Infrared and Raman Spectroscopic Features of Plant Cuticles: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Infrared and Raman Spectroscopic Features of Plant Cuticles: a Review REVIEW ARTICLE published: 25 June 2014 doi: 10.3389/fpls.2014.00305 Infrared and Raman spectroscopic features of plant cuticles: a review José A. Heredia-Guerrero 1*, José J. Benítez 2, Eva Domínguez 3, Ilker S. Bayer 1, Roberto Cingolani 4, Athanassia Athanassiou 1 and Antonio Heredia 3,5 1 Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy 2 Instituto de Ciencias de Materiales de Sevilla, CSIC-US, Seville, Spain 3 Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, CSIC-UMA, Málaga, Spain 4 Istituto Italiano di Tecnologia, Genova, Italy 5 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain Edited by: The cuticle is one of the most important plant barriers. It is an external and continuous Andreia Michelle Smith-Moritz, lipid membrane that covers the surface of epidermal cells and whose main function is to Lawrence Berkeley Labs, USA prevent the massive loss of water. The spectroscopic characterization of the plant cuticle Reviewed by: and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared Barbara G. Pickard, Washington University in St. Louis, USA and Raman spectroscopies has provided significant advances in the knowledge of the Thomas Eichert, University of Bonn, functional groups present in the cuticular matrix and on their structural role, interaction Germany and macromolecular arrangement. Additionally, these spectroscopies have been used *Correspondence: in the study of cuticle interaction with exogenous molecules, degradation, distribution José A. Heredia-Guerrero, Smart of components within the cuticle matrix, changes during growth and development and Materials Group, Nanophysics, Istituto Italiano di Tecnologia, Via characterization of fossil plants. Morego 30, Genova, 16163, Italy e-mail: [email protected] Keywords: plant cuticle, cuticle components, cuticle structure, infrared spectroscopy, Raman spectroscopy If I am to know an object, though I need not know Cutan can partially or completely substitute cutin as the cuti- its external properties, I must know all its internal cle matrix. Significant differences in cuticle composition can be properties. observed among plants, different organs within a plant or even Ludwig Wittgenstein (Tractatus among developmental stages of a given organ. Similarly, environ- Logico-Philosophicus, 1922) mental conditions can modify the amount and composition of the cuticle (Domínguez et al., 2012). More details about the chemical INTRODUCTION composition and the spatial distribution of cuticle components The plant cuticle is the most external and continuous membrane can be found elsewhere (Jeffree, 2006; Pollard et al., 2008). that covers epidermal cells of leaves, fruits, petals, and non- The cuticle is one of the most important plant barriers. In this lignified stems (Heredia, 2003). It is a composite membrane with sense, the biophysical properties of plant cuticles, structural, ther- a heterogeneous spatial distribution, Figure 1. The matrix is com- mal, biomechanical, and hydric, are a complex balance between posed of cutin, a long-chain and insoluble polymer formed by their protective role and the necessity of the plant to grow and hydroxylated and epoxy-hydroxylated C16 and C18 esterified fatty develop (Domínguez et al., 2011).Themainfunctionascribedto acids. The inner side is rich in polysaccharides (cellulose, hemi- the cuticle is the protection of plants against uncontrolled water celluloses, and pectins) from the plant cell wall, and represents loss (Burghardt and Riederer, 2006). Additionally, as an interface the attachment site to the outer epidermal cell wall. Other cuticle between the plant and the environment, it has other secondary components are soluble waxes (mixtures of homologous series of roles (Yeats and Rose, 2013): it represents the first defense against long-chain aliphatics, such as alkanes, alcohols, aldehydes, fatty pests and pathogens, it can efficiently reflect dangerous UV light acids and esters, together with variable amounts of cyclic com- (depending on the crystallinity of the epicuticular waxes), and it is pounds such as triterpenoids) located on the surface (epicuticular involved in the establishment of organ boundaries during devel- waxes) or distributed through the cuticle (intracuticular waxes), opment. Plants with superhydrophobic cuticles (Lotus effect) and phenolic compounds such as cinnamic acids and flavonoids. have further biological advantages in terms of self-cleaning and Cuticles from some species may contain an alternative, and also reduction of water content in the surface. The self-cleaning of chemically inert, polymer known as cutan, which is thought to cuticles can provide an additional defense against the deposition consist of an ether-linked network of methylene chains, double of pathogens and sunlight-blocking particles, while the reduction bonds, and carboxyl groups (Villena et al., 1999; Jeffree, 2006). of water can slow down the growth of microorganism and the leaching of nutrients (Koch and Barthlott, 2009; Yeats and Rose, Abbreviations: FTIR, Fourier Transform Infrared; ATR, Attenuated Total 2013). Reflection; DRIFT, Diffuse Reflectance Infrared Fourier Transform; NIR, Near Infrared; CARS, Coherent Anti-Stokes Raman Spectroscopy; TIR, Total Internal In addition to the biological and agricultural importance Reflection; DMSO, dimethyl sulfoxide. of this plant barrier, its applied use as a source of organic www.frontiersin.org June 2014 | Volume 5 | Article 305 | 1 Heredia-Guerrero et al. IR/Raman features of plant cuticles acid/carboxylate functional groups), and non-degradable frac- tions cannot be analyzed (Pollard et al., 2008). Additionally, they have substantial weaknesses regarding the structural determina- tion of such components. More traditional structural techniques as X-ray diffraction have scarcely been used due to the amor- phous nature of the plant cuticle (Luque et al., 1995). In contrast, solid state 13C nuclear magnetic resonance, using cross or direct polarization and magic-angle spinning methods, allows the iden- tification of functional groups and structures, the quantification of the molecular dynamics and the assessment of the cross-linking capability. Nonetheless, these spectroscopic measurements pro- vide limited information concerning molecular structure due to overlapping of the broad spectral lines and, for quantitative mea- surements, long acquisition times are required (Serra et al., 2012). IR and Raman spectroscopies are non-destructive and accessi- ble techniques which have shown important advantages in the chemical and structural analysis of plant cuticles, e.g., identifi- cation of functional groups and conformations, determination of intra- and intermolecular interactions of cuticle components with exogenous molecules, and qualitative measurements of the cutin polymerization. These spectroscopies are based on the excitation of the molecular vibrations of chemical bonds by the absorp- tion of light (infrared spectroscopy) or the inelastic scattering of photons (Raman spectroscopy). Both phenomena are gov- erned by different mechanisms, affecting the exact position, the FIGURE 1 | Schematic diagram of a transverse section of a plant appearance and intensity of the bands in the corresponding spec- cuticle. The figure shows the typical shape of the plant cuticle between two epidermal cells. Main components and their space distribution are tra. Main advantages of Raman spectroscopy are the possibility displayed: the layer below is rich in polysaccharides from the cell wall, while of using water as solvent and practically no sample prepara- the top layer is mainly constituted by cutin with a last layer of epicuticular tion. Nevertheless, this spectroscopy presents some drawbacks. waxes. Intracuticular waxes and phenolic compounds are spread through For example, fluorescence may interfere with the mechanism of the plant cuticle. the Raman effect and overlap the signals. On the other hand, IR measurements are fast, easy and no interferences are produced compounds and its importance as plant biomass have recently by other mechanisms. However, IR spectroscopy is very sensitive begun to be considered. In this regard, cuticle components are to water and it cannot be used as solvent. Also, the prepara- a potential alternative feedstock for aliphatic compounds com- tion of samples for IR spectroscopy presents some limitations monly found in oil plants (Tsubaki and Azuma, 2013). Thus, the on sample thickness, uniformity and dilution to avoid satura- potential applied value of tomato fruit peel, grape skins and green tion. Furthermore, the wide set of different modes of acquisition tea residues have been assessed (Arrieta-Baez et al., 2011; Mendes of infrared and Raman techniques can provide important and et al., 2013; Tsubaki and Azuma, 2013). Some of these aliphatic complementary chemical information. For instance, in the trans- compounds, specifically cutin monomers, have been used to syn- mission mode the sample can be placed directly into the path thetize long-chain polyesters, resulting in polymers with similar of the infrared beam, providing information about whole sys- characteristics to the plant cutin (Benítez et al., 2004a; Heredia- tem. Other mode of acquisition is ATR-FTIR. ATR is a useful Guerrero et al., 2009; Gómez-Patiño et al., 2013; Vilela et al., technique to obtain the IR spectrum of the surface of samples. 2014). The sample is placed in contact with an internal reflection ele- The lipid
Recommended publications
  • Generating and Testing Hypotheses About the Fossil Record of Insect
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.16.452692; this version posted July 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Generating and testing hypotheses about the 2 fossil record of insect herbivory with a 3 theoretical ecospace 1,* 1 1 2,3,4 4 Sandra R. Schachat , Jonathan L. Payne , C. Kevin Boyce , Conrad C. Labandeira 5 1. Department of Geological Sciences, Stanford University, Stanford, CA, United States 6 2. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, 7 DC, United States 8 3. Department of Entomology, University of Maryland, College Park, College Park, MD, United States 9 4. College of Life Sciences, Academy for Multidisciplinary Studies, Capital Normal University, Beijing, China 10 * Author for correspondence: [email protected] 11 Abstract 12 A typical fossil flora examined for insect herbivory contains a few hundred leaves and a dozen or two 13 insect damage types. Paleontologists employ a wide variety of metrics to assess differences in herbivory 14 among assemblages: damage type diversity, intensity (the proportion of leaves, or of leaf surface area, 15 with insect damage), the evenness of diversity, and comparisons of the evenness and diversity of the flora 16 to the evenness and diversity of damage types. Although the number of metrics calculated is quite large, 17 given the amount of data that is usually available, the study of insect herbivory in the fossil record still 18 lacks a quantitative framework that can be used to distinguish among different causes of increased insect 19 herbivory and to generate null hypotheses of the magnitude of changes in insect herbivory over time.
    [Show full text]
  • Floras Characteristic of Late Pennsylvanian Peat Swamps Arose in the Late Middle Pennsylvanian
    Floras characteristic of Late Pennsylvanian peat swamps arose in the late Middle Pennsylvanian Scott D. Elrick1, W. John Nelson2, Philip R. Ames3 and William A. DiMichele4 1Illinois State Geological Survey, University of Illinois, Champaign, IL 61820, USA email: [email protected] 2Illinois State Geological Survey, University of Illinois, Champaign, IL 61820, USA email: [email protected] 3Geo Xplr, L.L.C., 6001 E.Walnut St., Evansville, IN 47715, USA email: [email protected] 4Department of Paleobiology, NMNH Smithsonian Institution, Washington, DC 20560, USA email: [email protected] ABSTRACT: Peat-swamp vegetation of the late Middle Pennsylvanian differed markedly from that of the Late Pennsylvanian. Dominat- ing the former was a variety of arborescent lycopsids, medullosan pteridosperms, and increasing numbers of marattialean tree ferns. In contrast, marattialean tree ferns and medullosan pteridosperms were dominant in the Late Pennsylvanian whereas lycopsids were of lesser importance, although much species turnover occurred in each of these groups. The most severe turnover was among the lycopsids; the Sigillariaceae were the only major lycopsid lineage to survive, thrive, and attain wide distribution throughout Euramerica, represented al- most exclusively by Sigillaria brardii Brongniart (possibly a species complex). The nature of the ecological transition that brought the marattialean vegetation to dominance is not well understood, even though the pattern has been documented across Euramerica. In a study of terminal peat-swamp vegetation preserved at the coal-bed to roof-shale transition in three major late Middle Pennsylvanian age coals of the Illinois Basin, USA, we have identified two major plant assemblages. The first, preserved at the coal-to-roof transitional interface, is autochthonous to minimally parautochthonous and appears to have been buried rapidly during the introduction of sediment to the swamp habitat, burying the vegetation close to its site of growth.
    [Show full text]
  • Foliar Forms of Macroneuropteris Scheuchzeri (Pennsylvanian, Sydney Coalfield, Nova Scotia, Canada) Ervin L
    Document generated on 09/25/2021 4:57 a.m. Atlantic Geology Foliar forms of Macroneuropteris scheuchzeri (Pennsylvanian, Sydney Coalfield, Nova Scotia, Canada) Ervin L. Zodrow Volume 39, Number 1, 2003 Article abstract Macroneuropteris scheuchzeri has been extensively figured and called by many URI: https://id.erudit.org/iderudit/ageo39_1art02 different names, particularly in the European literature, since the species was erected in 1699. Much of the nature of this arborescent-medullosalean tree still See table of contents remains to be documented, i.e., fructification, trunk, root, and frond architecture, but its heterophyllous foliage is well known. Based on the large macrofossil collections from the Pennsylvanian Sydney Coalfield, Nova Scotia, Publisher(s) Canada, it is possible to present an overall view of the diverse foliar nature of this remarkable medullosalean tree. Suggestions are offered as to how the The Electronic Text Centre at the University of New Brunswick Libraries many foliar forms fit into the bipinnate frond of Laveine and Brousmiche (1982). ISSN 0843-5561 (print) 1718-7885 (digital) Explore this journal Cite this article Zodrow, E. L. (2003). Foliar forms of Macroneuropteris scheuchzeri (Pennsylvanian, Sydney Coalfield, Nova Scotia, Canada). Atlantic Geology, 39(1), 23–37. All rights reserved © Atlantic Geology, 2003 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal.
    [Show full text]
  • On Padgettia Readi Are Insect Galls: Reassignment of the Plant to Odontopteris, the Gall to Ovofoligallites N
    The “Seeds” on Padgettia readi are Insect Galls: Reassignment of the Plant to Odontopteris, the Gall to Ovofoligallites N. Gen., and the Evolutionary Implications Thereof Author(s): Gregory W. Stull , Conrad C. Labandeira , William A. Dimichele , Dan S. Chaney Source: Journal of Paleontology, 87(2):217-231. 2013. Published By: The Paleontological Society DOI: http://dx.doi.org/10.1666/12-063R.1 URL: http://www.bioone.org/doi/full/10.1666/12-063R.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Paleontology, 87(2), 2013, p. 217–231 Copyright Ó 2013, The Paleontological Society 0022-3360/13/0087-217$03.00 THE ‘‘SEEDS’’ ON PADGETTIA READI ARE INSECT GALLS: REASSIGNMENT OF THE PLANT TO ODONTOPTERIS, THE GALL TO OVOFOLIGALLITES N. GEN., AND THE EVOLUTIONARY IMPLICATIONS THEREOF 1 2,3 2 2 GREGORY W.
    [Show full text]
  • Dynamic Carboniferous Tropical Forests: New Views of Plant Function and Potential for Physiological Forcing of Climate
    Review Tansley review Dynamic Carboniferous tropical forests: new views of plant function and potential for physiological forcing of climate Authors for correspondence: Jonathan P. Wilson1*, Isabel P. Montanez~ 2*, Joseph D. White3, Jonathan P. Wilson William A. DiMichele4, Jennifer C. McElwain5, Christopher J. Poulsen6 and Tel: +1 610 896 4217 7 Email: [email protected] Michael T. Hren 1Department of Biology, Haverford College, Haverford, PA 19041, USA; 2Department of Earth and Planetary Sciences, University of Isabel P. Montanez~ Tel: +1 530 754 7823 California, Davis, CA 95616, USA; 3Department of Biology, Baylor University, Waco, TX 76798, USA; 4Department of Paleobiology, Email: [email protected] Smithsonian Museum of Natural History, Washington, DC 20560, USA; 5Earth Institute, School of Biology and Environmental Received: 13 March 2017 Science, University College Dublin, Belfield, Dublin 4, Ireland; 6Department of Earth and Environmental Sciences, University of Accepted: 22 May 2017 Michigan, Ann Arbor, MI 48109, USA; 7Center for Integrative Geosciences, University of Connecticut, Storrs, CT 06269, USA Contents Summary 1333 VI. The big picture: an active role for early forests In Late Paleozoic climate 1347 I. Introduction 1334 Acknowledgements 1348 II. Plants of the Pennsylvanian Tropical Realm 1335 Author contributions 1348 III. Conceptual insights into paleoecophysiology 1339 References 1348 IV. High-productivity Carboniferous plants 1344 V. Lessons learned 1347 Summary New Phytologist (2017) 215: 1333–1353 The Carboniferous, the time of Earth’s penultimate icehouse and widespread coal formation, doi: 10.1111/nph.14700 was dominated by extinct lineages of early-diverging vascular plants. Studies of nearest living relatives of key Carboniferous plants suggest that their physiologies and growth forms differed Key words: Carboniferous, medullosans, substantially from most types of modern vegetation, particularly forests.
    [Show full text]
  • Silurian to Triassic Plant and Hexapod Clades and Their Associations: New Data, a Review, and Interpretations
    Arthropod Systematics & Phylogeny 53 64 (1) 53–94 © Museum für Tierkunde Dresden, ISSN 1863-7221, 30.10.2006 Silurian to Triassic Plant and Hexapod Clades and their Associations: New Data, a Review, and Interpretations CONRAD LABANDEIRA 1, 2 1 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20213-7012, USA [[email protected]] 2 Department of Entomology, University of Maryland, College Park, MD 20742 USA Received 16.iv.2006, accepted 20.viii.2006. Available online at www.arthropod-systematics.de > Abstract A preliminary evaluation of hexapod herbivore damage from selected compression and permineralized biotas from the 220 million-year Late Silurian to Late Triassic interval has revealed many previously unknown patterns of hexapod herbivore use of vascular plants as well as detritivore and predator associations. Data was collected from 48 distinctive hexapod herbivore damage types (DTs) from 21 mostly compression biotas, but with special emphasis on the Rhynie Chert (Early Devonian, ~ 408 Ma), Calhoun Coal (Late Pennsylvanian, ~ 303 Ma) and Molteno Formation (Late Triassic, ~ 226 Ma). These data indicate a two-phase herbivore colonization of land; later expansion of hexapod functional feeding groups (FFGs) initially in the Late Pennsylvanian wetland environments of equatorial Euramerica, and subsequently in Early Permian fl uvial systems in the rest of Euramerica, Gondwana, and Cathaysia; the devastating end-Permian extinction; and subsequent rebound of those same FFGs during the ensuing Triassic. Modern-aspect herbivore, detritivore, and predator FFGs are present in Late Pennsylvanian canopied forests, and the full spectrum of all terrestrial FFGs are in place during the Late Triassic. Freshwater FFGs are delayed when compared to the terrestrial record, originating during the Permian, experiencing expansion during the Triassic, and reaching modern levels of all major trophic types during the Late Jurassic.
    [Show full text]
  • A Proposed Origin for Fossilized Pennsylvanian Plant Cuticles by Pyrite Oxidation (Sydney Coalfield, Nova Scotia, Canada)
    A proposed origin for fossilized Pennsylvanian plant cuticles by pyrite oxidation (Sydney Coalfield, Nova Scotia, Canada) ERWIN L. ZODROW & MARIA MASTALERZ Fossilized cuticles, though rare in the roof rocks of coal seam in the younger part of the Pennsylvanian Sydney Coalfield, Nova Scotia, represent nearly all of the major plant groups. Selected for investigation, by methods of Fourier transform infrared spectroscopy (FTIR) and elemental analysis, are fossilized cuticles (FCs) and cuticles extracted from compres- sions by Schulze’s process (CCs) of Alethopteris ambigua. These investigations are supplemented by FTIR analysis of FCs and CCs of Cordaites principalis, and a cuticle-fossilized medullosalean(?) axis. The purpose of this study is three- fold: (1) to try to determine biochemical discriminators between FCs and CCs of the same species using semi-quantita- tive FTIR techniques; (2) to assess the effects chemical treatments have, particularly Schulze’s process, on functional groups; and most importantly (3) to study the primary origin of FCs. Results are equivocal in respect to (1); (2) after Schulze’s treatment aliphatic moieties tend to be reduced relative to oxygenated groups, and some aliphatic chains may be shortened; and (3) a primary chemical model is proposed. The model is based on a variety of geological observations, including stratal distribution, clay and pyrite mineralogies associated with FCs and compressions, and regional geologi- cal structure. The model presupposes compression-cuticle fossilization under anoxic conditions for late authigenic depo- sition of sub-micron-sized pyrite on the compressions. Rock joints subsequently provided conduits for oxygen-enriched ground-water circulation to initiate in situ pyritic oxidation that produced sulfuric acid for macerating compressions, with resultant loss of vitrinite, but with preservation of cuticles as FCs.
    [Show full text]
  • Antediluvian Phytology
    Antediluvian Phytology Illustrated by A Collection of the Fossil Remains of Plants, Peculiar to the Coal Formation of Mazon Creek. By JACK M. WITTRY The Study of Plants from Before the Flood Illustrated by A Collection of the Fossil Remains of Plants, Peculiar to the Coal Formation of Mazon Creek. By JACK M. WITTRY WHAT CAN BE LEARNED FROM THE MAZON CREEK FLORA ? • CLIMATE CONDITIONS • CLUES TO THE FOSSIL FORMING EVENT • THE RELATIVE AGE OF THE EVENT Mazon Creek Area Mazon Creek Factoids 307 MYA Days— 22 Hours Long Year—398 Days Long 30% Oxygen vs 21% Today Charcoal, Fusian or Fusinite + Algae and Progymnosperms Non-Vascular Plants, Algae Taeniophyllum latifolium Thallites dichopleurus Lycopsids Arboreal Lycopsid Genera Giant Club Mosses • Sigillaria • Lepidodendron • Asolanus • Lepidophloios • Omphalophloios Arboreal Lycopsid Genera • Roots—Stigmaria • Cones—Lepidostrobus, Sigillariostrobus •Outer Bark—Same as for entire plant •Inner Barks—Knorria, Aspidiopsis • Leaves—Cyperites , (Previously called Lepidophyllum —a flowering plant—and Lepidophylloides which included fertile cone bracts) Stigmaria Lepidostrobus Knorria Lepidophloios protberans Asolanus camptotaenia Lepidodendron L. rimosum L. aculeatum L. worthenii Lycopsid Diminutive and Herbaceous Forms • Chaloneriaceae • Lycopodites Chaloneriaceae Cormophyton mazonensis Polysporia mirabilis Lepidocystis sp. Lycopodites Lycopodites pendulus Lycopodites meeki After the Flood… Lycopodium Sphenopsids Horsetails Sphenopsid Genera • Roots—Pinnularia, Myriophyllites • Cones—Calamostachys,
    [Show full text]
  • Paleoecology of Late Paleozoic Pteridosperms from Tropical Euramerica^ William A
    Journal of the Toirey Botanical Society 133(1), 2006, pp. 83—118 Paleoecology of Late Paleozoic pteridosperms from tropical Euramerica^ William A. DiMichele^ ^ Department of Paleobiology, NMNH Smithsonian Institution, Wasliington, DC 20560 Tom L. Phillips Department of Plant Biology, University of Illinois, Urbana, IL 61801 Hermann W. Pfefferkorn Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19106 DiMlCHELE, W. A. (Department of Paleobiology, NMNH, Smithsonian Institution, Washington, DC 20560), T. L. PHILLIPS (Department of Plant Biology, University of Illinois, Urbana, IL 61801), AND H. W. PFEFFERKORN (Department of Earth and Environmental Science, University of Pennsylvania, Philadelphia, PA 19106). Paleo- ecology of Late Paleozoic pteridosperms from tropical Euramerica. J. Torrey Bot. Soc. 133: 83—118. 2006.— Late Paleozoic pteridosperms are a paraphyletic group of seed plants that were prominent elements of tropical ecosystems, primarily those of wetlands or the wetter portions of seasonally dry environments. Because the group is more a tradition-based, historical construct than a well circumscribed phylogenetic lineage, the wide variance in ecological roles and ecomorphological attributes should not be surprising. Pteridosperms can be the dominant canopy trees in local habitats, prominent understory trees, scrambling ground cover, thicket-formers, or liana-like plants and vines. Some species appear to have been weedy opportunists, although this ecological strategy seems to be a minor part of the wide spectrum of pteridosperm life habits. Most pteridosperms appear to have preferred wetter parts of the landscape, though not standing water, and relatively nutrient-rich settings (in comparison with groups such as tree ferns or lycopsids). Of the Paleozoic pteridosperms as traditionally circumscribed, only the peltasperms survived to become major elements in the Mesozoic.
    [Show full text]
  • A Middle Pennsylvanian Macrofloral
    Journal of Paleontology, 90(4), 2016, p. 589–631 Copyright © 2016, The Paleontological Society 0022-3360/16/0088-0906 doi: 10.1017/jpa.2015.69 A Middle Pennsylvanian macrofloral assemblage from wetland deposits in Indiana (Illinois Basin): a taxonomic contribution with biostratigraphic, paleobiogeographic, and paleoecologic implications Arden R. Bashforth,1* William A. DiMichele,1 Cortland F. Eble,2 and W. John Nelson3 1Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 〈[email protected]〉; 〈[email protected]〉 2Kentucky Geological Survey, University of Kentucky, Lexington, KY 40560, USA 〈[email protected]〉 3Illinois State Geological Survey, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA 〈[email protected]〉 Abstract.—Taxonomic analysis is provided for a Middle Pennsylvanian macrofloral assemblage collected from clastic wetland deposits in Clay County, Indiana, on the eastern margin of the Illinois Basin. Adpressed plant fossils were recovered from four distinct beds in the lowermost Staunton Formation, positioned above the Minshall Coal (uppermost Brazil Formation), part of a succession deposited near the Atokan-Desmoinesian boundary. The assemblage of 22 fossil-taxa is dominated by pteridosperms (including Neuropteris flexuosa, Macroneuropteris scheuchzeri, Alethopteris densinervosa, Neuropteris ovata, Eusphenopteris neuropteroides, and Neuropteris missouriensis) with lesser cordaitaleans (Cordaites spp. indet.) and sphenopsids (particularly Sphenophyllum cuneifo-
    [Show full text]
  • Ichnotaxonomic Assessment of Mazon Creek Area Trace Fossils, Illinois, USA
    Ichnotaxonomic Assessment of Mazon Creek Area Trace Fossils, Illinois, USA by David J. LoBue B.S. Geology B.A. Religious Studies B.A. Political Science Arizona State University 2006 Submitted to the Department of Geology and the Faculty of the Graduate School of The University of Kansas in partial fulfillment of the requirements for the degree of Master of Science 2010 _________________________ Stephen T. Hasiotis, Chair _________________________ Paul Selden _________________________ Anthony Walton Date Defended: ____________ The Thesis Committee for David J. LoBue certifies that this is the approved version of the following thesis: Ichnotaxonomic Assessment of Mazon Creek Area Trace Fossils, Illinois, USA __________________________ Stephen T. Hasiotis, Chairperson Date Approved: _____________ ii ABSTRACT David J. LoBue, M.S. Department of Geology, July 2010 University of Kansas The Francis Creek Shale Member (FCSM) of the Mid-Pennsylvanian Carbondale Formation along Mazon Creek in northern Illinois is known for soft-bodied organisms preserved within siderite concretions. Trace fossils, though less well known, also occur in concretions. Several hundred trace-fossil-bearing concretions were examined from collections at The Field Museum, Chicago, and The University of Kansas Natural History Museum, Lawrence. Identification was based on accepted diagnostic criteria and comparison with like specimens. Described were 24 ichnogenera and 28 ichnospecies, including a new ichnospecies of Pennatulites and a new ichnogenera of coprolite— Funiculichnus spiralis, unnamed trace fossils including a bivalve-locomotion trail, spiral and amorphous coprolites, and two possible galls, and several deformation structures and body fossils misidentified as trace fossils. Trace-fossil assemblages indicate a Skolithos– Cruziana ichnofacies transition from shallow, high-energy to deeper, lower-energy nearshore marine environments, which is consistent with previous interpretations that the FCSM was deposited in a nearshore, deltaic environment.
    [Show full text]
  • Cordaites Principalis (Germer) Geinitz, Carboniferous Maritimes Basin, Canada
    Functional groups and elemental analyses of cuticular morphotypes of Cordaites principalis (Germer) Geinitz, Carboniferous Maritimes Basin, Canada Zodrow, Erwin L; Mastalerz, Maria; Orem, William H; Šimunek, Zbynek; Bashforth, Arden Roy Published in: International Journal of Coal Geology Publication date: 2000 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Zodrow, E. L., Mastalerz, M., Orem, W. H., Šimunek, Z., & Bashforth, A. R. (2000). Functional groups and elemental analyses of cuticular morphotypes of Cordaites principalis (Germer) Geinitz, Carboniferous Maritimes Basin, Canada. International Journal of Coal Geology, 45(1), 1-19. Download date: 24. sep.. 2021 International Journal of Coal Geology 45Ž. 2000 1±19 www.elsevier.nlrlocaterijcoalgeo Functional groups and elemental analyses of cuticular morphotypes of Cordaites principalis ž/Germar Geinitz, Carboniferous Maritimes Basin, Canada Erwin L. Zodrowa,) , Maria Mastalerzbc , William H. Orem , ZbynekÆÊ SimunekÆ d , Arden R. Bashforth e,1 a Department of Earth Sciences, UniÕersity College of Cape Breton, Sydney, NoÕa Scotia, Canada B1P 6L2 b Indiana Geological SurÕey, Indiana UniÕersity, 611 N. Walnut GroÕe, Bloomington, IN 47405-2208, USA c U.S. Geological SurÕey, MS 956, National Center, Reston, VA 22092, USA d Czech Geological SurÕey, KlaroÂÕ 3r131, 118 21 Praha 1, Czech Republic e Department of Earth Sciences, Memorial UniÕersity of Newfoundland, St. John's, Canada, A1B 3X5 Received 29 July 1999; accepted 19 June 2000 Abstract Well-preserved cuticles were isolated from Cordaites principalis Ž.Germar Geinitz leaf compressions, i.e., foliage from extinct gymnosperm trees Coniferophyta: Order Cordaitales. The specimens were collected from the Sydney, Stellarton and Bay St.
    [Show full text]