Fossils – Adriano Kury’S Harvestman Overviews and the Third Edition of the Manual of Acarology for Mites

Total Page:16

File Type:pdf, Size:1020Kb

Fossils – Adriano Kury’S Harvestman Overviews and the Third Edition of the Manual of Acarology for Mites 1 A summary list of fossil spiders and their relatives compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) with additional contributions from Lyall I. Anderson, Simon J. Braddy, James C. Lamsdell, Paul A. Selden & O. Erik Tetlie Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders and their relatives. In Platnick, N. I. (ed.) The world spider catalog, version 11.0 American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 11.06.2010 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the fossil record of spiders – and other arachnids – and numerous new taxa have been described. Spiders remain the single largest fossil group, but our aim here is to offer a summary list of all fossil Chelicerata in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list for Araneae follows the names and sequence of families adopted in the Platnick Catalog. For this reason some of the family groups proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. For other arachnid groups we have largely followed the nomenclature and family sequences adopted in other online or printed summaries; for example Victor Fet et al.’s work on scorpions, Mark Harvey’s catalogues of pseudoscorpions and the ‘minor’ orders – all of which also list the fossils – Adriano Kury’s harvestman overviews and the third edition of the Manual of Acarology for mites. For all groups, genus and species names were compiled from established lists and cross- referenced against the primary literature. 2 We aim to reflect the latest published opinions on the taxonomy of fossil species. A caveat here is that some synonomies and transfers proposed in the literature were only provisional or tentative in nature. At times we were forced to interpret whether a formal nomenclatural change had actually been made, and we have tried to accomodate these difficulties as best as possible. We should also stress that many historical fossil types require revision. Older species names assigned to common, modern genera such as Araneus, Clubiona or Linyphia among the spiders, should be treated with caution. The list has been extended to include Recent species – particularly some spiders and numerous oribatid mites – found as (sub)fossils. These are generally specimens of Quaternary age found in copal, or recovered from peats or archeological sites. We have provided references for the first descriptions of all the fossil species, and where possible we have added the relevant taxonomic literature for all the taxon names which we mention here. We should, however, note that for some groups (especially mites) recovering the correct author and date for higher taxa proved challenging, and we hope in future releases to be able to clarify these names and augment the reference list accordingly. Formal synonomy lists for the fossil species are being compiled and that which we have for individual taxa can be made available upon request upon a ‘fair use’ basis. As with any project of this size, we cannot guarantee the accuracy of all these entries and we encourage readers to foward omissions or corrections to <[email protected]> or <[email protected]>. PRINCIPAL CHANGES SINCE THE LAST UPDATE Few new fossil spider taxa have been described since the last version, and the most significant change is of course the inclusion of data for non-spider species. This has obviously increased the size of the list enormously. ACKNOWLEDGMENTS We are, as ever, especially grateful to Norman Platnick for agreeing to host this list as an appendix to the Catalog, to Paul Selden for encouragement and support and to those colleagues who have advised us on oversights and/or provided further literature. 3 EXPLANATIONS • † indicates an entirely extinct genus, family or other higher taxon • all species listed assumed to be extinct unless marked [Recent] • * indicates the type species of (fossil) genera Stratigraphical abbreviations: pЄ = Precambrian, Є = Cambrian, O = Ordovician, S = Silurian, D = Devonian, C = Carboniferous, P = Permian Tr = Triassic, J = Jurassic, K = Cretaceous Pa = Palaeogene, Ne = Neogene, Qt = Quaternary 4 PYCNOGONIDA 9 currently valid species of fossil sea spider • note that in some modern phylogenies the Palaeozoic genera resolve within the crown group PYCNOGONIDA Latreille, 1810 …………...............……………………………. Cambrian – Recent † Cambropycnogon Waloszek & Dunlop, 2002 ………………………………….………… Cambrian 1. Cambropycnogon klausmuelleri Waloszek & Dunlop, 2002* ……….…….. Є ‘Orsten’, Sweden Pycnogonid affinities questioned by Bamber (2007) † Haliestes Siveter, Sutton, Briggs & Siveter, 2004 ……………………………………… Silurian 2. Haliestes dasos Siveter, Sutton, Briggs & Siveter, 2004* …………………. S Herefordshire Lgst. † Flagellopantopus Poschmann & Dunlop, 2006 …………………………………………. Devonian 3. Flagellopantopus blocki Poschmann & Dunlop, 2006* …………………….. D Hünsruckschiefer † PALAEOISOPODIDAE Dubinin, 1957 ……………………………………………………... Devonian † Palaeoisopus Broili, 1928 …………………………………………………….……………… Devonian 4. Palaeoisopus problematicus Broili, 1928* …………………………………….. D Hünsruckschiefer † PALAEOPANTOPODIDAE Broili, 1930 …………………………………….……………… Devonian † Palaeopantopus Broili, 1928 ………………………………………………….…………….. Devonian 5. Palaeopantopus maucheri Broili, 1928* ……………………………………….. D Hünsruckschiefer PANTOPODA Gerstaecker, 1863 …...................………………………………. Devonian – Recent = PEGMATA Fry, 1978 family uncertain † Palaeothea Bergström, Stürmer & Winter, 1980 ………………………………………... Devonian 6. Palaeothea devonica Bergström, Stürmer & Winter, 1980* ………………. D Hünsruckschiefer AUSTRODECIDAE Stock, 1954 ………………………………….………………………….... Recent no fossil record PYCNOGONIDAE Wilson, 1878 ………………………………………………….………….... Recent no fossil record COLOSSENDEIDAE Hoek, 1881 …………………………………………………………….... ?Jurassic – Recent = PASITHOIDAE Sars, 1891 = RHOPALORHYNCHIDAE Fry, 1978 † Colossopantopodus Charbonnier, Vannier & Riou, 2007 …………..…………..……... Jurassic 5 7. Colossopantopodus boissinensis Charbonnier, Vannier & Riou, 2007* . J La Voulte-sur-Rhône tentative referal AMMOTHEIDAE Dohrn, 1881 ………………………………………………….…………….... ?Jurassic – Recent = EURYCIDIDAE Sars, 1891 = OORHYNCHIDAE Schimkewitsch, 1913 = TANYSTYLIDAE Schimkewitsch, 1913 = AMMOTHELLIDAE Fry, 1978 = EPHYROGYMNIDAE Fry, 1978 = PARANYMPHONIDAE Fry, 1978 = SERICOSURIDAE Fry, 1978 = TRYGAEIDAE Fry, 1978 † Palaeopycnogonides Charbonnier, Vannier & Riou, 2007 …………..………………... Jurassic 8. Palaeopycnogonides gracilis Charbonnier, Vannier & Riou, 2007* ….…. J La Voulte-sur-Rhône tentative referal CALLIPALLENIDAE Hilton, 1942 ………………………………..………………………….... Recent = PALLENIDAE Wilson, 1878 [Pallene is a preoccupied genus] = CHEILAPALLENIDAE Fry, 1978 = CLAVIGEROPALLENIDAE Fry, 1978 = HANNONIDAE Fry, 1978 = METAPALLENIDAE Fry, 1978 = QUEUBIDAE Fry, 1978 = STYLOPALLENIDAE Fry, 1978 no fossil record NYMPHONIDAE Wilson, 1878 ……………………………………………………………….... Recent no fossil record PALLENOPSIDAE Fry, 1978 …………………………………..…………………………….... Recent no fossil record ENDEIDAE Norman, 1904 ………………………………………...………………………….... ?Jurassic – Recent † Palaeoendeis Charbonnier, Vannier & Riou, 2007 ………………………………….…... Jurassic 9. Palaeoendeis elmii Charbonnier, Vannier & Riou, 2007* ……….……….... J La Voulte-sur-Rhône tentative referal PHOXICHILIDIIDAE Sars, 1891 ……………………………….…………………….……….... Recent = ANOPLODACTYLIDAE Fry, 1978 = PHOXIPHILYRIDAE Fry, 1978 no fossil record RHYNCHOTHORACIDAE Thompson, 1909 ……………………………………………….... Recent no fossil record MISIDENTIFICATIONS 6 1. Palpipes cursor Roth, 1854 [crustacean] …………..................................…....…. J Solnhofen 2. Pentapalaeopycnon inconspicua Hedgpeth, 1978 [crustacean] ……………...…. J Solnhofen 3. Phalangites multipes Münster, 1851 [crustacean] …………....................…….…. J Solnhofen 4. Phalangites priscus Münster, 1839 [crustacean] …………..............................…. J Solnhofen 5. Pycnogonites uncinatus Quenstedt, 1852 [crustacean] …………............…....…. J Solnhofen c. 1300 Recent species 7 EUCHELICERATA 5 currently valid, but unplaced euchelicerate fossil species • Offacolus has been described in detail from reconstructions based on serial sections, and was resolved in some phylogenies to a basal position within Euchelicerata • the other listed taxa are mostly poor or incomplete specimens which have been treated as either xiphosurans, chasmataspids or eurypterids • resting impressions imply that Chasmataspidida were probably present in the late Cambrian EUCHELICERATA Weygoldt & Paulus, 1979 …………...….….………… ?Cambrian – Recent EUCHELICERATA INCERTAE SEDIS † Borchgrevinkium Novojilov, 1959 …………...….…........................................…….…… Devonian 1. Borchgrevinkium taimyrensis Novojilov, 1959* ……...........................…….. D Taimyr, Siberia † Melbournopterus Caster & Kjellesvig-Waering, 1953 …………………..…....……….... Silurian 2. Melbournopterus
Recommended publications
  • Comparative Functional Morphology of Attachment Devices in Arachnida
    Comparative functional morphology of attachment devices in Arachnida Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida) DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von Jonas Otto Wolff geboren am 20. September 1986 in Bergen auf Rügen Kiel, den 2. Juni 2015 Erster Gutachter: Prof. Stanislav N. Gorb _ Zweiter Gutachter: Dr. Dirk Brandis _ Tag der mündlichen Prüfung: 17. Juli 2015 _ Zum Druck genehmigt: 17. Juli 2015 _ gez. Prof. Dr. Wolfgang J. Duschl, Dekan Acknowledgements I owe Prof. Stanislav Gorb a great debt of gratitude. He taught me all skills to get a researcher and gave me all freedom to follow my ideas. I am very thankful for the opportunity to work in an active, fruitful and friendly research environment, with an interdisciplinary team and excellent laboratory equipment. I like to express my gratitude to Esther Appel, Joachim Oesert and Dr. Jan Michels for their kind and enthusiastic support on microscopy techniques. I thank Dr. Thomas Kleinteich and Dr. Jana Willkommen for their guidance on the µCt. For the fruitful discussions and numerous information on physical questions I like to thank Dr. Lars Heepe. I thank Dr. Clemens Schaber for his collaboration and great ideas on how to measure the adhesive forces of the tiny glue droplets of harvestmen. I thank Angela Veenendaal and Bettina Sattler for their kind help on administration issues. Especially I thank my students Ingo Grawe, Fabienne Frost, Marina Wirth and André Karstedt for their commitment and input of ideas.
    [Show full text]
  • Coleoptera: Staphylinidae: Scydmaeninae) on Oribatid Mites: Prey Preferences and Hunting Behaviour
    Eur. J. Entomol. 110(2): 339–353, 2013 http://www.eje.cz/pdfs/110/2/339 ISSN 1210-5759 (print), 1802-8829 (online) Specialized feeding of Euconnus pubicollis (Coleoptera: Staphylinidae: Scydmaeninae) on oribatid mites: Prey preferences and hunting behaviour 1 2 PAWEŁ JAŁOSZYŃSKI and ZIEMOWIT OLSZANOWSKI 1 Museum of Natural History, Wrocław University, Sienkiewicza 21, 50-335 Wrocław, Poland; e-mail: [email protected] 2 Department of Animal Taxonomy and Ecology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland; e-mail: [email protected] Key words. Coleoptera, Staphylinidae, Scydmaeninae, Cyrtoscydmini, Euconnus, Palaearctic, prey preferences, feeding behaviour, Acari, Oribatida Abstract. Prey preferences and feeding-related behaviour of a Central European species of Scydmaeninae, Euconnus pubicollis, were studied under laboratory conditions. Results of prey choice experiments involving 50 species of mites belonging to 24 families of Oribatida and one family of Uropodina demonstrated that beetles feed mostly on ptyctimous Phthiracaridae (over 90% of prey) and only occasionally on Achipteriidae, Chamobatidae, Steganacaridae, Oribatellidae, Ceratozetidae, Euphthiracaridae and Galumni- dae. The average number of mites consumed per beetle per day was 0.27 ± 0.07, and the entire feeding process took 2.15–33.7 h and showed a clear linear relationship with prey body length. Observations revealed a previously unknown mechanism for capturing prey in Scydmaeninae in which a droplet of liquid that exudes from the mouth onto the dorsal surface of the predator’s mouthparts adheres to the mite’s cuticle. Morphological adaptations associated with this strategy include the flattened distal parts of the maxillae, whereas the mandibles play a minor role in capturing prey.
    [Show full text]
  • Abhandlungen Und Berichte
    ISSN 1618-8977 Mesostigmata Band 4 (1) 2004 Staatliches Museum für Naturkunde Görlitz ACARI Bibliographia Acarologica Herausgeber: Dr. Axel Christian im Auftrag des Staatlichen Museums für Naturkunde Görlitz Anfragen erbeten an: ACARI Dr. Axel Christian Staatliches Museum für Naturkunde Görlitz PF 300 154, 02806 Görlitz „ACARI“ ist zu beziehen über: Staatliches Museum für Naturkunde Görlitz – Bibliothek PF 300 154, 02806 Görlitz Eigenverlag Staatliches Museum für Naturkunde Görlitz Alle Rechte vorbehalten Titelgrafik: E. Mättig Druck: MAXROI Graphics GmbH, Görlitz Editor-in-chief: Dr Axel Christian authorised by the Staatliches Museum für Naturkunde Görlitz Enquiries should be directed to: ACARI Dr Axel Christian Staatliches Museum für Naturkunde Görlitz PF 300 154, 02806 Görlitz, Germany ‘ACARI’ may be orderd through: Staatliches Museum für Naturkunde Görlitz – Bibliothek PF 300 154, 02806 Görlitz, Germany Published by the Staatliches Museum für Naturkunde Görlitz All rights reserved Cover design by: E. Mättig Printed by MAXROI Graphics GmbH, Görlitz, Germany Christian & Franke Mesostigmata Nr. 15 Mesostigmata Nr. 15 Axel Christian und Kerstin Franke Staatliches Museum für Naturkunde Görlitz Jährlich werden in der Bibliographie die neuesten Publikationen über mesostigmate Milben veröffentlicht, soweit sie uns bekannt sind. Das aktuelle Heft enthält 321 Titel von Wissen- schaftlern aus 42 Ländern. In den Arbeiten werden 111 neue Arten und Gattungen beschrie- ben. Sehr viele Artikel beschäftigen sich mit ökologischen Problemen (34%), mit der Taxo- nomie (21%), mit der Bienen-Milbe Varroa (14%) und der Faunistik (6%). Bitte helfen Sie bei der weiteren Vervollständigung der Literaturdatenbank durch unaufge- forderte Zusendung von Sonderdrucken bzw. Kopien. Wenn dies nicht möglich ist, bitten wir um Mitteilung der vollständigen Literaturzitate zur Aufnahme in die Datei.
    [Show full text]
  • Two New Species of Gaeolaelaps (Acari: Mesostigmata: Laelapidae)
    Zootaxa 3861 (6): 501–530 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3861.6.1 http://zoobank.org/urn:lsid:zoobank.org:pub:60747583-DF72-45C4-AE53-662C1CE2429C Two new species of Gaeolaelaps (Acari: Mesostigmata: Laelapidae) from Iran, with a revised generic concept and notes on significant morphological characters in the genus SHAHROOZ KAZEMI1, ASMA RAJAEI2 & FRÉDÉRIC BEAULIEU3 1Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran. E-mail: [email protected] 2Department of Plant Protection, College of Agriculture, University of Agricultural Sciences and Natural Resources, Gorgan, Iran. E-mail: [email protected] 3Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, 960 Carling avenue, Ottawa, ON K1A 0C6, Canada. E-mail: [email protected] Abstract Two new species of laelapid mites of the genus Gaeolaelaps Evans & Till are described based on adult females collected from soil and litter in Kerman Province, southeastern Iran, and Mazandaran Province, northern Iran. Gaeolaelaps jondis- hapouri Nemati & Kavianpour is redescribed based on the holotype and additional specimens collected in southeastern Iran. The concept of the genus is revised to incorporate some atypical characters of recently described species. Finally, some morphological attributes with
    [Show full text]
  • A CARBONIFEROUS SYNZIPHOSURINE (XIPHOSURA) from the BEAR GULCH LIMESTONE, MONTANA, USA by RACHEL A
    [Palaeontology, Vol. 50, Part 4, 2007, pp. 1013–1019] A CARBONIFEROUS SYNZIPHOSURINE (XIPHOSURA) FROM THE BEAR GULCH LIMESTONE, MONTANA, USA by RACHEL A. MOORE*, SCOTT C. McKENZIE and BRUCE S. LIEBERMAN* *Department of Geology, University of Kansas, 1475 Jayhawk Blvd, Lindley Hall, Room 120, Lawrence, KS 66045-7613, USA; e-mail: [email protected] Geology Department, Room 206B, Zurn Hall of Science, Mercyhurst College, 501 East 38th St., Erie, PA 16546-0001, USA Typescript received 21 November 2005, accepted in revised form 23 August 2006 Abstract: A new synziphosurine, Anderella parva gen. et known locality where synziphosurines occur alongside the sp. nov., extends the known range of this group from the more derived xiphosurids. Xiphosurans reached their great- Silurian to the Carboniferous and is the youngest known so est diversity in the Carboniferous when the xiphosurids far from the fossil record. Previously the youngest synzi- began to occupy brackish and freshwater habitats and phosurine, Kasibelinurus, was from the Devonian of North became dominant over the synziphosurines. The discovery America. Anderella parva has a semi-oval carapace with of the only known Carboniferous synziphosurine in marine pointed genal regions, nine freely articulating opisthosomal sediments may indicate their inability to exploit these same segments and a long styliform tail spine. It is the third xi- environments. phosuran genus to be described from the Bear Gulch Lime- stone and its discovery highlights this deposit as containing Key words: Mississippian,
    [Show full text]
  • Effect of Ploughing and Pesticide Application on Oribatid Mite Communities
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330957388 Effect of ploughing and pesticide application on oribatid mite communities Article in International Journal of Acarology · February 2019 DOI: 10.1080/01647954.2019.1572222 CITATIONS READS 0 73 5 authors, including: Maka Murvanidze Levan Mumladze Agricultural University of Georgia Ilia State University 56 PUBLICATIONS 231 CITATIONS 68 PUBLICATIONS 350 CITATIONS SEE PROFILE SEE PROFILE Nino Todria Mark Maraun Agricultural University of Georgia Georg-August-Universität Göttingen 2 PUBLICATIONS 0 CITATIONS 306 PUBLICATIONS 5,132 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Algal feeding of salt marsh oribatid mites in the Wadden Sea of Spiekeroog (Germany) – evidence from molecular gut-content analyses View project Litter Links View project All content following this page was uploaded by Maka Murvanidze on 08 February 2019. The user has requested enhancement of the downloaded file. International Journal of Acarology ISSN: 0164-7954 (Print) 1945-3892 (Online) Journal homepage: https://www.tandfonline.com/loi/taca20 Effect of ploughing and pesticide application on oribatid mite communities Maka Murvanidze, Levan Mumladze, Nino Todria, Meri Salakaia & Mark Maraun To cite this article: Maka Murvanidze, Levan Mumladze, Nino Todria, Meri Salakaia & Mark Maraun (2019): Effect of ploughing and pesticide application on oribatid mite communities, International
    [Show full text]
  • Acari: Oribatida) of Canada and Alaska
    Zootaxa 4666 (1): 001–180 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4666.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:BA01E30E-7F64-49AB-910A-7EE6E597A4A4 ZOOTAXA 4666 Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska VALERIE M. BEHAN-PELLETIER1,3 & ZOË LINDO1 1Agriculture and Agri-Food Canada, Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, K1A0C6, Canada. 2Department of Biology, University of Western Ontario, London, Canada 3Corresponding author. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by T. Pfingstl: 26 Jul. 2019; published: 6 Sept. 2019 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 VALERIE M. BEHAN-PELLETIER & ZOË LINDO Checklist of oribatid mites (Acari: Oribatida) of Canada and Alaska (Zootaxa 4666) 180 pp.; 30 cm. 6 Sept. 2019 ISBN 978-1-77670-761-4 (paperback) ISBN 978-1-77670-762-1 (Online edition) FIRST PUBLISHED IN 2019 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] https://www.mapress.com/j/zt © 2019 Magnolia Press ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 4666 (1) © 2019 Magnolia Press BEHAN-PELLETIER & LINDO Table of Contents Abstract ...................................................................................................4 Introduction ................................................................................................5
    [Show full text]
  • Terrestrial Arthropods)
    Fall 2004 Vol. 23, No. 2 NEWSLETTER OF THE BIOLOGICAL SURVEY OF CANADA (TERRESTRIAL ARTHROPODS) Table of Contents General Information and Editorial Notes..................................... (inside front cover) News and Notes Forest arthropods project news .............................................................................51 Black flies of North America published...................................................................51 Agriculture and Agri-Food Canada entomology web products...............................51 Arctic symposium at ESC meeting.........................................................................51 Summary of the meeting of the Scientific Committee, April 2004 ..........................52 New postgraduate scholarship...............................................................................59 Key to parasitoids and predators of Pissodes........................................................59 Members of the Scientific Committee 2004 ...........................................................59 Project Update: Other Scientific Priorities...............................................................60 Opinion Page ..............................................................................................................61 The Quiz Page.............................................................................................................62 Bird-Associated Mites in Canada: How Many Are There?......................................63 Web Site Notes ...........................................................................................................71
    [Show full text]
  • Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
    Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al.
    [Show full text]
  • Parasitic Helminths and Arthropods of Fulvous Whistling-Ducks (Dendrocygna Bicolor) in Southern Florida
    J. Helminthol. Soc. Wash. 61(1), 1994, pp. 84-88 Parasitic Helminths and Arthropods of Fulvous Whistling-Ducks (Dendrocygna bicolor) in Southern Florida DONALD J. FORRESTER,' JOHN M. KINSELLA,' JAMES W. MERTiNS,2 ROGER D. PRICE,3 AND RICHARD E. TuRNBULL4 5 1 Department of Infectious Diseases, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, 2 U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, National Veterinary Services Laboratories, P.O. Box 844, Ames, Iowa 50010, 1 Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, and 4 Florida Game and Fresh Water Fish Commission, Okeechobee, Florida 34974 ABSTRACT: Thirty fulvous whistling-ducks (Dendrocygna bicolor) collected during 1984-1985 from the Ever- glades Agricultural Area of southern Florida were examined for parasites. Twenty-eight species were identified and included 8 trematodes, 6 cestodes, 1 nematode, 4 chewing lice, and 9 mites. All parasites except the 4 species of lice and 1 of the mites are new host records for fulvous whistling-ducks. None of the ducks were infected with blood parasites. Every duck was infected with at least 2 species of helminths (mean 4.2; range 2- 8 species). The most common helminths were the trematodes Echinostoma trivolvis and Typhlocoelum cucu- merinum and 2 undescribed cestodes of the genus Diorchis, which occurred in prevalences of 67, 63, 50, and 50%, respectively. Only 1 duck was free of parasitic arthropods; each of the other 29 ducks was infested with at least 3 species of arthropods (mean 5.3; range 3-9 species). The most common arthropods included an undescribed feather mite (Ingrassia sp.) and the chewing louse Holomenopon leucoxanthum, both of which occurred in 97% of the ducks.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • Faunistic Analysis of Soil Mites in Coffee Plantation
    International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-4, Issue-3, March- 2018] Faunistic Analysis of Soil Mites in Coffee Plantation Patrícia de Pádua Marafeli1, Paulo Rebelles Reis2, Leopoldo Ferreira de Oliveira Bernardi3, Pablo Antonio Martinez4 1Universidade Federal de Lavras - UFLA, Lavras, MG, Brazil. Entomology Postgraduate Program. 2Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG Sul/EcoCentro, Lavras, MG, Brazil. CNPq Researcher. 3Universidade Federal de Lavras - UFLA - Departamento de Biologia/DBI – Setor de Ecologia Aplicada, Lavras, MG. Brazil. CAPES / PNPD scholarship holder. 4Universidad Nacional de La Plata, La Plata, Argentina. Abstract ─ The soil-litter system is the natural habitat for a wide variety of organisms, microorganisms and invertebrates, with differences in size and metabolism, which are responsible for numerous functions. The soil mesofauna is composed of animals of body diameter between 100 μm and 2 mm, consisting of the groups Araneida, Acari, Collembola, Hymenoptera, Diptera, Protura, Diplura, Symphyla, Enchytraeidae (Oligochaeta), Isoptera, Chilopoda, Diplopoda and Mollusca. These animals, extremely dependent on humidity, move in the pores of the soil and at the interface between the litter and the soil. The edaphic fauna, besides having a great functional diversity, presents a rich diversity of species. As a result, these organisms affect the physical, chemical and, consequently, the biological factors of the soil. Therefore, the edaphic fauna and its activities are of extreme importance so that the soil is fertile and can vigorously support the vegetation found there, being spontaneous or cultivated. The composition, distribution and density of the edaphic acarofauna varies according to the soil depth, mites size, location and the season of the year.
    [Show full text]