Synthesis, Structure and Some Catalytic Applications of Platinum Complexes with Terphenyl Phosphine Ligands

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis, Structure and Some Catalytic Applications of Platinum Complexes with Terphenyl Phosphine Ligands UNIVERSIDAD DE SEVILLA CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS Departamento de Química Inorgánica Instituto de Investigaciones Químicas Synthesis, Structure and Some Catalytic Applications of Platinum Complexes with Terphenyl Phosphine Ligands Laura Ortega Moreno Tesis Doctoral Sevilla 2016 Synthesis, Structure and Some Catalytic Applications of Platinum Complexes with Terphenyl Phosphine Ligands Por Laura Ortega Moreno Trabajo presentado para aspirer al Título de Doctora en Química Sevilla, 2016 Laura Ortega Moreno Directores de Tesis: Riccardo Peloso Ernesto Carmona Guzmán Profesor Ayudante de Doctor Catedrático Química Inorganica Química Inorganica Universidad Sevilla Universidad de Sevilla A la madre que me ciclometaló A mi padre A mi hermano ACKNOWLEDGEMENTS We gratefully acknowledge the following contributions to this Thesis: 195Pt NMR studies by Prof. Juan Forniés, University of Zaragoza (Spain). Support on catalytic assays by Dr. Andrés Suárez, Consejo Superior de Investigaciones Científicas (Sevilla). X-ray diffraction studies by Dr. Celia Maya, University of Sevilla. Support on DFT calculations and NMR experiments by Joaquín López- Serrano, University of Sevilla. Se acaba la etapa del doctorado para mí. Muchos dicen que es una de las etapas de la vida más bonitas y entrañables que recordar. Si echo la vista atrás, a mí no me cabe ninguna duda, puesto que no solo ha sido un aprendizaje a nivel académico o profesional sino también a nivel personal durante los últimos 4 años. He pulido mi carácter, a veces un tanto brusco, y he aprendido a controlar mis impulsos, a pensar dos veces antes de abrir la boca y a empatizar con el resto de personas que me rodean. Todo esto se lo debo agradecer a todas y cada una de las maravillosas personas que he conocido aquí en Sevilla y que de una manera u otra son participes de esta Tesis. En primer lugar me gustaría plasmar mi agradecimiento al Prof. Ernesto Carmona, uno de mis directores de Tesis, puesto que fue él el que sin apenas conocerme me ofreció la posibilidad de empezar un nuevo proyecto de investigación en su grupo. Le agradezco no solo la confianza depositada en mí, sino también las palabras de ánimo y cariño que siempre he escuchado de él. Le agradezco también el tiempo dedicado a esta tesis puesto que siempre tenía una nueva idea o enfoque para la química que he desarrollado, demostrando una vez más su dedicación absoluta a la investigación. Por todo ello, GRACIAS Ernesto! A la tarea de director de tesis se sumó algo más tarde Riccardo Peloso. A él le agradezco todos los consejos tanto fuera como dentro del laboratorio y estando siempre con una sonrisa en la cara e irradiando felicidad y positivismo. Ha sabido compaginar los esfuerzos en la investigación en el laboratorio con las recompensas fuera de él. Siempre me voy a acordar de las noches de charlas con rissotto en tu casa y las correcciones de la Tesis mordisqueadas por su conejo. Eres grande y único. Gracias Ric! Pese a que no ha sido uno de mis directores de Tesis le agradezco todos los esfuerzos por intentar entender mi química a Manolo Poveda. Gracias por todos esos momentos a mi lado cogiendo papel y bolígrafo para explicarme cualquier duda que me surgiera y por hacerme “pensar” de vez en cuando. También quiero agradecerle los intentos por endulzarme el humor a base de Ferrero-Rocher, pipas peladas y quicos. Es inevitable echar una vista atrás y recordar a todos los compañeros de laboratorio que estaban aquí cuando llegué y que fueron acabando y desperdigándose por el mundo en el periodo de mi Tesis. Voy a empezar por agradecer a los antiguos habitantes del Laboratorio 9: Marta, Jesús, Orestes, Crispín y Ana Zamorano, puesto que ese fue mi primer “hábitat” al llegar a Sevilla. Gracias por crear un ambiente tan bueno de trabajo y por amenizarlo todo con unas risas y una cerveza al salir del instituto. Del Laboratorio 1-2 tengo que agradecer todos los momentos compartidos a Giovanni (un italiano la mar de “salao”), Mario, Ana Lozano, Irene (mi flamenca achinada), Yohar y Ángela (la niña de mis ojos). No me puedo olvidar de las niñas del 10-11 Conchi y Mónica. Ahora sí que sí, toca agradeceros vuestra paciencia “máxima” a todos y cada uno de mis compañeros. Empezaré por los del Laboratorio 1- 2. Me gustaría empezar este repaso con Carlos, o también conocido como “Papote Malote”, dado que el laboratorio no es lo mismo sin ti y sin tus bromas y buen rollo. Juanjo, su ojito derecho y unas de las últimas incorporaciones al laboratorio. Mi “Morrocan Queen” (también conocida como Natalia para el resto) que es todo corazón y que no hay cosa con la que no te ayude. Mi Marifé, la primera persona que conocí, incluso antes de llegar a Sevilla, y que hemos trabajado codo a codo en el laboratorio y hasta incluso vivido juntas durante más de un año. A ella le agradezco su comprensión en mis malos momentos y las alegrías compartidas. Quiero agradecer también a los doctorandos del laboratorio 3-4. Entre ellos se encuentra John (el colombiano más bailongo y simpático que jamás haya conocido), Carmen (la chica que supo compaginar una tesis con ponerse en forma en el gimnasio), Elena (la dulzura personificada) y Astrid (mi granadina favorita y una técnico que vale para todo dentro y fuera del laboratorio, una todo terreno). Siguiendo el recorrido por los laboratorios tengo que pararme en el Lab 9 y 10-11 donde se han incorporado nuevas adquisiciones del grupo en los que se encuentran Martín, Félix, Práxedes (o también conocido como “miarma”), Pablo y Leonardo. Agradeceros el apoyo y los ánimos recibidos, sobretodo en esta etapa final de la Tesis. Como olvidarme de Eire y Pedro, que aunque estuvieron solo unos pocos meses de estancia en nuestro centro han dejado mella en todos nosotros. Este grupo también cuenta con los mejores jefes y PostDocs que me gustaría agradecer su participación tanto en la tesis como en la mejoría de mi estancia estos años aquí en Sevilla. Salva y Amor, como decirlo?... Sois increíbles fuera y dentro del laboratorio. Os agradezco mucho la confianza depositada en mí. A Patricia, Nuria y Laura deciros que sois un ejemplo a seguir y agradeceros enormemente vuestra simpatía y ganas de ayudar al prójimo tanto en lo que se refiere a burocracia, como a la química como fuera de los menesteres de la investigación. A Margarita Paneque gracias por cuidar de cada uno de nosotros incluso cuando hay volantes de trajes de flamenca por en medio. A Joaquín le tengo que agradecer todos los consejos y ayuda no solo en cálculos y RMN (que no es poco) sino también por su tiempo fuera del laboratorio. A Luis Sánchez, gran experto de gases del grupo, le agradezco enormemente su ayuda en todo lo relacionado con manorreductores, conexiones y sistemas de secado de gases. No me puedo olvidar de los técnicos de los equipos del instituto. En primer lugar le agradezco a Flo por los esfuerzos titánicos realizados en sacar los análisis elementales de los compuestos sensibles y también por las visitas exprés a la casa rural junto a su familia. A Fran por su inestimable ayuda tanto en todo lo que se refiere a los problemas con los programas informáticos (licencias) como con el gases-masas. A Margarita, la secretaria, le agradezco su destreza con todo lo que se refiere a burocracia y su simpatía constante. Ampliando las fronteras de la química organometálica debo agradecer también a mis compañeros de los laboratorios orgánicos (Ainhoa, Rocío, Javi, José Juan, Pedro, Abel, Rute, Mª José, Ana, Pepe, Arcadio) por hacer que esa frontera sea cada vez más difusa y por el buen ambiente creado en los comedores y en las cenas de navidad. Porque la tesis no es solo el laboratorio sino que también es un momento para abrir la mente en todos los sentidos y disfrutar de la vida, quiero también mostrar mi agradecimiento a esas extrañas personitas que me han hecho mucho más llevadera la estancia aquí en Sevilla fuera del instituto. Estoy pensando en Lilian, mi mejicana favorita, a los niños de Jerez, Miriam y Javi que tienen todo el arte que le corre por las venas, a Miguel, que aunque seas del Madrid no eres malo del todo, y a Andrea! Muchas gracias chicos por compartir vuestro tiempo conmigo. Estos agradecimientos no se entenderían sin mencionar a mis amigas de Pineda y cercanías, que pese a estar tanto tiempo distanciadas siempre hemos encontrado un momento para seguir en contacto y transmitirnos el afecto mutuo que tenemos. Estoy refiriéndome a Deby, Rosa, Lorena y Sara. Sois increíbles amigas y mejores personas. Gracias por vuestras llamadas y cariño (incluida alguna que otra escapadita al sur). Estos agradecimientos no tendrían ningún sentido si no incluyera también a mi familia. Mis padres y hermano han sido siempre un pilar fundamental en mi vida, pero el hecho de vivir lejos de ellos durante este periodo de tiempo me ha hecho apreciarlos aún más si cabe. Ellos me han hecho tal y como soy, se lo debo absolutamente todo a ellos. Gracias por el apoyo, los ánimos y vuestro incondicional amor. Me gustaría también agradecer a mis abuelos el cariño recibido no solo en esta etapa sino en todas las de mi vida. GRACIAS FAMILIA! TABLE OF CONTENTS Abbreviations 1 Consideraciones Generales 5 Publications 11 Summary of Compounds 13 Abstract 17 Chapter I. I.1. INTRODUCTION 23 I.1.1. A brief historical preface 23 I.1.2. Introductory comments 31 I.2. RESULTS AND DISCUSSION 45 I.2.1. Pt(II) Complexes of the o-Xylyl Substituted Xyl2 PMe2Ar Ligand 45 I.2.1.1.
Recommended publications
  • Functionalization of Heterocycles: a Metal Catalyzed Approach Via
    FUNCTIONALIZATION OF HETEROCYCLES: A METAL CATALYZED APPROACH VIA ALLYLATION AND C-H ACTIVATION A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Sandeepreddy Vemula In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Chemistry and Biochemistry October 2018 Fargo, North Dakota North Dakota State University Graduate School Title FUNCTIONALIZATION OF HETEROCYCLES: A METAL CATALYZED APPROACH VIA ALLYLATION AND C-H ACTIVATION By Sandeepreddy Vemula The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Prof. Gregory R. Cook Chair Prof. Mukund P. Sibi Prof. Pinjing Zhao Prof. Dean Webster Approved: November 16, 2018 Prof. Gregory R. Cook Date Department Chair ABSTRACT The central core of many biologically active natural products and pharmaceuticals contain N-heterocycles, the installation of simple/complex functional groups using C-H/N-H functionalization methodologies has the potential to dramatically increase the efficiency of synthesis with respect to resources, time and overall steps to key intermediate/products. Transition metal-catalyzed functionalization of N-heterocycles proved as a powerful tool for the construction of C-C and C-heteroatom bonds. The work in this dissertation describes the development of palladium catalyzed allylation, and the transition metal catalyzed C-H activation for selective functionalization of electron deficient N-heterocycles. Chapter 1 A thorough study highlighting the important developments made in transition metal catalyzed approaches for C-C and C-X bond forming reactions is discussed with a focus on allylation, directed indole C-2 substitution and vinylic C-H activation.
    [Show full text]
  • Secondary Organic Aerosol from Chlorine-Initiated Oxidation of Isoprene Dongyu S
    Secondary organic aerosol from chlorine-initiated oxidation of isoprene Dongyu S. Wang and Lea Hildebrandt Ruiz McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78756, USA 5 Correspondence to: Lea Hildebrandt Ruiz ([email protected]) Abstract. Recent studies have found concentrations of reactive chlorine species to be higher than expected, suggesting that atmospheric chlorine chemistry is more extensive than previously thought. Chlorine radicals can interact with HOx radicals and nitrogen oxides (NOx) to alter the oxidative capacity of the atmosphere. They are known to rapidly oxidize a wide range of volatile organic compounds (VOC) found in the atmosphere, yet little is known about secondary organic aerosol (SOA) 10 formation from chlorine-initiated photo-oxidation and its atmospheric implications. Environmental chamber experiments were carried out under low-NOx conditions with isoprene and chlorine as primary VOC and oxidant sources. Upon complete isoprene consumption, observed SOA yields ranged from 8 to 36 %, decreasing with extended photo-oxidation and SOA aging. Formation of particulate organochloride was observed. A High-Resolution Time-of-Flight Chemical Ionization Mass Spectrometer was used to determine the molecular composition of gas-phase species using iodide-water and hydronium-water 15 cluster ionization. Multi-generational chemistry was observed, including ions consistent with hydroperoxides, chloroalkyl hydroperoxides, isoprene-derived epoxydiol (IEPOX) and hypochlorous acid (HOCl), evident of secondary OH production and resulting chemistry from Cl-initiated reactions. This is the first reported study of SOA formation from chlorine-initiated oxidation of isoprene. Results suggest that tropospheric chlorine chemistry could contribute significantly to organic aerosol loading.
    [Show full text]
  • Use of Chlorofluorocarbons in Hydrology : a Guidebook
    USE OF CHLOROFLUOROCARBONS IN HYDROLOGY A Guidebook USE OF CHLOROFLUOROCARBONS IN HYDROLOGY A GUIDEBOOK 2005 Edition The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GREECE PANAMA ALBANIA GUATEMALA PARAGUAY ALGERIA HAITI PERU ANGOLA HOLY SEE PHILIPPINES ARGENTINA HONDURAS POLAND ARMENIA HUNGARY PORTUGAL AUSTRALIA ICELAND QATAR AUSTRIA INDIA REPUBLIC OF MOLDOVA AZERBAIJAN INDONESIA ROMANIA BANGLADESH IRAN, ISLAMIC REPUBLIC OF RUSSIAN FEDERATION BELARUS IRAQ SAUDI ARABIA BELGIUM IRELAND SENEGAL BENIN ISRAEL SERBIA AND MONTENEGRO BOLIVIA ITALY SEYCHELLES BOSNIA AND HERZEGOVINA JAMAICA SIERRA LEONE BOTSWANA JAPAN BRAZIL JORDAN SINGAPORE BULGARIA KAZAKHSTAN SLOVAKIA BURKINA FASO KENYA SLOVENIA CAMEROON KOREA, REPUBLIC OF SOUTH AFRICA CANADA KUWAIT SPAIN CENTRAL AFRICAN KYRGYZSTAN SRI LANKA REPUBLIC LATVIA SUDAN CHAD LEBANON SWEDEN CHILE LIBERIA SWITZERLAND CHINA LIBYAN ARAB JAMAHIRIYA SYRIAN ARAB REPUBLIC COLOMBIA LIECHTENSTEIN TAJIKISTAN COSTA RICA LITHUANIA THAILAND CÔTE D’IVOIRE LUXEMBOURG THE FORMER YUGOSLAV CROATIA MADAGASCAR REPUBLIC OF MACEDONIA CUBA MALAYSIA TUNISIA CYPRUS MALI TURKEY CZECH REPUBLIC MALTA UGANDA DEMOCRATIC REPUBLIC MARSHALL ISLANDS UKRAINE OF THE CONGO MAURITANIA UNITED ARAB EMIRATES DENMARK MAURITIUS UNITED KINGDOM OF DOMINICAN REPUBLIC MEXICO GREAT BRITAIN AND ECUADOR MONACO NORTHERN IRELAND EGYPT MONGOLIA UNITED REPUBLIC EL SALVADOR MOROCCO ERITREA MYANMAR OF TANZANIA ESTONIA NAMIBIA UNITED STATES OF AMERICA ETHIOPIA NETHERLANDS URUGUAY FINLAND NEW ZEALAND UZBEKISTAN FRANCE NICARAGUA VENEZUELA GABON NIGER VIETNAM GEORGIA NIGERIA YEMEN GERMANY NORWAY ZAMBIA GHANA PAKISTAN ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna.
    [Show full text]
  • CHAPTER12 Atmospheric Degradation of Halocarbon Substitutes
    CHAPTER12 AtmosphericDegradation of Halocarbon Substitutes Lead Author: R.A. Cox Co-authors: R. Atkinson G.K. Moortgat A.R. Ravishankara H.W. Sidebottom Contributors: G.D. Hayman C. Howard M. Kanakidou S .A. Penkett J. Rodriguez S. Solomon 0. Wild CHAPTER 12 ATMOSPHERIC DEGRADATION OF HALOCARBON SUBSTITUTES Contents SCIENTIFIC SUMMARY ......................................................................................................................................... 12.1 12.1 BACKGROUND ............................................................................................................................................... 12.3 12.2 ATMOSPHERIC LIFETIMES OF HFCS AND HCFCS ................................................................................. 12.3 12.2. 1 Tropospheric Loss Processes .............................................................................................................. 12.3 12.2.2 Stratospheric Loss Processes .............................................................................................................. 12.4 12.3 ATMOSPHERIC LIFETIMES OF OTHER CFC AND HALON SUBSTITUTES ......................................... 12.4 12.4 ATMOSPHERIC DEGRADATION OF SUBSTITUTES ................................................................................ 12.5 12.5 GAS PHASE DEGRADATION CHEMISTRY OF SUBSTITUTES .............................................................. 12.6 12.5.1 Reaction with NO ..............................................................................................................................
    [Show full text]
  • Verification Program Manual and Mexico
    SHARE: Join Our Email List CLIMATE ACTION NEWS December 2020 A note from our President Greetings, The climate community is hopeful and excited for a new era of climate policy, action, and diplomacy. The incoming Administration has already indicated a serious commitment to addressing the climate crisis, with key appointments and statements portending well for the future of U.S. climate action on the federal level. We are excited for the U.S. to not only rejoin the Paris Agreement, but to provide the example, the innovation, and the thought-leadership to achieve GHG reductions at the scale and urgency required. The Reserve is working to support and inform international efforts to scale up, mobilize, and strengthen the effectiveness of voluntary carbon markets across the globe. Even though COP has been postponed this year, experts around the world continue to discuss and deliberate critical issues to help craft key underlying decisions on how markets should function, how to apply usage of carbon offsets, and how to ensure the environmental integrity and financial value of offset projects and credits. In addition to participating in international discussions, the Reserve is working to expand our work in Mexico. We are updating the Mexico Ozone Depleting Substances Protocol to add several halocarbons, which are refrigerants with high global warming potentials. We are also continuing to work with communities and organizations across Mexico with outreach and education on implementing forest carbon projects, as well as drafting agricultural offset protocols for consideration by the Mexican Government. Thank you again for your climate action and leadership throughout the year.
    [Show full text]
  • Research on Ocean Acidification at the University of Malaya
    ADVANCINGResearch SUSTAINABLE on DEVELOPMENTOcean A INcidification LMEs DURING CLIMATE at theCHANGE University of Malaya Emienour Muzalina Mustafa, Choon-Weng Lee & Siew-Moi Phang Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia OCEANS IN A CHANGING CLIMATE OCEAN ↑ CO 2 ACIDIFICATION HUMAN IMPACTS: OCEAN MARINE POLLUTION WARMING BIOTA EUTROPHICATION OVERFISHING OCEAN DE- OXYGENATION Fig. 5. The palaeohistorical record of ocean pH demonstrates that present levels are unseen in the last 20 million years (Turley et al., 2006). Fig. 1. Projected regional changes in ocean chemistry likely to be experienced by particularly vulnerable ecosystems and compared to global-scale surface ocean changes. Global ocean surface averages (bottom) are shown, from left to right: CO2 partial pressure, pH(SWS) and calcite and aragonite saturation. Editorial, Marine Pollution Bulletin 60(2010): 787-792 Fig. 2. Photos of representatives of calcifying groups thought to be vulnerable to ocean acidification from top left to bottom right: pteropod (Jeremy Young, NHM), benthic foraminifer (James Rae, UBristol), coccolithophore (Jeremy Young, NHM), blue mussel (Frédéric Gazeau, Villefranche), sea urchin (Helen Findlay, PML), brittlestar (Sam Dupont, UGothenburg), tropical coral (Malcolm Shick, UMaine), coralline algae (Armin Form, IFM-GEOMAR), cold water coral (Karen Hissmann, IFM-GEOMAR). COMMERCIAL SPECIES IN ASIA THAT MAY BE IMPACTED BY OCEAN ACIDIFICATION Climate change and the oceans – What does the future hold? Jelle Bijma a,⇑, Hans-O. Pörtner a, Chris Yesson b, Alex D. Rogers Marine Pollution Bulletin 74 (2013) 495–505 Atmospheric pCO2 levels (ppmv CO2) that would be required to cause pH changes in Change in diversity as a function of ocean surface waters pH reduction for organisms living near the Ischia CO2 vents.
    [Show full text]
  • The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
    The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2.
    [Show full text]
  • Novel Microbiocides
    (19) TZZ _Z__T (11) EP 2 641 901 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 25.09.2013 Bulletin 2013/39 C07D 215/40 (2006.01) C07D 401/12 (2006.01) A61K 31/4709 (2006.01) A01N 43/42 (2006.01) (21) Application number: 12160780.8 (22) Date of filing: 22.03.2012 (84) Designated Contracting States: (72) Inventor: The designation of the inventor has not AL AT BE BG CH CY CZ DE DK EE ES FI FR GB yet been filed GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Herrmann, Jörg Designated Extension States: Syngenta Crop Protection BA ME Münchwilen AG Intellectual Property Department (71) Applicant: Syngenta Participations AG Schaffhauserstrasse 4058 Basel (CH) 4332 Stein (CH) (54) Novel microbiocides (57) The invention relates to compounds of formula I wherein R1, R2, X, Y1, Y2, Y3, D1, D2, D3, G1, G2, G3 and p are as defined in the claims. The invention further provides intermediates used in the preparation of these compounds, to compositions which comprise these compounds and to theiruse in agriculture or horticulture for controlling orpreventing infestation of plants by phytopathogenic microorganisms, preferably fungi. EP 2 641 901 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 641 901 A1 Description [0001] The present invention relates to novel microbiocidally active, in particular fungicidally active, cyclic bisoxime derivatives. Itfurther relatesto intermediates used inthe preparationof these compounds, to compositions which comprise 5 these compounds and to their use in agriculture or horticulture for controlling or preventing infestation of plants by phytopathogenic microorganisms, preferably fungi.
    [Show full text]
  • Halocarbon Scenarios, Ozone Depletion Potentials, and Global Warming Potentials
    CHAPTER 8 Halocarbon Scenarios, Ozone Depletion Potentials, and Global Warming Potentials Lead Authors: J.S. Daniel G.J.M. Velders Coauthors: A.R. Douglass P.M.D. Forster D.A. Hauglustaine I.S.A. Isaksen L.J.M. Kuijpers A. McCulloch T.J. Wallington Contributors: P. Ashford S.A. Montzka P.A. Newman D.W. Waugh Final Release: February 2007 From Scientific Assessment of Ozone Depletion: 2006 CHAPTER 8 HALOCARBON SCENARIOS, OZONE DEPLETION POTENTIALS, AND GLOBAL WARMING POTENTIALS Contents SCIENTIFIC SUMMARY . 8.1 8.1 INTRODUCTION . 8.5 8.2 HALOCARBON LIFETIMES, OZONE DEPLETION POTENTIALS, AND GLOBAL WARMING POTENTIALS . 8.5 8.2.1 Introduction . 8.5 8.2.2 Ozone Depletion Potentials . 8.5 8.2.2.1 Atmospheric Lifetimes . 8.6 8.2.2.2 Fractional Release Factors . 8.6 8.2.2.3 Ozone Destruction Effectiveness . 8.7 8.2.2.4 ODP Values . 8.8 8.2.3 Direct Global Warming Potentials . 8.8 8.2.4 Degradation Products and Their Implications for ODPs and GWPs . 8.13 8.3 FUTURE HALOCARBON SOURCE GAS CONCENTRATIONS . .8.13 8.3.1 Introduction . 8.13 8.3.2 Baseline Scenario (A1) . 8.15 8.3.2.1 Emissions . 8.15 8.3.2.2 Mixing Ratios . 8.21 8.3.2.3 Equivalent Effective Stratospheric Chlorine . 8.25 8.3.3 Alternative Projections . 8.28 8.3.3.1 Emissions . 8.28 8.3.3.2 Mixing Ratios . 8.28 8.3.3.3 Equivalent Effective Stratospheric Chlorine . 8.30 8.3.4 Uncertainties in ODS Projections . 8.32 8.4 OTHER PROCESSES RELEVANT TO FUTURE OZONE EVOLUTION .
    [Show full text]
  • An Algorithm to Detect Non-Background Signals in Greenhouse Gas Time Series from European Tall Tower and Mountain Stations
    https://doi.org/10.5194/amt-2021-16 Preprint. Discussion started: 9 March 2021 c Author(s) 2021. CC BY 4.0 License. An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations Alex Resovsky1, Michel Ramonet1, Leonard Rivier1, Jerome Tarniewicz1, Philippe Ciais1, Martin 5 Steinbacher2, Ivan Mammarella3, Meelis Mölder4, Michal Heliasz4, Dagmar Kubistin5, Matthias Lindauer5, Jennifer Müller-Williams5, Sebastien Conil6, Richard Engelen7 1Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France 2Empa, Laboratory for Air Pollution/Environmental Technology, CH-8600 Duebendorf, Switzerland 10 3Institute for Atmospheric and Earth System Research/ Physics, University of Helsinki, Helsinki, Finland 4Lund University, 22100 Lund, Sweden 5Deutscher Wetterdienst, Meteorological Observatory Hohenpeissenberg, 82383 Hohenpeissenberg, Germany 6DRD/OPE, Andra, Bure, 55290, France 7European Center for Medium-Range Weather Forecasts, Shinfield Park, Reading, UK 15 Correspondence to: Alex Resovsky ([email protected]) Abstract. We present a statistical framework for near real-time signal processing to identify regional signals in CO2 time series recorded at stations which are normally uninfluenced by local processes. A curve-fitting function is first applied to the de- trended time series to derive a harmonic describing the annual CO2 cycle. We then combine a polynomial fit to the data with a short-term residual filter to estimate the smoothed cycle and define a seasonally-adjusted noise component, equal to two 20 standard deviations of the smoothed cycle about the annual cycle. Spikes in the smoothed daily data which rise above this 2σ threshold are classified as anomalies.
    [Show full text]
  • Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide
    Ocean acidification due to increasing atmospheric carbon dioxide Policy document 12/05 June 2005 ISBN 0 85403 617 2 This report can be found at www.royalsoc.ac.uk ISBN 0 85403 617 2 © The Royal Society 2005 Requests to reproduce all or part of this document should be submitted to: Science Policy Section The Royal Society 6-9 Carlton House Terrace London SW1Y 5AG email [email protected] Copy edited and typeset by The Clyvedon Press Ltd, Cardiff, UK ii | June 2005 | The Royal Society Ocean acidification due to increasing atmospheric carbon dioxide Ocean acidification due to increasing atmospheric carbon dioxide Contents Page Summary vi 1 Introduction 1 1.1 Background to the report 1 1.2 The oceans and carbon dioxide: acidification 1 1.3 Acidification and the surface oceans 2 1.4 Ocean life and acidification 2 1.5 Interaction with the Earth systems 2 1.6 Adaptation to and mitigation of ocean acidification 2 1.7 Artificial deep ocean storage of carbon dioxide 3 1.8 Conduct of the study 3 2 Effects of atmospheric CO2 enhancement on ocean chemistry 5 2.1 Introduction 5 2.2 The impact of increasing CO2 on the chemistry of ocean waters 5 2.2.1 The oceans and the carbon cycle 5 2.2.2 The oceans and carbon dioxide 6 2.2.3 The oceans as a carbonate buffer 6 2.3 Natural variation in pH of the oceans 6 2.4 Factors affecting CO2 uptake by the oceans 7 2.5 How oceans have responded to changes in atmospheric CO2 in the past 7 2.6 Change in ocean chemistry due to increases in atmospheric CO2 from human activities 9 2.6.1 Change to the oceans
    [Show full text]
  • 202 Section: B Course Instructor: Dr BK Singh Study Material (Name of T
    Course Name: Methods in Organic Synthesis Paper Number: 202 Section: B Course Instructor: Dr BK Singh Study Material (Name of Topic/Chapter): Organosilicone Compounds, Preparation and applications in organic synthesis; Application of Pd(0) and Pd(II) Complexes in Organic Synthesis- Stille, Suzuki and Sonogashira Coupling, Heck reaction and Negishi Coupling. Dr. BK SINGH, Department of Chemistry, University of Delhi Applications of Pd(0) and Pd(II) complexes in organic synthesis- Heck, Negishi, Suzuki, Stille and Sonogashira Coupling 2010 Nobel Prize in Chemistry awarded jointly to Richard F. Heck, Ei-ichi Negishi, and Akira Suzuki "for palladium-catalyzed cross couplings in organic synthesis" Dr. BK SINGH, Department of Chemistry, University of Delhi Palladium-catalyzed carbon-carbon bond formation via cross coupling The principle of palladium-catalyzed cross couplings is that two molecules are assembled on the metal via the formation of metal-carbon bonds. In this way the carbon atoms bound to palladium are brought very close to one another. In the next step they couple to one another and this leads to the formation of a new carbon-carbon single bond. There are two types of cross-coupling reactions that have become important in organic synthesis. Both reactions are catalyzed by zero valent Pd and both reactions employ an organohalide RX (or analogous compound) as the electrophilic coupling partner. The nucleophilic coupling partner differs in these two reactions. In the first type it is an olefin whereas in the second type it is an organometallic compound R’’M where, M is typically zinc, boron, or tin. Both reactions begin by generating an organopalladium complex RPdX from the reaction of the organic halide with Pd(0).
    [Show full text]