Topological spaces Topological spaces Topological spaces arise naturally: I as configuration spaces of mechanical or physical systems; I as solution sets of differential equations; I in other branches of mathematics (eg, Geometry, Analysis or Algebra). M¨obiusstrip Torus Klein bottle What is Topology? Topological spaces Topological spaces A topological space consists of: I a set X of points; I a collection of subsets of X which are declared to be open. This collection must satisfy certain axioms (not given here). The collection of open sets is called a topology on X. It gives a notion of \nearness" of points. What is Topology? Topological spaces Topological spaces Usually the topology comes from a metric|a measure of distance between points. 2 For example, the plane R has a topology coming from the usual Euclidean metric. y y x x f(x; y) j x2 + y2 < 1g is open. f(x; y) j x2 + y2 ≤ 1g is not.
    [Show full text]
  • Ends of Complexes Contents
    Bruce Hughes Andrew Ranicki Vanderbilt University University of Edinburgh Ends of complexes Contents Introduction page ix Chapter summaries xxii Part one Topology at in¯nity 1 1 End spaces 1 2 Limits 13 3 Homology at in¯nity 29 4 Cellular homology 43 5 Homology of covers 56 6 Projective class and torsion 65 7 Forward tameness 75 8 Reverse tameness 92 9 Homotopy at in¯nity 97 10 Projective class at in¯nity 109 11 In¯nite torsion 122 12 Forward tameness is a homotopy pushout 137 Part two Topology over the real line 147 13 In¯nite cyclic covers 147 14 The mapping torus 168 15 Geometric ribbons and bands 173 16 Approximate ¯brations 187 17 Geometric wrapping up 197 18 Geometric relaxation 214 19 Homotopy theoretic twist glueing 222 20 Homotopy theoretic wrapping up and relaxation 244 Part three The algebraic theory 255 21 Polynomial extensions 255 22 Algebraic bands 263 23 Algebraic tameness 268 24 Relaxation techniques 288 25 Algebraic ribbons 300 26 Algebraic twist glueing 306 27 Wrapping up in algebraic K- and L-theory 318 vii viii Ends of complexes Part four Appendices 325 Appendix A. Locally ¯nite homology with local coe±cients 325 Appendix B. A brief history of end spaces 335 Appendix C. A brief history of wrapping up 338 References 341 Index 351 Introduction We take `complex' to mean both a CW (or simplicial) complex in topology and a chain complex in algebra. An `end' of a complex is a subcomplex with a particular type of in¯nite behaviour, involving non-compactness in topology and in¯nite generation in algebra.
    [Show full text]
  • 16. Compactness
    16. Compactness 1 Motivation While metrizability is the analyst's favourite topological property, compactness is surely the topologist's favourite topological property. Metric spaces have many nice properties, like being first countable, very separative, and so on, but compact spaces facilitate easy proofs. They allow you to do all the proofs you wished you could do, but never could. The definition of compactness, which we will see shortly, is quite innocuous looking. What compactness does for us is allow us to turn infinite collections of open sets into finite collections of open sets that do essentially the same thing. Compact spaces can be very large, as we will see in the next section, but in a strong sense every compact space acts like a finite space. This behaviour allows us to do a lot of hands-on, constructive proofs in compact spaces. For example, we can often take maxima and minima where in a non-compact space we would have to take suprema and infima. We will be able to intersect \all the open sets" in certain situations and end up with an open set, because finitely many open sets capture all the information in the whole collection. We will specifically prove an important result from analysis called the Heine-Borel theorem n that characterizes the compact subsets of R . This result is so fundamental to early analysis courses that it is often given as the definition of compactness in that context. 2 Basic definitions and examples Compactness is defined in terms of open covers, which we have talked about before in the context of bases but which we formally define here.
    [Show full text]
  • A Primer on Homotopy Colimits
    A PRIMER ON HOMOTOPY COLIMITS DANIEL DUGGER Contents 1. Introduction2 Part 1. Getting started 4 2. First examples4 3. Simplicial spaces9 4. Construction of homotopy colimits 16 5. Homotopy limits and some useful adjunctions 21 6. Changing the indexing category 25 7. A few examples 29 Part 2. A closer look 30 8. Brief review of model categories 31 9. The derived functor perspective 34 10. More on changing the indexing category 40 11. The two-sided bar construction 44 12. Function spaces and the two-sided cobar construction 49 Part 3. The homotopy theory of diagrams 52 13. Model structures on diagram categories 53 14. Cofibrant diagrams 60 15. Diagrams in the homotopy category 66 16. Homotopy coherent diagrams 69 Part 4. Other useful tools 76 17. Homology and cohomology of categories 77 18. Spectral sequences for holims and hocolims 85 19. Homotopy limits and colimits in other model categories 90 20. Various results concerning simplicial objects 94 Part 5. Examples 96 21. Homotopy initial and terminal functors 96 22. Homotopical decompositions of spaces 103 23. A survey of other applications 108 Appendix A. The simplicial cone construction 108 References 108 1 2 DANIEL DUGGER 1. Introduction This is an expository paper on homotopy colimits and homotopy limits. These are constructions which should arguably be in the toolkit of every modern algebraic topologist, yet there does not seem to be a place in the literature where a graduate student can easily read about them. Certainly there are many fine sources: [BK], [DwS], [H], [HV], [V1], [V2], [CS], [S], among others.
    [Show full text]
  • Profunctors, Open Maps and Bisimulation
    BRICS RS-04-22 Cattani & Winskel: Profunctors, Open Maps and Bisimulation BRICS Basic Research in Computer Science Profunctors, Open Maps and Bisimulation Gian Luca Cattani Glynn Winskel BRICS Report Series RS-04-22 ISSN 0909-0878 October 2004 Copyright c 2004, Gian Luca Cattani & Glynn Winskel. BRICS, Department of Computer Science University of Aarhus. All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent BRICS Report Series publications. Copies may be obtained by contacting: BRICS Department of Computer Science University of Aarhus Ny Munkegade, building 540 DK–8000 Aarhus C Denmark Telephone: +45 8942 3360 Telefax: +45 8942 3255 Internet: [email protected] BRICS publications are in general accessible through the World Wide Web and anonymous FTP through these URLs: http://www.brics.dk ftp://ftp.brics.dk This document in subdirectory RS/04/22/ Profunctors, Open Maps and Bisimulation∗ Gian Luca Cattani DS Data Systems S.p.A., Via Ugozzolo 121/A, I-43100 Parma, Italy. Email: [email protected]. Glynn Winskel University of Cambridge Computer Laboratory, Cambridge CB3 0FD, England. Email: [email protected]. October 2004 Abstract This paper studies fundamental connections between profunctors (i.e., dis- tributors, or bimodules), open maps and bisimulation. In particular, it proves that a colimit preserving functor between presheaf categories (corresponding to a profunctor) preserves open maps and open map bisimulation. Consequently, the composition of profunctors preserves open maps as 2-cells.
    [Show full text]
  • Uncountable Collections of Unimodal Continua by Paul James Johanson a Dissertation Submitted in Partial Fulfillment of the Requi
    Uncountable collections of unimodal continua by Paul James Johanson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematical Sciences Montana State University © Copyright by Paul James Johanson (2000) Abstract: Inverse limit spaces occur often in dynamical systems, in particular, those with unimodal bonding maps. Barge and Diamond showed uncountably many indecomposable unimodal inverse limit spaces exist. We show that uncountably many hereditarily decomposable unimodal inverse limit spaces exist by actually creating two different uncountable collections of hereditarily decomposable unimodal inverse limit spaces. Finally we consider how to expand upon these and combine them to create even more unimodal inverse limit spaces. UNCOUNTABLE COLLECTIONS OF UNIMODAL CONTINUA by V ; Paul James Johanson •".o > ■/ ■l •- A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy m Mathematical Sciences MONTANA. STATE UNIVERSITY Bozeman, Montana May 2000 ii APPROVAL of a dissertation submitted by Paul James Johanson This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the College of Graduate Studies. Date Marcy Bhfge Chairperson, Graduate Committee Approved for the Major Department 6 Date John Lund Head, Mathematical Sciences Approved for the College of Graduate Studies 7* I ~Z Date Bruce McLeod / Graduate Dean iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library.
    [Show full text]
  • A Complete Classification of Homogeneous Plane Continua
    A COMPLETE CLASSIFICATION OF HOMOGENEOUS PLANE CONTINUA L. C. HOEHN AND L. G. OVERSTEEGEN Dedicated to Andrew Lelek on the occasion of his 80th birthday Abstract. We show that the only compact and connected subsets (i.e. con- 2 tinua) X of the plane R which contain more than one point and are homoge- neous, in the sense that the group of homeomorphisms of X acts transitively 1 on X, are, up to homeomorphism, the circle S , the pseudo-arc, and the cir- cle of pseudo-arcs. These latter two spaces are fractal-like objects which do not contain any arcs. It follows that any compact and homogeneous space in the plane has the form X × Z, where X is either a point or one of the three homogeneous continua above, and Z is either a finite set or the Cantor set. The main technical result in this paper is a new characterization of the pseudo-arc. Following Lelek, we say that a continuum X has span zero pro- vided for every continuum C and every pair of maps f; g : C ! X such that f(C) ⊂ g(C) there exists c0 2 C so that f(c0) = g(c0). We show that a continuum is homeomorphic to the pseudo-arc if and only if it is hereditarily indecomposable (i.e., every subcontinuum is indecomposable) and has span zero. 1. Introduction By a compactum, we mean a compact metric space, and by a continuum, we mean a compact connected metric space. A continuum is non-degenerate if it contains more than one point.
    [Show full text]
  • HOMOTOPY COHERENT CATEGORY THEORY in Homotopy Theory, One Often Needs to “Do” Universal Algebra “Up to Homotopy” For
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 349, Number 1, January 1997, Pages 1–54 S 0002-9947(97)01752-2 HOMOTOPY COHERENT CATEGORY THEORY JEAN-MARC CORDIER AND TIMOTHY PORTER Abstract. This article is an introduction to the categorical theory of homo- topy coherence. It is based on the construction of the homotopy coherent analogues of end and coend, extending ideas of Meyer and others. The paper aims to develop homotopy coherent analogues of many of the results of ele- mentary category theory, in particular it handles a homotopy coherent form of the Yoneda lemma and of Kan extensions. This latter area is linked with the theory of generalised derived functors. In homotopy theory, one often needs to “do” universal algebra “up to homotopy” for instance in the theory of homotopy everything H-spaces. Universal algebra nowadays is most easily expressed in categorical terms, so this calls for a form of category theory “up to homotopy” (cf. Heller [34]). In studying the homotopy theory of compact metric spaces, there is the classically known complication that the assignment of the nerve of an open cover to a cover is only a functor up to homotopy. Thus in shape theory, [39], one does not have a very rich underlying homotopy theory. Strong shape (cf. Lisica and Mardeˇsi´c, [37]) and Steenrod homotopy (cf. Edwards and Hastings [27]) have a richer theory but at the cost of much harder proofs. Shape theory has been interpreted categorically in an elegant way. This provides an overview of most aspects of the theory, as well as the basic proobject formulation that it shares with ´etale homotopy and the theory of derived categories.
    [Show full text]
  • Ends and Coends
    THIS IS THE (CO)END, MY ONLY (CO)FRIEND FOSCO LOREGIAN† Abstract. The present note is a recollection of the most striking and use- ful applications of co/end calculus. We put a considerable effort in making arguments and constructions rather explicit: after having given a series of preliminary definitions, we characterize co/ends as particular co/limits; then we derive a number of results directly from this characterization. The last sections discuss the most interesting examples where co/end calculus serves as a powerful abstract way to do explicit computations in diverse fields like Algebra, Algebraic Topology and Category Theory. The appendices serve to sketch a number of results in theories heavily relying on co/end calculus; the reader who dares to arrive at this point, being completely introduced to the mysteries of co/end fu, can regard basically every statement as a guided exercise. Contents Introduction. 1 1. Dinaturality, extranaturality, co/wedges. 3 2. Yoneda reduction, Kan extensions. 13 3. The nerve and realization paradigm. 16 4. Weighted limits 21 5. Profunctors. 27 6. Operads. 33 Appendix A. Promonoidal categories 39 Appendix B. Fourier transforms via coends. 40 References 41 Introduction. The purpose of this survey is to familiarize the reader with the so-called co/end calculus, gathering a series of examples of its application; the author would like to stress clearly, from the very beginning, that the material presented here makes arXiv:1501.02503v2 [math.CT] 9 Feb 2015 no claim of originality: indeed, we put a special care in acknowledging carefully, where possible, each of the many authors whose work was an indispensable source in compiling this note.
    [Show full text]
  • Quasi-Isometry Rigidity of Groups
    Quasi-isometry rigidity of groups Cornelia DRUT¸U Universit´e de Lille I, [email protected] Contents 1 Preliminaries on quasi-isometries 2 1.1 Basicdefinitions .................................... 2 1.2 Examplesofquasi-isometries ............................. 4 2 Rigidity of non-uniform rank one lattices 6 2.1 TheoremsofRichardSchwartz . .. .. .. .. .. .. .. .. 6 2.2 Finite volume real hyperbolic manifolds . 8 2.3 ProofofTheorem2.3.................................. 9 2.4 ProofofTheorem2.1.................................. 13 3 Classes of groups complete with respect to quasi-isometries 14 3.1 Listofclassesofgroupsq.i. complete. 14 3.2 Relatively hyperbolic groups: preliminaries . 15 4 Asymptotic cones of a metric space 18 4.1 Definition,preliminaries . .. .. .. .. .. .. .. .. .. 18 4.2 Asampleofwhatonecandousingasymptoticcones . 21 4.3 Examplesofasymptoticconesofgroups . 22 5 Relatively hyperbolic groups: image from infinitely far away and rigidity 23 5.1 Tree-graded spaces and cut-points . 23 5.2 The characterization of relatively hyperbolic groups in terms of asymptotic cones 25 5.3 Rigidity of relatively hyperbolic groups . 27 5.4 More rigidity of relatively hyperbolic groups: outer automorphisms . 29 6 Groups asymptotically with(out) cut-points 30 6.1 Groups with elements of infinite order in the center, not virtually cyclic . 31 6.2 Groups satisfying an identity, not virtually cyclic . 31 6.3 Existence of cut-points in asymptotic cones and relative hyperbolicity . 33 7 Open questions 34 8 Dictionary 35 1 These notes represent a slightly modified version of the lectures given at the summer school “G´eom´etriesa ` courbure n´egative ou nulle, groupes discrets et rigidit´es” held from the 14-th of June till the 2-nd of July 2004 in Grenoble.
    [Show full text]