GROUPOID SCHEMES 022L Contents 1. Introduction 1 2

Total Page:16

File Type:pdf, Size:1020Kb

GROUPOID SCHEMES 022L Contents 1. Introduction 1 2 GROUPOID SCHEMES 022L Contents 1. Introduction 1 2. Notation 1 3. Equivalence relations 2 4. Group schemes 4 5. Examples of group schemes 5 6. Properties of group schemes 7 7. Properties of group schemes over a field 8 8. Properties of algebraic group schemes 14 9. Abelian varieties 18 10. Actions of group schemes 21 11. Principal homogeneous spaces 22 12. Equivariant quasi-coherent sheaves 23 13. Groupoids 25 14. Quasi-coherent sheaves on groupoids 27 15. Colimits of quasi-coherent modules 29 16. Groupoids and group schemes 34 17. The stabilizer group scheme 34 18. Restricting groupoids 35 19. Invariant subschemes 36 20. Quotient sheaves 38 21. Descent in terms of groupoids 41 22. Separation conditions 42 23. Finite flat groupoids, affine case 43 24. Finite flat groupoids 50 25. Descending quasi-projective schemes 51 26. Other chapters 52 References 54 1. Introduction 022M This chapter is devoted to generalities concerning groupoid schemes. See for exam- ple the beautiful paper [KM97] by Keel and Mori. 2. Notation 022N Let S be a scheme. If U, T are schemes over S we denote U(T ) for the set of T -valued points of U over S. In a formula: U(T ) = MorS(T,U). We try to reserve This is a chapter of the Stacks Project, version fac02ecd, compiled on Sep 14, 2021. 1 GROUPOID SCHEMES 2 the letter T to denote a “test scheme” over S, as in the discussion that follows. Suppose we are given schemes X, Y over S and a morphism of schemes f : X → Y over S. For any scheme T over S we get an induced map of sets f : X(T ) −→ Y (T ) which as indicated we denote by f also. In fact this construction is functorial in the scheme T/S. Yoneda’s Lemma, see Categories, Lemma 3.5, says that f determines and is determined by this transformation of functors f : hX → hY . More generally, we use the same notation for maps between fibre products. For example, if X, Y , Z are schemes over S, and if m : X ×S Y → Z ×S Z is a morphism of schemes over S, then we think of m as corresponding to a collection of maps between T -valued points X(T ) × Y (T ) −→ Z(T ) × Z(T ). And so on and so forth. We continue our convention to label projection maps starting with index 0, so we have pr0 : X ×S Y → X and pr1 : X ×S Y → Y . 3. Equivalence relations 022O Recall that a relation R on a set A is just a subset of R ⊂ A × A. We usually write aRb to indicate (a, b) ∈ R. We say the relation is transitive if aRb, bRc ⇒ aRc. We say the relation is reflexive if aRa for all a ∈ A. We say the relation is symmetric if aRb ⇒ bRa. A relation is called an equivalence relation if it is transitive, reflexive and symmetric. In the setting of schemes we are going to relax the notion of a relation a little bit and just require R → A × A to be a map. Here is the definition. 022PDefinition 3.1. Let S be a scheme. Let U be a scheme over S. (1) A pre-relation on U over S is any morphism of schemes j : R → U ×S U. In this case we set t = pr0 ◦ j and s = pr1 ◦ j, so that j = (t, s). (2) A relation on U over S is a monomorphism of schemes j : R → U ×S U. (3) A pre-equivalence relation is a pre-relation j : R → U ×S U such that the image of j : R(T ) → U(T ) × U(T ) is an equivalence relation for all T/S. (4) We say a morphism R → U ×S U of schemes is an equivalence relation on U over S if and only if for every scheme T over S the T -valued points of R define an equivalence relation on the set of T -valued points of U. In other words, an equivalence relation is a pre-equivalence relation such that j is a relation. 02V8 Lemma 3.2. Let S be a scheme. Let U be a scheme over S. Let j : R → U ×S U be a pre-relation. Let g : U 0 → U be a morphism of schemes. Finally, set 0 0 0 0 j 0 0 R = (U ×S U ) ×U×S U R −→ U ×S U Then j0 is a pre-relation on U 0 over S. If j is a relation, then j0 is a relation. If j is a pre-equivalence relation, then j0 is a pre-equivalence relation. If j is an equivalence relation, then j0 is an equivalence relation. Proof. Omitted. GROUPOID SCHEMES 3 02V9Definition 3.3. Let S be a scheme. Let U be a scheme over S. Let j : R → U ×S U be a pre-relation. Let g : U 0 → U be a morphism of schemes. The pre-relation 0 0 0 0 0 j : R → U ×S U is called the restriction, or pullback of the pre-relation j to U . 0 In this situation we sometimes write R = R|U 0 . 022Q Lemma 3.4. Let j : R → U ×S U be a pre-relation. Consider the relation on points of the scheme U defined by the rule x ∼ y ⇔ ∃ r ∈ R : t(r) = x, s(r) = y. If j is a pre-equivalence relation then this is an equivalence relation. Proof. Suppose that x ∼ y and y ∼ z. Pick r ∈ R with t(r) = x, s(r) = y and pick r0 ∈ R with t(r0) = y, s(r0) = z. Pick a field K fitting into the following commutative diagram κ(r) / K O O κ(y) / κ(r0) Denote xK , yK , zK : Spec(K) → U the morphisms Spec(K) → Spec(κ(r)) → Spec(κ(x)) → U Spec(K) → Spec(κ(r)) → Spec(κ(y)) → U Spec(K) → Spec(κ(r0)) → Spec(κ(z)) → U By construction (xK , yK ) ∈ j(R(K)) and (yK , zK ) ∈ j(R(K)). Since j is a pre- equivalence relation we see that also (xK , zK ) ∈ j(R(K)). This clearly implies that x ∼ z. The proof that ∼ is reflexive and symmetric is omitted. 0DT7 Lemma 3.5. Let j : R → U ×S U be a pre-relation. Assume (1) s, t are unramified, (2) for any algebraically closed field k over S the map R(k) → U(k) × U(k) is an equivalence relation, (3) there are morphisms e : U → R, i : R → R, c : R ×s,U,t R → R such that U / R R / R R ×s,U,t R / R e i c ∆ j j j j×j j flip pr02 U ×S U / U ×S UU ×S U / U ×S UU ×S U ×S U / U ×S U are commutative. Then j is an equivalence relation. Proof. By condition (1) and Morphisms, Lemma 35.16 we see that j is a unram- ified. Then ∆j : R → R ×U×S U R is an open immersion by Morphisms, Lemma 35.13. However, then condition (2) says ∆j is bijective on k-valued points, hence ∆j is an isomorphism, hence j is a monomorphism. Then it easily follows from the commutative diagrams that R(T ) ⊂ U(T ) × U(T ) is an equivalence relation for all schemes T over S. GROUPOID SCHEMES 4 4. Group schemes 022R Let us recall that a group is a pair (G, m) where G is a set, and m : G × G → G is a map of sets with the following properties: (1) (associativity) m(g, m(g0, g00)) = m(m(g, g0), g00) for all g, g0, g00 ∈ G, (2) (identity) there exists a unique element e ∈ G (called the identity, unit, or 1 of G) such that m(g, e) = m(e, g) = g for all g ∈ G, and (3) (inverse) for all g ∈ G there exists a i(g) ∈ G such that m(g, i(g)) = m(i(g), g) = e, where e is the identity. Thus we obtain a map e : {∗} → G and a map i : G → G so that the quadruple (G, m, e, i) satisfies the axioms listed above. A homomorphism of groups ψ :(G, m) → (G0, m0) is a map of sets ψ : G → G0 such that m0(ψ(g), ψ(g0)) = ψ(m(g, g0)). This automatically insures that ψ(e) = e0 and i0(ψ(g)) = ψ(i(g)). (Obvious notation.) We will use this below. 022SDefinition 4.1. Let S be a scheme. (1) A group scheme over S is a pair (G, m), where G is a scheme over S and m : G ×S G → G is a morphism of schemes over S with the following property: For every scheme T over S the pair (G(T ), m) is a group. (2) A morphism ψ :(G, m) → (G0, m0) of group schemes over S is a morphism ψ : G → G0 of schemes over S such that for every T/S the induced map ψ : G(T ) → G0(T ) is a homomorphism of groups. Let (G, m) be a group scheme over the scheme S. By the discussion above (and the discussion in Section 2) we obtain morphisms of schemes over S: (identity) e : S → G and (inverse) i : G → G such that for every T the quadruple (G(T ), m, e, i) satisfies the axioms of a group listed above. Let (G, m), (G0, m0) be group schemes over S. Let f : G → G0 be a morphism of schemes over S.
Recommended publications
  • Fibrations and Yoneda's Lemma in An
    Journal of Pure and Applied Algebra 221 (2017) 499–564 Contents lists available at ScienceDirect Journal of Pure and Applied Algebra www.elsevier.com/locate/jpaa Fibrations and Yoneda’s lemma in an ∞-cosmos Emily Riehl a,∗, Dominic Verity b a Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA b Centre of Australian Category Theory, Macquarie University, NSW 2109, Australia a r t i c l e i n f o a b s t r a c t Article history: We use the terms ∞-categories and ∞-functors to mean the objects and morphisms Received 14 October 2015 in an ∞-cosmos: a simplicially enriched category satisfying a few axioms, reminiscent Received in revised form 13 June of an enriched category of fibrant objects. Quasi-categories, Segal categories, 2016 complete Segal spaces, marked simplicial sets, iterated complete Segal spaces, Available online 29 July 2016 θ -spaces, and fibered versions of each of these are all ∞-categories in this sense. Communicated by J. Adámek n Previous work in this series shows that the basic category theory of ∞-categories and ∞-functors can be developed only in reference to the axioms of an ∞-cosmos; indeed, most of the work is internal to the homotopy 2-category, astrict 2-category of ∞-categories, ∞-functors, and natural transformations. In the ∞-cosmos of quasi- categories, we recapture precisely the same category theory developed by Joyal and Lurie, although our definitions are 2-categorical in natural, making no use of the combinatorial details that differentiate each model. In this paper, we introduce cartesian fibrations, a certain class of ∞-functors, and their groupoidal variants.
    [Show full text]
  • The Tate–Oort Group Scheme Top
    The Tate{Oort group scheme TOp Miles Reid In memory of Igor Rostislavovich Shafarevich, from whom we have all learned so much Abstract Over an algebraically closed field of characteristic p, there are 3 group schemes of order p, namely the ordinary cyclic group Z=p, the multiplicative group µp ⊂ Gm and the additive group αp ⊂ Ga. The Tate{Oort group scheme TOp of [TO] puts these into one happy fam- ily, together with the cyclic group of order p in characteristic zero. This paper studies a simplified form of TOp, focusing on its repre- sentation theory and basic applications in geometry. A final section describes more substantial applications to varieties having p-torsion in Picτ , notably the 5-torsion Godeaux surfaces and Calabi{Yau 3-folds obtained from TO5-invariant quintics. Contents 1 Introduction 2 1.1 Background . 3 1.2 Philosophical principle . 4 2 Hybrid additive-multiplicative group 5 2.1 The algebraic group G ...................... 5 2.2 The given representation (B⊕2)_ of G .............. 6 d ⊕2 _ 2.3 Symmetric power Ud = Sym ((B ) ).............. 6 1 3 Construction of TOp 9 3.1 Group TOp in characteristic p .................. 9 3.2 Group TOp in mixed characteristic . 10 3.3 Representation theory of TOp . 12 _ 4 The Cartier dual (TOp) 12 4.1 Cartier duality . 12 4.2 Notation . 14 4.3 The algebra structure β : A_ ⊗ A_ ! A_ . 14 4.4 The Hopf algebra structure δ : A_ ! A_ ⊗ A_ . 16 5 Geometric applications 19 5.1 Background . 20 2 5.2 Plane cubics C3 ⊂ P with free TO3 action .
    [Show full text]
  • AN INTRODUCTION to CATEGORY THEORY and the YONEDA LEMMA Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transfo
    AN INTRODUCTION TO CATEGORY THEORY AND THE YONEDA LEMMA SHU-NAN JUSTIN CHANG Abstract. We begin this introduction to category theory with definitions of categories, functors, and natural transformations. We provide many examples of each construct and discuss interesting relations between them. We proceed to prove the Yoneda Lemma, a central concept in category theory, and motivate its significance. We conclude with some results and applications of the Yoneda Lemma. Contents Introduction 1 1. Categories 2 2. Functors 3 3. Natural Transformations 6 4. The Yoneda Lemma 9 5. Corollaries and Applications 10 Acknowledgments 12 References 13 Introduction Category theory is an interdisciplinary field of mathematics which takes on a new perspective to understanding mathematical phenomena. Unlike most other branches of mathematics, category theory is rather uninterested in the objects be- ing considered themselves. Instead, it focuses on the relations between objects of the same type and objects of different types. Its abstract and broad nature allows it to reach into and connect several different branches of mathematics: algebra, geometry, topology, analysis, etc. A central theme of category theory is abstraction, understanding objects by gen- eralizing rather than focusing on them individually. Similar to taxonomy, category theory offers a way for mathematical concepts to be abstracted and unified. What makes category theory more than just an organizational system, however, is its abil- ity to generate information about these abstract objects by studying their relations to each other. This ability comes from what Emily Riehl calls \arguably the most important result in category theory"[4], the Yoneda Lemma. The Yoneda Lemma allows us to formally define an object by its relations to other objects, which is central to the relation-oriented perspective taken by category theory.
    [Show full text]
  • Yoneda's Lemma for Internal Higher Categories
    YONEDA'S LEMMA FOR INTERNAL HIGHER CATEGORIES LOUIS MARTINI Abstract. We develop some basic concepts in the theory of higher categories internal to an arbitrary 1- topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yoneda's lemma for internal categories. Contents 1. Introduction 2 Motivation 2 Main results 3 Related work 4 Acknowledgment 4 2. Preliminaries 4 2.1. General conventions and notation4 2.2. Set theoretical foundations5 2.3. 1-topoi 5 2.4. Universe enlargement 5 2.5. Factorisation systems 8 3. Categories in an 1-topos 10 3.1. Simplicial objects in an 1-topos 10 3.2. Categories in an 1-topos 12 3.3. Functoriality and base change 16 3.4. The (1; 2)-categorical structure of Cat(B) 18 3.5. Cat(S)-valued sheaves on an 1-topos 19 3.6. Objects and morphisms 21 3.7. The universe for groupoids 23 3.8. Fully faithful and essentially surjective functors 26 arXiv:2103.17141v2 [math.CT] 2 May 2021 3.9. Subcategories 31 4. Groupoidal fibrations and Yoneda's lemma 36 4.1. Left fibrations 36 4.2. Slice categories 38 4.3. Initial functors 42 4.4. Covariant equivalences 49 4.5. The Grothendieck construction 54 4.6. Yoneda's lemma 61 References 71 Date: May 4, 2021. 1 2 LOUIS MARTINI 1. Introduction Motivation. In various areas of geometry, one of the principal strategies is to study geometric objects by means of algebraic invariants such as cohomology, K-theory and (stable or unstable) homotopy groups.
    [Show full text]
  • Groupoids and Local Cartesian Closure
    Groupoids and local cartesian closure Erik Palmgren∗ Department of Mathematics, Uppsala University July 2, 2003 Abstract The 2-category of groupoids, functors and natural isomorphisms is shown to be locally cartesian closed in a weak sense of a pseudo- adjunction. Key words: groupoids, 2-categories, local cartesian closure. Mathematics Subject Classification 2000: 18B40, 18D05, 18A40. 1 Introduction A groupoid is a category in which each morphism is invertible. The notion may be considered as a common generalisation of the notions of group and equivalence relation. A group is a one-object groupoid. Every equivalence relation on a set, viewed as a directed graph, is a groupoid. A recent indepen- dence proof in logic used groupoids. Hofmann and Streicher [8] showed that groupoids arise from a construction in Martin-Löf type theory. This is the so-called identity type construction, which applied to a type gives a groupoid turning the type into a projective object, in the category of types with equiv- alence relations. As a consequence there are plenty of choice objects in this category: every object has a projective cover [12] — a property which seems essential for doing constructive mathematics according to Bishop [1] inter- nally to the category. For some time the groupoids associated with types were believed to be discrete. However, in [8] a model of type theory was given using fibrations over groupoids, showing that this need not be the case. The purpose of this article is to draw some further conclusions for group- oids from the idea of Hofmann and Streicher. Since type theory has a Π- construction, one could expect that some kind of (weak) local cartesian clo- sure should hold for groupoids.
    [Show full text]
  • Notes on Categorical Logic
    Notes on Categorical Logic Anand Pillay & Friends Spring 2017 These notes are based on a course given by Anand Pillay in the Spring of 2017 at the University of Notre Dame. The notes were transcribed by Greg Cousins, Tim Campion, L´eoJimenez, Jinhe Ye (Vincent), Kyle Gannon, Rachael Alvir, Rose Weisshaar, Paul McEldowney, Mike Haskel, ADD YOUR NAMES HERE. 1 Contents Introduction . .3 I A Brief Survey of Contemporary Model Theory 4 I.1 Some History . .4 I.2 Model Theory Basics . .4 I.3 Morleyization and the T eq Construction . .8 II Introduction to Category Theory and Toposes 9 II.1 Categories, functors, and natural transformations . .9 II.2 Yoneda's Lemma . 14 II.3 Equivalence of categories . 17 II.4 Product, Pullbacks, Equalizers . 20 IIIMore Advanced Category Theoy and Toposes 29 III.1 Subobject classifiers . 29 III.2 Elementary topos and Heyting algebra . 31 III.3 More on limits . 33 III.4 Elementary Topos . 36 III.5 Grothendieck Topologies and Sheaves . 40 IV Categorical Logic 46 IV.1 Categorical Semantics . 46 IV.2 Geometric Theories . 48 2 Introduction The purpose of this course was to explore connections between contemporary model theory and category theory. By model theory we will mostly mean first order, finitary model theory. Categorical model theory (or, more generally, categorical logic) is a general category-theoretic approach to logic that includes infinitary, intuitionistic, and even multi-valued logics. Say More Later. 3 Chapter I A Brief Survey of Contemporary Model Theory I.1 Some History Up until to the seventies and early eighties, model theory was a very broad subject, including topics such as infinitary logics, generalized quantifiers, and probability logics (which are actually back in fashion today in the form of con- tinuous model theory), and had a very set-theoretic flavour.
    [Show full text]
  • Correspondences and Groupoids 1 Introduction
    Proceedings of the IX Fall Workshop on Geometry and Physics, Vilanova i la Geltr´u, 2000 Publicaciones de la RSME, vol. X, pp. 1–6. Correspondences and groupoids 1Marta Macho-Stadler and 2Moto O’uchi 1Departamento de Matem´aticas, Universidad del Pa´ıs Vasco-Euskal Herriko Unibertsitatea 2Department of Applied Mathematics, Osaka Women’s University emails: [email protected], [email protected] Abstract Our definition of correspondence between groupoids (which generali- zes the notion of homomorphism) is obtained by weakening the conditions in the definition of equivalence of groupoids in [5]. We prove that such a correspondence induces another one between the associated C*-algebras, and in some cases besides a Kasparov element. We wish to apply the results obtained in the particular case of K-oriented maps of leaf spaces in the sense of [3]. Key words: Groupoid, C*-algebra, correspondence, KK-group. MSC 2000: 46L80, 46L89 1Introduction A. Connes introduced in [1] the notion of correspondence in the theory of Von Neumann algebras. It is a concept of morphism, which gives the well known notion of correspondence of C*-algebras. In [5], P.S. Mulhy, J.N. Re- nault and D. Williams defined the notion of equivalence of groupoids and showed that if two groupoids are equivalent, then the associated C*-algebras are Morita-equivalent. But, this notion is too strong: here we give a definition of correspondence of groupoids,byweakening the conditions of equivalence in [5]. We prove that such a correspondence induces another one (in the sense of A. Connes) between the associated reduced C*-algebras.
    [Show full text]
  • On Groupoids and Stuff
    On Groupoids and Stuff Simon Byrne November 17, 2005 Contents 1 Groupoids 3 1.1 An introduction . 3 1.2 Category of groupoids . 5 1.3 Weak quotient . 6 1.4 Colouring . 8 2 Stuff types 12 2.1 Stuff types . 12 2.1.1 Structure types . 13 2.1.2 Examples . 16 2.2 Generating functions . 16 2.2.1 A categorical view . 18 2.3 The 2-category of stuff types . 21 3 Operations on stuff types 27 3.1 Addition . 27 3.2 Multiplication . 29 3.3 Composition . 31 3.4 Pointing . 33 3.5 Derivative . 34 3.6 Cartesian product . 37 3.7 Inner product . 39 3.8 Stuff operator . 42 1 Introduction The theory of combinatorial species developed by Andr´eJoyal [3] is a method for analysis of finite structures using generating functions. A combinatorial species can be thought of as a map assigning to each finite set the set of structures of the species which exist on that set. A structure type works in the opposite direction, assigning to a structure its underlying set. However the collection of structures is not a set, but a groupoid. This mapping “forgets” the structure, and so its fibre (or inverse) will rebuild it, becoming a species. A stuff type is a generalisation of a structure type, and in the same context can be thought of as mapping a structure to some subset of its underlying set. This mapping forgets not only structure, but extra “stuff”. The advantage of such an approach is two-fold. Firstly it provides a categorical underpinning to the concept of a generating function, giving an explanation as to the form of the power series.
    [Show full text]
  • 4 Fibered Categories (Aaron Mazel-Gee) Contents
    4 Fibered categories (Aaron Mazel-Gee) Contents 4 Fibered categories (Aaron Mazel-Gee) 1 4.0 Introduction . .1 4.1 Definitions and basic facts . .1 4.2 The 2-Yoneda lemma . .2 4.3 Categories fibered in groupoids . .3 4.3.1 ... coming from co/groupoid objects . .3 4.3.2 ... and 2-categorical fiber product thereof . .4 4.0 Introduction In the same way that a sheaf is a special sort of functor, a stack will be a special sort of sheaf of groupoids (or a special special sort of groupoid-valued functor). It ends up being advantageous to think of the groupoid associated to an object X as living \above" X, in large part because this perspective makes it much easier to study the relationships between the groupoids associated to different objects. For this reason, we use the language of fibered categories. We note here that throughout this exposition we will often say equal (as opposed to isomorphic), and we really will mean it. 4.1 Definitions and basic facts φ Definition 1. Let C be a category. A category over C is a category F with a functor p : F!C. A morphism ξ ! η p(φ) in F is called cartesian if for any other ζ 2 F with a morphism ζ ! η and a factorization p(ζ) !h p(ξ) ! p(η) of φ p( ) in C, there is a unique morphism ζ !λ η giving a factorization ζ !λ η ! η of such that p(λ) = h. Pictorially, ζ - η w - w w 9 w w ! w w λ φ w w w w - w w w w ξ w w w w w w p(ζ) w p(η) w w - w h w ) w (φ w p w - p(ξ): In this case, we call ξ a pullback of η along p(φ).
    [Show full text]
  • COHOMOLOGY of LIE GROUPS MADE DISCRETE Abstract
    Publicacions Matemátiques, Vol 34 (1990), 151-174 . COHOMOLOGY OF LIE GROUPS MADE DISCRETE PERE PASCUAL GAINZA Abstract We give a survey of the work of Milnor, Friedlander, Mislin, Suslin, and other authors on the Friedlander-Milnor conjecture on the homology of Lie groups made discrete and its relation to the algebraic K-theory of fields. Let G be a Lie group and let G6 denote the same group with the discrete topology. The natural homomorphism G6 -+ G induces a continuous map between classifying spaces rt : BG6 -----> BG . E.Friedlander and J. Milnor have conjectured that rl induces isomorphisms of homology and cohomology with finite coefficients. The homology of BG6 is the Eilenberg-McLane homology of the group G6 , hard to compute, and one of the interests of the conjecture is that it permits the computation of these groups with finite coefficients through the computation (much better understood) of the homology and cohomology of BG. The Eilenberg-McLane homology groups of a topological group G are of interest in a variety of contexts such as the theory of foliations [3], [11], the scissors congruence [6] and algebraic K-theory [26] . For example, the Haefliger classifying space of the theory of foliations is closely related to the group of homeomorphisms of a topological manifold, for which one can prove analogous results of the Friedlander-Milnor conjecture with entire coefFicients, cf. [20], [32] . These notes are an exposition of the context of the conjecture, some known results mainly due to Milnor, Friedlander, Mislin and Suslin, and its application to the study of the groups K;(C), i > 0.
    [Show full text]
  • Notes on Moduli Theory, Stacks and 2-Yoneda's Lemma
    Notes on Moduli theory, Stacks and 2-Yoneda's Lemma Kadri lker Berktav Abstract This note is a survey on the basic aspects of moduli theory along with some examples. In that respect, one of the purpose of this current document is to understand how the introduction of stacks circumvents the non-representability problem of the corresponding moduli functor F by using the 2-category of stacks. To this end, we shall briey revisit the basics of 2-category theory and present a 2-categorical version of Yoneda's lemma for the "rened" moduli functor F. Most of the material below are standard and can be found elsewhere in the literature. For an accessible introduction to moduli theory and stacks, we refer to [1,3]. For an extensive treatment to the case of moduli of curves, see [5,6,8]. Basics of 2-category theory and further discussions can be found in [7]. Contents 1 Functor of points, representable functors, and Yoneda's Lemma1 2 Moduli theory in functorial perspective3 2.1 Moduli of vector bundles of xed rank.........................6 2.2 Moduli of elliptic curves.................................7 3 2-categories and Stacks 11 3.1 A digression on 2-categories............................... 11 3.2 2-category of Stacks and 2-Yoneda's Lemma...................... 14 1 Functor of points, representable functors, and Yoneda's Lemma Main aspects of a moduli problem of interest can be encoded by a certain functor, namely a moduli functor of the form F : Cop −! Sets (1.1) where Cop is the opposite category of the category C, and Sets denotes the category of sets.
    [Show full text]
  • Coalgebras from Formulas
    Coalgebras from Formulas Serban Raianu California State University Dominguez Hills Department of Mathematics 1000 E Victoria St Carson, CA 90747 e-mail:[email protected] Abstract Nichols and Sweedler showed in [5] that generic formulas for sums may be used for producing examples of coalgebras. We adopt a slightly different point of view, and show that the reason why all these constructions work is the presence of certain representative functions on some (semi)group. In particular, the indeterminate in a polynomial ring is a primitive element because the identity function is representative. Introduction The title of this note is borrowed from the title of the second section of [5]. There it is explained how each generic addition formula naturally gives a formula for the action of the comultiplication in a coalgebra. Among the examples chosen in [5], this situation is probably best illus- trated by the following two: Let C be a k-space with basis {s, c}. We define ∆ : C −→ C ⊗ C and ε : C −→ k by ∆(s) = s ⊗ c + c ⊗ s ∆(c) = c ⊗ c − s ⊗ s ε(s) = 0 ε(c) = 1. 1 Then (C, ∆, ε) is a coalgebra called the trigonometric coalgebra. Now let H be a k-vector space with basis {cm | m ∈ N}. Then H is a coalgebra with comultiplication ∆ and counit ε defined by X ∆(cm) = ci ⊗ cm−i, ε(cm) = δ0,m. i=0,m This coalgebra is called the divided power coalgebra. Identifying the “formulas” in the above examples is not hard: the for- mulas for sin and cos applied to a sum in the first example, and the binomial formula in the second one.
    [Show full text]