Invertebrates and Nutrient Cycling in Coniferous Forest Ecosystems: Spatial Heterogeneity and Conditionality 255 T.M

Total Page:16

File Type:pdf, Size:1020Kb

Invertebrates and Nutrient Cycling in Coniferous Forest Ecosystems: Spatial Heterogeneity and Conditionality 255 T.M INVERTEBRATES AS WEBMASTERS IN ECOSYSTEMS This is an edited volume honouring the contributions of Professor D.A. (Dac) Crossley, Jr to the field of ecosystem science. Invertebrates as Webmasters in Ecosystems Edited by D.C. Coleman and P.F. Hendrix Institute of Ecology University of Georgia Athens, USA CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street, Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 212 481 7018 Fax: +44 (0)1491 833508 Fax: +1 212 686 7993 Email: [email protected] Email: [email protected] © CAB International 2000. All rights reserved. No part of this publication may be repro- duced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK Library of Congress Cataloging-in-Publication Data Invertebrates as webmasters in ecosystems / edited by D.C. Coleman and P.F. Hendrix. p. cm. Includes bibliographical references and index. ISBN 0–85199–394–X (alk. paper) 1. Invertebrates––Ecology. I. Coleman, David C., 1938– . II. Hendrix, Paul F. QL364.4.I58 2000 592.17––dc21 99–41246 CIP ISBN 0 85199 394 X Typeset in 10/12pt Photina by Columns Design Ltd, Reading Printed and bound in the UK by Biddles Ltd, Guildford and King’s Lynn. Contents Contributors vii Preface ix Part I. Webmaster Functions in Ecosystems 1 1 Food Web Functioning and Ecosystem Processes: Problems and Perceptions of Scaling 3 J.M. Anderson 2 Keystone Arthropods as Webmasters in Desert Ecosystems 25 W.G. Whitford 3 Responses of Grassland Soil Invertebrates to Natural and Anthropogenic Disturbances 43 J.M. Blair, T.C. Todd and M.A. Callaham, Jr 4 Effects of Invertebrates in Lotic Ecosystem Processes 73 J.B. Wallace and J.J. Hutchens, Jr Part II. Webmasters in Feedback Interactions and Food Webs 97 5 Insects as Regulators of Ecosystem Development 99 T.D. Schowalter 6 Herbivores, Biochemical Messengers and Plants: Aspects of Intertrophic Transduction 115 M.I. Dyer v vi Contents 7 Soil Invertebrate Controls and Microbial Interactions in Nutrient and Organic Matter Dynamics in Natural and Agroecosystems 141 C.A. Edwards 8 Invertebrates in Detrital Food Webs along Gradients of Productivity 161 J.C. Moore and P.C. de Ruiter Part III. Webmasters and Ecosystem Diversity 185 9 Biodiversity of Oribatid Mites (Acari: Oribatida) in Tree Canopies and Litter 187 V. Behan-Pelletier and D.E. Walter 10 Diversity in the Decomposing Landscape 203 R.A. Hansen 11 The Pervasive Ecological Effects of Invasive Species: Exotic and Native Fire Ants 221 C.R. Carroll and C.A. Hoffman 12 Soil Invertebrate Species Diversity in Natural and Disturbed Environments 233 J. Rusek Part IV. Webmasters in Regional and Global Contexts 253 13 Invertebrates and Nutrient Cycling in Coniferous Forest Ecosystems: Spatial Heterogeneity and Conditionality 255 T.M. Bolger, L.J. Heneghan and P. Neville 14 Impacts of Insects on Human-dominated and Natural Forest Landscapes 271 R.N. Coulson and D.F. Wunneburger 15 Soil Fauna and Controls of Carbon Dynamics: Comparisons of Rangelands and Forests across Latitudinal Gradients 293 T.R. Seastedt 16 Soil Processes and Global Change: Will Invertebrates Make a Difference? 313 P.M. Groffman and C.G. Jones Index 327 Contributors J.M. Anderson, School of Biological Sciences, University of Exeter, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK V. Behan-Pelletier, Biodiversity Program, Research Branch, Agriculture and Agri-Food Canada, K.W. Neatby Building, Ottawa, Canada, K1A 0C6 J.M. Blair, Division of Biology, Kansas State University, 232 Ackert Hall, Manhattan, KS 66506, USA T.M. Bolger, Department of Zoology, University College Dublin, Belfield, Dublin 4, Ireland M.A. Callaham, Jr, Division of Biology, Kansas State University, 201 Bushnell Hall, Manhattan, KS 66506, USA C.R. Carroll, Institute of Ecology, University of Georgia, Ecology Building, Athens, GA 30602–2202, USA D.C. Coleman, Institute of Ecology, University of Georgia, Ecology Annex, Athens, GA 30602–2360, USA R.N. Coulson, Knowledge Engineering Laboratory, Department of Entomology, Texas A&M University, Campus MS 2475, College Station, TX 77843, USA M.I. Dyer, Institute of Ecology, University of Georgia, Ecology Building, Athens, GA 30602–2202, USA C.A. Edwards, Soil Ecology Program, Botany and Zoology Building, The Ohio State University, 1735 Neil Avenue, Columbus, OH 43210, USA P.M. Groffman, Institute of Ecosystem Studies, Box AB, Millbrook, NY 12545, USA R.A. Hansen, Department of Biological Sciences, University of South Carolina, Coker Life Sciences 402, Columbia, SC 29208, USA P.F. Hendrix, Institute of Ecology, University of Georgia, Ecology Building, Athens, GA 30602–2202, USA vii viii Contributors L.J. Heneghan, Environmental Sciences Program, DePaul University, 2320 North Kenmore Avenue, Chicago, IL 60614-3298, USA C.A. Hoffman, Institute of Ecology, University of Georgia, Athens, GA 30602–2202, USA J.J. Hutchens, Jr, Institute of Ecology, University of Georgia, 413 Biological Sciences Building, Athens, GA 30602, USA C.G. Jones, Institute of Ecosystem Studies, New York Botanical Gardens, Cary Arboretum, Millbrook, NY 12545, USA J.C. Moore, Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639, USA P. Neville, Department of Zoology, University College Dublin, Belfield, Dublin 4, Ireland P.C. de Ruiter, Department of Environmental Studies, University of Utrecht, PO Box 80115, 3508 TC Utrecht, The Netherlands J. Rusek, Institute of Soil Biology, Academy of Sciences of Czech Republic, Nasádkách 7, 370 05 »eské BudÏjovice, Czech Republic T.D. Schowalter, Department of Entomology, Oregon State University, 2046 Cordley Hall, Corvallis, OR 97331–2907, USA T.R. Seastedt, Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309-0450, USA T.C. Todd, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA J.B. Wallace, Professor of Entomology and Ecology, 711 Biological Science Building, University of Georgia, Athens, GA 30602, USA D.E. Walter, Department of Zoology and Entomology, University of Queensland, St Lucia, Queensland 4072, Australia W.G. Whitford, USDA/ARS Jornada Experimental Range, New Mexico State University, PO Box 30003, MSC 3JER, Las Cruces, NM 88003–8003, USA D.F. Wunneburger, College of Architecture, Texas A&M University, College Station, TX 77843, USA Preface The last frontiers on Earth for the study of biocomplexity and ecosystem function are in the depths of the oceans, the canopies of forests and in soils (Haagvar, 1998). Remoteness and inaccessibility contribute to our lack of knowledge of oceanic and high canopy systems, but it is remarkable that life processes in the very underpinnings of our otherwise familiar terrestrial environment remain veiled. Obstacles to studying organisms and biological processes in soil include the opacity of the medium in which they exist and our inability to observe, collect and measure them without altering their charac- teristics (Coleman, 1985; Wall and Moore, 1999). Despite scientific limitations (or perhaps because of them), in all three situations there has been no shortage of innovative methods for studying biology along the frontiers or of creative ideas to explain phenomena observed there. The present state of knowledge from this work, as limited as it may be, clearly is that invertebrates are con- spicuous, ecologically influential components in all of these systems. This fact and the exciting questions that it raises are the bases for this book, which aims to review and assess our current understanding of invertebrates in terrestrial and terrestrially dominated (i.e. lower-order stream) ecosystems. In computing terminology, ‘A webmaster is one who designs, organizes, and maintains a webpage. The webmaster has a global, not a local perspective. No matter what language is used, the webmaster facilitates access to the web’ (Aram Rouhani, personal communication). While not imputing purpose in a human-oriented sense to actions of individual species in ecosystems, we suggest that entire assemblages of invertebrates occupying many hot-spots in soils, such as the rhizosphere and drilosphere, and other portions of both terrestrial and aquatic ecosystems, assume an organizing function and, hence, may be con- sidered as ‘webmasters’. This theme emphasizes the centrality of the activities ix x Preface of invertebrates, which influence ecosystem function far out of proportion to their physical mass in a wide range of ecosystems, particularly at the interfaces between land and air (litter/soil), water and land (sediments), and in tree canopies and root/soil systems. The webmasters concept reflects both direct and indirect influences of organismal activities, for example on nutrient dynamics in entire watersheds, and is thus qualitatively different from the keystone species concept, which relates to impacts of a particular species on other species and communities in a given habitat. The webmasters concept spans scales ranging from microsites to aspects of global climate change. We have invited 17 internationally renowned researchers from five coun- tries to participate in this focused, edited volume. Their papers cover a variety of current topics on invertebrate ecology, including spatial scale and nature of invertebrate controls on ecosystem processes;
Recommended publications
  • Stanislav Knor Školitel
    UNIVERZITA KARLOVA V PRAZE PŘÍRODOV ĚDECKÁ FAKULTA KATEDRA ZOOLOGIE Interakce rostlin a hmyzu ve fosilním záznamu Bakalá řská práce Stanislav Knor Školitel: RNDr. Jakub Prokop, Ph.D. Praha 2008 Tímto prohlašuji, že jsem uvedenou práci vypracoval samostatn ě, s využitím uvedené citované literatury. V Praze dne 12. srpna 2008 Stanislav Knor 1 Abstrakt V sou časné dob ě je rozmanitost života na Zemi dána p ředevším druhovým bohatstvím hmyzu, cévnatých rostlin a jejich vzájemnými vztahy. Jejich po čátek spadá do doby p řed více než 400 milión ů let, kdy vznikly první suchozemské ekosystémy. Fosilní nálezy umož ňují geochronologické a taxonomické za řazení jednotlivých druh ů a jejich vývojových stádií. Přestože n ěkteré fosilní doklady jsou vzácné, existuje jich dostate čné množství k utvo ření relevantních záv ěrů. Studované fosilní nálezy související s koevolucí rostlin a hmyzu je možné roz členit následujícím zp ůsobem: poškození rostlinných tkání, koprolity, obsah trávící trubice, typy ústního ústrojí hmyzu a rozmnožovací orgány rostlin. Z t ěchto skupin pak mají pravd ěpodobn ě nejv ětší význam stopy poškození rostlinných tkání spole čně s morfologií hmyzího ústního ústrojí vytvá řející spojené funk čně potravní skupiny. Cílem bakalá řské práce je p ředstavení jednotlivých vývojových etap hmyzího ústního ústrojí, demonstrace n ěkterých p říklad ů herbivorních asociací hmyzu a rostlin, a to se zřetelem k jejich fylogenetickému postavení a stratigrafickému kontextu. Klí čová slova: Hmyz, cévnaté rostliny, fosilní asociace, herbivorie, typy ústní ústrojí, mina, hálka, poškození rostlin, koprolity, obsah trávící trubice Abstract Life biodiversity on the Earth is mainly represented by enormous richness of the vascular plants and insect species and their associations.
    [Show full text]
  • Zootaxa 1386: 1–17 (2007) ISSN 1175-5326 (Print Edition) ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 1386: 1–17 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylleremus n. gen., from leaves of deciduous trees in eastern Australia (Oribatida: Licneremaeoidea) VALERIE M. BEHAN-PELLETIER1,3 & DAVID E. WALTER2 1Systematic Entomology, Agriculture and Agri-Food Canada, K. W. Neatby Building, Ottawa, Ontario K1A 0C6, Canada. E-mail: [email protected] 2Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada 3Corresponding author Abstract We propose a new genus of licneremaeoid oribatid mite, Phylleremus, based on two new species collected from leaves of woody dicots in Queensland, New South Wales, Victoria and Tasmania, Australia. Description of the type species, Phylleremus leei n. sp., is based on adults and all active immature stages; that of Phylleremus hunti n. sp. is based on adults and tritonymphs. Phylleremus adults have the notogastral octotaxic system of dermal glands developed either as 1 or 4 pairs of saccules, and nymphs are bideficient and plicate. We discuss the characteristics and relationships of this genus to others in Licneremaeoidea and argue for an affiliation with Adhaesozetidae. Key words: Oribatida, Phylleremus, Licneremaeoidea, new genus, new species, Australia, leaves Introduction Licneremaeoidea is a diverse assemblage of oribatid mite families, none of which is rich in described species. All members of included families, Adhaesozetidae, Dendroeremaeidae, Lamellareidae, Licneremaeidae, Micreremidae, Passalozetidae, Scutoverticidae, have apheredermous immatures with plicate hysterosomal integument, and adults with the octotaxic system of dermal glands (Grandjean 1954a; Behan-Pelletier et al. 2005). These character states are shared by the Achipteriidae, Tegoribatidae and Epactozetidae (Achipterio- idea) and Phenopelopidae (Phenopelopoidea), and thus, these early derivative poronotic mites are sometimes referred to as the ‘higher plicates’ (Norton & Alberti 1997).
    [Show full text]
  • Deformation to Users
    DEFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afreet reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. IDgher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell InArmadon Compai^ 300 Noith Zeeb Road, Ann Aibor MI 48106-1346 USA 313/761-4700 800/521-0600 Conservation of Biodiversity: Guilds, Microhabitat Use and Dispersal of Canopy Arthropods in the Ancient Sitka Spruce Forests of the Carmanah Valley, Vancouver Island, British Columbia. by Neville N.
    [Show full text]
  • New Species of Fossil Oribatid Mites (Acariformes, Oribatida), from the Lower Cretaceous Amber of Spain
    Cretaceous Research 63 (2016) 68e76 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes New species of fossil oribatid mites (Acariformes, Oribatida), from the Lower Cretaceous amber of Spain * Antonio Arillo a, , Luis S. Subías a, Alba Sanchez-García b a Departamento de Zoología y Antropología Física, Facultad de Biología, Universidad Complutense, E-28040 Madrid, Spain b Departament de Dinamica de la Terra i de l'Ocea and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Geologia, Universitat de Barcelona, E- 08028 Barcelona, Spain article info abstract Article history: Mites are relatively common and diverse in fossiliferous ambers, but remain essentially unstudied. Here, Received 12 November 2015 we report on five new oribatid fossil species from Lower Cretaceous Spanish amber, including repre- Received in revised form sentatives of three superfamilies, and five families of the Oribatida. Hypovertex hispanicus sp. nov. and 8 February 2016 Tenuelamellarea estefaniae sp. nov. are described from amber pieces discovered in the San Just outcrop Accepted in revised form 22 February 2016 (Teruel Province). This is the first time fossil oribatid mites have been discovered in the El Soplao outcrop Available online 3 March 2016 (Cantabria Province) and, here, we describe the following new species: Afronothrus ornosae sp. nov., Nothrus vazquezae sp. nov., and Platyliodes sellnicki sp. nov. The taxa are discussed in relation to other Keywords: Lamellareidae fossil lineages of Oribatida as well as in relation to their modern counterparts. Some of the inclusions Neoliodidae were imaged using confocal laser scanning microscopy, demonstrating the potential of this technique for Nothridae studying fossil mites in amber.
    [Show full text]
  • The Armoured Mite Fauna (Acari: Oribatida) from a Long-Term Study in the Scots Pine Forest of the Northern Vidzeme Biosphere Reserve, Latvia
    FRAGMENTA FAUNISTICA 57 (2): 141–149, 2014 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS DOI 10.3161/00159301FF2014.57.2.141 The armoured mite fauna (Acari: Oribatida) from a long-term study in the Scots pine forest of the Northern Vidzeme Biosphere Reserve, Latvia 1 2 1 Uģis KAGAINIS , Voldemārs SPUNĢIS and Viesturs MELECIS 1 Institute of Biology, University of Latvia, 3 Miera Street, LV-2169, Salaspils, Latvia; e-mail: [email protected] (corresponding author) 2 Department of Zoology and Animal Ecology, Faculty of Biology,University of Latvia, 4 Kronvalda Blvd., LV-1586, Riga, Latvia; e-mail: [email protected] Abstract: In 1992–2012, a considerable amount of soil micro-arthropods has been collected annually as a part of a project of the National Long-Term Ecological Research Network of Latvia at the Mazsalaca Scots Pine forest sites of the North Vidzeme Biosphere Reserve. Until now, the data on oribatid species have not been published. This paper presents a list of oribatid species collected during 21 years of ongoing research in three pine stands of different age. The faunistic records refer to 84 species (including 17 species new to the fauna of Latvia), 1 subspecies, 1 form, 5 morphospecies and 18 unidentified taxa. The most dominant and most frequent oribatid species are Oppiella (Oppiella) nova, Tectocepheus velatus velatus and Suctobelbella falcata. Key words: species list, fauna, stand-age, LTER, Mazsalaca INTRODUCTION Most studies of Oribatida or the so-called armoured mites (Subías 2004) have been relatively short term and/or from different ecosystems simultaneously and do not show long- term changes (Winter et al.
    [Show full text]
  • Hotspots of Mite New Species Discovery: Sarcoptiformes (2013–2015)
    Zootaxa 4208 (2): 101–126 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Editorial ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4208.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:47690FBF-B745-4A65-8887-AADFF1189719 Hotspots of mite new species discovery: Sarcoptiformes (2013–2015) GUANG-YUN LI1 & ZHI-QIANG ZHANG1,2 1 School of Biological Sciences, the University of Auckland, Auckland, New Zealand 2 Landcare Research, 231 Morrin Road, Auckland, New Zealand; corresponding author; email: [email protected] Abstract A list of of type localities and depositories of new species of the mite order Sarciptiformes published in two journals (Zootaxa and Systematic & Applied Acarology) during 2013–2015 is presented in this paper, and trends and patterns of new species are summarised. The 242 new species are distributed unevenly among 50 families, with 62% of the total from the top 10 families. Geographically, these species are distributed unevenly among 39 countries. Most new species (72%) are from the top 10 countries, whereas 61% of the countries have only 1–3 new species each. Four of the top 10 countries are from Asia (Vietnam, China, India and The Philippines). Key words: Acari, Sarcoptiformes, new species, distribution, type locality, type depository Introduction This paper provides a list of the type localities and depositories of new species of the order Sarciptiformes (Acari: Acariformes) published in two journals (Zootaxa and Systematic & Applied Acarology (SAA)) during 2013–2015 and a summary of trends and patterns of these new species. It is a continuation of a previous paper (Liu et al.
    [Show full text]
  • 10010 Processing Mites and Springtails
    Alberta Biodiversity Monitoring Institute www.abmi.ca Processing Mites (Oribatids) and Springtails (Collembola) Version 2009-05-08 May 2009 ALBERTA BIODIVERSITY MONITORING INSTITUTE Acknowledgements Jeff Battegelli reviewed the literature and suggested protocols for sampling mites and springtails. These protocols were refined based on field testing and input from Heather Proctor. The present document was developed by Curtis Stambaugh and Christina Sobol, with the training material compiled by Brian Carabine. Jim Schieck provided input on earlier drafts of the present document. Updates to this document were incorporated by Dave Walter and Robert Hinchliffe. Disclaimer These standards and protocols were developed and released by the ABMI. The material in this publication does not imply the expression of any opinion whatsoever on the part of any individual or organization other than the ABMI. Moreover, the methods described in this publication do not necessarily reflect the views or opinions of the individual scientists participating in methodological development or review. Errors, omissions, or inconsistencies in this publication are the sole responsibility of ABMI. The ABMI assumes no liability in connection with the information products or services made available by the Institute. While every effort is made to ensure the information contained in these products and services is correct, the ABMI disclaims any liability in negligence or otherwise for any loss or damage which may occur as a result of reliance on any of this material. All information products and services are subject to change by the ABMI without notice. Suggested Citation: Alberta Biodiversity Monitoring Institute, 2009. Processing Mites and Springtails (10010), Version 2009-05-08.
    [Show full text]
  • Acari: Oribatida) and Complementary Remarks on the Adult
    Acta Zoologica Academiae Scientiarum Hungaricae 57(4), pp. 351–367, 2011 THE NYMPHS OF MICREREMUS BREVIPES (ACARI: ORIBATIDA) AND COMPLEMENTARY REMARKS ON THE ADULT PFINGSTL, T. and KRISPER, G. Institute of Zoology, Karl-Franzens University Universitaetsplatz 2, A-8010 Graz, Austria; e-mail: [email protected] The nymphs of the arboricolous oribatid mite Micreremus brevipes are described in detail. Following characters are considered as specific for the juveniles of this species: 1) darker sclerotized pygidial zone, 2) no setae on genu III in all stages and 3) solenidia ϕ on tibiae II and IV microcephalic. A comparison with other known immatures of the family Micreremidae in- dicates that the present placement of Phylleremus and Phylloribatula within this family is not justified. Additionally the legs of the adults of M. brevipes are depicted and characterized for the first time, whereas the existence of porose areas on trochanter III and IV, all femora and tarsi could be demonstrated. Key words: porose organs, arboricolous, Cymbaeremaeoidea, Licneremaeoidea INTRODUCTION The family of Micreremidae was established by GRANDJEAN (1954) and consists at present of five genera with a cosmopolitan distribution (SUBÍAS 2011). In Europe only two species of the genus Micreremus BERLESE, 1908 are known whereas SUBÍAS (2004) synonymized these two taxa, namely M. brevipes (MICHAEL, 1888) and M. gracilior WILLMANN, 1931 and accepted only M. brevipes as valid species. There were no data published that confirm such a synonymy, and follow- ing WEIGMANN (2006) both taxa are separated clearly by several characters. Micre- remus brevipes is one of the most common arboreal mites in occidental Europe (GRANDJEAN 1954) and is supposed to be associated with lichens and mosses (SEYD &SEAWARD 1984).
    [Show full text]
  • Faunistic Analysis of Soil Mites in Coffee Plantation
    International Journal of Environmental & Agriculture Research (IJOEAR) ISSN:[2454-1850] [Vol-4, Issue-3, March- 2018] Faunistic Analysis of Soil Mites in Coffee Plantation Patrícia de Pádua Marafeli1, Paulo Rebelles Reis2, Leopoldo Ferreira de Oliveira Bernardi3, Pablo Antonio Martinez4 1Universidade Federal de Lavras - UFLA, Lavras, MG, Brazil. Entomology Postgraduate Program. 2Empresa de Pesquisa Agropecuária de Minas Gerais - EPAMIG Sul/EcoCentro, Lavras, MG, Brazil. CNPq Researcher. 3Universidade Federal de Lavras - UFLA - Departamento de Biologia/DBI – Setor de Ecologia Aplicada, Lavras, MG. Brazil. CAPES / PNPD scholarship holder. 4Universidad Nacional de La Plata, La Plata, Argentina. Abstract ─ The soil-litter system is the natural habitat for a wide variety of organisms, microorganisms and invertebrates, with differences in size and metabolism, which are responsible for numerous functions. The soil mesofauna is composed of animals of body diameter between 100 μm and 2 mm, consisting of the groups Araneida, Acari, Collembola, Hymenoptera, Diptera, Protura, Diplura, Symphyla, Enchytraeidae (Oligochaeta), Isoptera, Chilopoda, Diplopoda and Mollusca. These animals, extremely dependent on humidity, move in the pores of the soil and at the interface between the litter and the soil. The edaphic fauna, besides having a great functional diversity, presents a rich diversity of species. As a result, these organisms affect the physical, chemical and, consequently, the biological factors of the soil. Therefore, the edaphic fauna and its activities are of extreme importance so that the soil is fertile and can vigorously support the vegetation found there, being spontaneous or cultivated. The composition, distribution and density of the edaphic acarofauna varies according to the soil depth, mites size, location and the season of the year.
    [Show full text]
  • Checklists of Mites (Acari: Oribatida) Found in Lancashire and Cheshire F
    Checklists of mites (Acari: Oribatida) found in Lancashire and Cheshire F. D. Monson National Museums Liverpool Research Associate [email protected] Introduction: In the classic sense of the group, oribatid mites (also called beetle mites, armoured mites, or moss mites) comprise more than 9,000 named species (Schatz, 2002, 2005; Subías, 2004) representing 172 families. Although many are arboreal and a few are aquatic, most oribatid mites inhabit the soil- litter system. They are often the dominant arthropod group in highly organic soils of temperate forests, where 100–150 species may have collective densities exceeding 100,000m–2 (Norton & Behan- Pelletier, 2009). A useful introduction to British oribatid taxonomy and history in general can be found in Monson (2011). Unless otherwise stated, the superfamily and family organisation are in accordance with Schatz et al (2011) and lower level taxonomy is in accordance with Weigmann (2006). Each species is followed by a list of sites indicating where it was found etc. in its respective vice county. All identifications are by the Author unless otherwise stated. Two sites listed had a previous history of published records namely Delamere Forest and Wybunbury Moss (both in Cheshire) prior to the recent collections of Monson (Delamere Forest) and National Museums Liverpool (NML) (Wybunbury Moss) which are listed below. The prime aim of this new checklist (though limited to three vice counties namely VC58, VC59 and VC60) is to provide a useful tool for those who follow in the pursuit and fascinating study of oribatid mites in Lancashire and Cheshire and elsewhere. A new GB Checklist covering England, Scotland and Wales is in prep by the Author.
    [Show full text]
  • Fossils – Adriano Kury’S Harvestman Overviews and the Third Edition of the Manual of Acarology for Mites
    1 A summary list of fossil spiders and their relatives compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) with additional contributions from Lyall I. Anderson, Simon J. Braddy, James C. Lamsdell, Paul A. Selden & O. Erik Tetlie Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2011. A summary list of fossil spiders and their relatives. In Platnick, N. I. (ed.) The world spider catalog, version 11.5 American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2010 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the fossil record of spiders – and other arachnids – and numerous new taxa have been described. Spiders remain the single largest fossil group, but our aim here is to offer a summary list of all fossil Chelicerata in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list for Araneae follows the names and sequence of families adopted in the Platnick Catalog. For this reason some of the family groups proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities.
    [Show full text]
  • Hungarian Acarological Literature
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals Opusc. Zool. Budapest, 2010, 41(2): 97–174 Hungarian acarological literature 1 2 2 E. HORVÁTH , J. KONTSCHÁN , and S. MAHUNKA . Abstract. The Hungarian acarological literature from 1801 to 2010, excluding medical sciences (e.g. epidemiological, clinical acarology) is reviewed. Altogether 1500 articles by 437 authors are included. The publications gathered are presented according to authors listed alphabetically. The layout follows the references of the paper of Horváth as appeared in the Folia entomologica hungarica in 2004. INTRODUCTION The primary aim of our compilation was to show all the (scientific) works of Hungarian aca- he acarological literature attached to Hungary rologists published in foreign languages. Thereby T and Hungarian acarologists may look back to many Hungarian papers, occasionally important a history of some 200 years which even with works (e.g. Balogh, 1954) would have gone un- European standards can be considered rich. The noticed, e.g. the Haemorrhagias nephroso mites beginnings coincide with the birth of European causing nephritis problems in Hungary, or what is acarology (and soil zoology) at about the end of even more important the intermediate hosts of the the 19th century, and its second flourishing in the Moniezia species published by Balogh, Kassai & early years of the 20th century. This epoch gave Mahunka (1965), Kassai & Mahunka (1964, rise to such outstanding specialists like the two 1965) might have been left out altogether. Canestrinis (Giovanni and Riccardo), but more especially Antonio Berlese in Italy, Albert D.
    [Show full text]