Magically Magnetic Gadolinium Pekka Pyykkö Discusses the History and Characteristics of Gadolinium

Total Page:16

File Type:pdf, Size:1020Kb

Magically Magnetic Gadolinium Pekka Pyykkö Discusses the History and Characteristics of Gadolinium in your element Magically magnetic gadolinium Pekka Pyykkö discusses the history and characteristics of gadolinium. he lanthanides run from lanthanum Gd3+ is somewhat toxic, the gadolinium ion is to lutetium across the periodic table, surrounded by chelating ligands that prevent Tand together with the chemically it from entering tissues. New ligands are similar yttrium and scandium they form under development to improve safety. a family dubbed the rare-earth elements. Both gadolinium and some of its alloys An unspecified mixture of their oxides or salts play a prominent role in magnetic was isolated in 17941–3 by Johan Gadolin cooling. In this refrigeration process, a (1760–1852) from a mineral that had been magnetic substance becomes hotter when discovered in Ytterby, near Stockholm, placed under certain external magnetic field, Sweden by Carl Axel Arrhenius, and owing to the orientation of its magnetic described in 1788 by Geijer4. Gadolin dipoles. Inversely when the field is removed, cautiously stated that this oxide, or ‘earth’, and the substance thermally isolated, it cools could contain a new element. This would be down. By varying the magnetic field, and a pity he said1–3, because the elements were the sample’s insulation, one shuffles entropy already “becoming far too numerous” — an between the material’s electronic spin system interesting twist for an element that would and other degrees of freedom. be named after him. Gadolin’s analysis was The conspicuous luminescence colours confirmed in 1797 by A. G. Ekeberg5, and the of certain other lanthanides are used in original mineral was soon named gadolinite. fluorescent lamps and in displays — both SCOTT CAMAZINE / ALAMY CAMAZINE SCOTT The oxide of gadolinium (symbol Gd) the old-style picture tubes, and the current was discovered by repeated recrystallization trivalent Gd3+ ion can organize its seven 4f flat screens. The compounds of element 64 by Marignac6, who also determined its electrons in a half-filled shell with all spins itself are colourless, but they can be used atomic weight, but it was Boisbaudran parallel — a magic number, as it were. This to absorb UV radiation and to transfer (with Marignac’s approval) who suggested gives Gd(iii) the largest possible total spin its energy to other lanthanides that have the name in 18807. Although it is not known S = 7/2, and a correspondingly very large emissions in the desired optical range. whether he was thinking of the mineral spin magnetic moment. This characteristic Moreover, the 155Gd and 157Gd nuclei have or the man, or both, gadolinium remains can be used to improve permanent magnets. unusually large neutron absorption cross the only element with a name derived The 4f shell of lanthanides has electron sections, which can be used in nuclear from Hebrew. Its root ‘gadol’ (pictured), binding energies in the valence range, technology for reactor control rods. meaning ‘great’, was chosen by Gadolin’s making it possible to chemically vary the 4f Gadolin may have wished for fewer grandfather as his surname and comes from occupation, but the compact 4f radial size elements to exist, but gadolinium offers a a translation of Maunula, the name of the is typical of the outermost core electrons rich history spanning over two centuries, Finnish farm he lived on. and prevents most 4f electrons from directly intriguing characteristics, and a variety of participating in bond formation. practical applications. ❐ Despite their name, the rare earths are not particularly rare; €111 per 10 g of metallic PEKKA PYYKKÖ is professor emeritus in gadolinium (99.9% purity) is the going the Department of Chemistry, University of rate, though in metallurgy a much cheaper, Helsinki, POB 55, 00014 Helsinki, Finland. The chemical behaviour of most unseparated mischmetal is normally used. His former position as ‘the parallel chair of lanthanides is fairly similar, which explains An important current use is in medicine, chemistry’ was split from Gadolin’s chair of why, in all, it took more than a century to as a ‘contrast agent’ in magnetic resonance chemistry in 1908. split them into the individual elements. imaging (MRI). The MRI signal comes from e-mail: [email protected] Despite their chemical similarities, their certain nuclear spins, such as the ubiquitous optical and magnetic properties are distinct. protons. That nuclear spin system, however, References 1. Gadolin, J. Kungl. Svenska Vetenskapsak. Handl. 15, 137–155 (1794). The magnetic properties of gadolinium in is heated by the radiofrequency field used for 2. Gadolin, J. Crells Ann. 313–329 (1796). particular are unique, and underscore many the magnetic resonance. This heating typically 3. Pyykkö, P. & Orama, O. in Episodes from the History of the Rare of its applications. Element 64 is located half- weakens the MRI signal. The large electronic Earth Elements (ed. Evans, C. H.) 1–12 (Kluwer, 1996). way through the lanthanide 4f series and the magnetic moment of Gd(iii) helps to couple 4. Geijer, B. R. Crells Ann. 229–230 (1788). 5. Ekeberg, A. G. Kungl. Svenska Vetenskapsak. Handl. the nuclear spin system to the ‘lattice’ and to 18, 156–164 (1797). keep it cool. This is called nuclear spin–lattice 6. de Marignac J.‑C. G. Arch. Sci. (Genève) 3, 413–418 (1880). relaxation. To avoid health hazards, because 7. Lecoq de Boisbaudran, P.-E. C. R. Acad. Sci. 102, 902 (1886). Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl 680 NATURE CHEMISTRY | VOL 7 | AUGUST 2015 | www.nature.com/naturechemistry © 2015 Macmillan Publishers Limited. All rights reserved.
Recommended publications
  • Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
    Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding.
    [Show full text]
  • Determination of D003 by Capillary Gas Chromatography
    Rev. CENIC Cienc. Quím.; vol. 51. (no.2): 325-368. Año. 2020. e-ISSN: 2221-2442. BIBLIOGRAPHIC REWIEW THE FAMOUS FINNISH CHEMIST JOHAN GADOLIN (1760-1852) IN THE LITERATURE BETWEEN THE 19TH AND 21TH CENTURIES El famoso químico finlandés Johan Gadolin (1760-1852) en la literatura entre los siglos XIX y XXI Aleksander Sztejnberga,* a,* Professor Emeritus, University of Opole, Oleska 48, 45-052 Opole, Poland [email protected] Recibido: 19 de octubre de 2020. Aceptado: 10 de diciembre de 2020. ABSTRACT Johan Gadolin (1760-1852), considered the father of Finnish chemistry, was one of the leading chemists of the second half of the 18th century and the first half of the 19th century. His life and scientific achievements were described in the literature published between the 19th and 21st centuries. The purpose of this paper is to familiarize readers with the important events in the life of Gadolin and his research activities, in particular some of his research results, as well as his selected publications. In addition, the names of authors of biographical notes or biographies about Gadolin, published in 1839-2017 are presented. Keywords: J. Gadolin; Analytical chemistry; Yttrium; Chemical elements; Finnland & Sverige – XVIII-XIX centuries RESUMEN Johan Gadolin (1760-1852), considerado el padre de la química finlandesa, fue uno de los principales químicos de la segunda mitad del siglo XVIII y la primera mitad del XIX. Su vida y sus logros científicos fueron descritos en la literatura publicada entre los siglos XIX y XXI. El propósito de este artículo es familiarizar a los lectores con los acontecimientos importantes en la vida de Gadolin y sus actividades de investigación, en particular algunos de sus resultados de investigación, así como sus publicaciones seleccionadas.
    [Show full text]
  • A Crystal.Chemical Investigation of Alpine Gadolinite 135
    LN Canadian Mineralogist Vol. 30, pp. 1n-136 (1993) A CRYSTAL.CHEMICALINVESTIGATION OFALPINE GADOLINITE FRANCESCODEMARTIN Istinto di ChimicaStrumtristica Inorganica" Universit degli Studi, Via G. Venezian21, I-20133 Milan' Italy TULLIOPILATI CentroCNR per Io Studiodelle Relazioni fra Strunurae ReattivitChimica, via Golgi 19,I-20133 Milan' Italy VALERIADIELLA Centro CNRdi Sndio per la Stratigrafia e Petrografiadelle AIpi Centrali, via Bonicelli 23, I-20133Milan' Italy PAOLO GENTILE AND CARLO M. GRAMACCIOLI Dipanimentodi ScienzedellaTerra, Ilniversit degli Studi,via Bonicelli 23, I-20133Milnn' Italy ABSTRACI Gadolinite-(Y) specimensfrom variouslocalities in the Alps havebeen examined by electronmicroprobe and single-crystal X-ray diffraction. tn generat,dysprosium is the most abundantrare-earth, although a few samplescontain approximately equal ulnount,of Dy undYb-,andin oneinstance, Gdpredominates.Incontrasttomanynon-Alpineoccunences, mostof these specimens show only lirnited amountsof the lighter REE.There is an almostconstant presence of calcium (up to 4 wt7o.CaO' and.possibly twice thai amountfor morequestiorible samples;;iron is often markedlydeficient with respectto the tleqretlcal formula, and in ar leastone case (Glogstafelberg), the materialshould more properly be ialled hingganite-(Y)(4.0 wrToFeO). In somespecimens, a silnificant substituiionof S fJi Be (up to about4 .Z wtUoUrOll canbededuced-from crystal-structure data, on the basisof linear inteipolation of the measuredBe-O''6ond lengfhswith reip".t to other gadolinite-groupminerals. This substitutionis more exteisive for specimenshigh in Ca and low in Fe, and which thereforegrade toward datolite. No evidencefor replacementof Si by B hasbeen iound. Minor amountsof thorium (up to 0.4 wtToThO2)commonly are present' and uranium(0.3 wtVoUO) was found in one specimen.As for xenotimeand monazite,the behaviorbf Y is not uniquely determinedby the ionic radius,some specimensbeing especiallyemiched in this elementwith respectto the middle-heavyrare earths(up to 4 I .5 wt%oY 2O) .
    [Show full text]
  • Spectrophotometric Determination of Praseodymium by 1,4
    Arab Journal of Sciences & Research publishing Issue (2), Volume (1) September 2015 ISSN: 2518 - 5780 Spectrophotometric Determination of Praseodymium by 1,4- Dihydroxyanthraquinone after its Selective Separation from Rosetta Monazite Rare Earth Concentrate by Solvent Extraction Abdel Fattah N. A a Sadeek A. S b Ali B. H a Abdo, A. A a Weheish, H. L.a a Nuclear Materials Authority || Egypt b Faculty of Science || Zagazig University || Egypt Abstract: A rare earths concentrate of Rosetta monazite assays about 44, 23, 16.94 and 5.91 % for Ce, La, Nd and Pr respectively. Separation of cerium by air oxidation at 200oC. Selective separation of Pr by D2EHPA at pH1 followed by a sensitive spectrophotometric method which described for the determination of praseodymium (Pr) with l,4- dihydroxyanthraquinone . The calibration curve was linear from 0.1 to 12 µgml -1 praseodymium. The influences of various parameters and reaction conditions for maximum colour development were investigated. The relative standard deviation for determination of 1 µgml-1 praseodymium has found to be 1.3 after 5 repeated determinations; percent error 5.02%, molar absorptivity (ε) was 1.23x106M-1 cm-1and detection limit was 0.1µgml-1. The method for determination of praseodymium showed good accuracy and selectivity. INTRODUCTION Rare earth elements (REEs), represent one of a set of seventeen chemical elements in the periodic table, specifically the fifteen lanthanides, as well as scandium and yttrium (Connelly, N.G., et al., 2005). It was discovered of the black mineral Gadolinite by Carl Axel Arrhenius in 1787 (Gschneidner, and Cappellen, 1987). Traditionally, the REEs are divided into two groups on the basis of atomic weight; the light REEs are lanthanum through gadolinium (atomic numbers 57 through 64); and the heavy REEs comprise terbium through lutetium (atomic numbers 65 through 71).
    [Show full text]
  • Yttrium Från Ytterby Och Litium Från Utö – Del 1 En Topografisk Karta Stockholm Vid 1200-Talets Slut
    Grundämnenas upptäckt Grundämnenas upptäckt Exkursioner till Ytterby och Utö 6-7 juni eller 8-9 juni 6 juni Färje 1371: Strömkajen 08:30 Ytterby 09:30 09:45 – 10:45 Ytterby gruva Buss 682: Ytterby 11:03 Engarn 11:07 Buss 670: Engarn 11:09 Tekniska högskolan 11:44 Buss 4: Östra station 11:52 S:t Eriksplan 12:02 12:15 – 14:00 Rörstrands slott (lunch och visning) 14:00 – 16:00 Birkastan 7 juni Tåg 43: Stockholm City 08:16 Västerhaninge station 08:48 Buss 846: Västerhaninge station 09:09 Årstra brygga 09:22 Färje 2173: Årsta brygga 09:30 Gruvbryggan (Utö) 10:10 10:15 – 14:15 Rävstavik och Utö gruvor (matsäck) Färje 2178: Gruvbryggan (Utö) 14:30 Årsta brygga 15:25 Buss 846: Årstra brygga 15:32 Västerhaninge station 15:50 Tåg 43: Västerhaninge station 15:57 Stockholm City 16:29 Grundämnenas upptäckt Exkursioner till Ytterby och Utö 6-7 juni eller 8-9 juni 8 juni Färje 951: Strömkajen 09:15 Ytterby 10:40 10:55 – 11:45 Ytterby gruva Buss 682: Ytterby 12:03 Engarn 12:07 Buss 670: Engarn 12:09 Tekniska högskolan 12:44 Buss 4: Östra station 12:52 S:t Eriksplan 13:02 13:15 – 15:00 Rörstrands slott (lunch och visning) 15:00 – 17:00 Birkastan 9 juni Tåg 43: Stockholm City 08:16 Västerhaninge station 08:48 Buss 846: Västerhaninge station 09:09 Årstra brygga 09:22 Färje 2173: Årsta brygga 09:30 Gruvbryggan (Utö) 10:10 10:15 – 14:15 Rävstavik och Utö gruvor (matsäck) Färje 2178: Gruvbryggan (Utö) 14:30 Årsta brygga 15:25 Buss 846: Årstra brygga 15:32 Västerhaninge station 15:50 Tåg 43: Västerhaninge station 15:57 Stockholm City 16:29
    [Show full text]
  • GLOBAL RARE-EARTH PRODUCTION: HISTORY and OUTLOOK History – the Discovery
    Center for Strategic and International Studies Rare Earth Elements: Geology, Geography, and Geopolitics James B. Hedrick Hedrick Consultants, Inc. U.S. Rare Earths, Inc. Burke, Virginia December 15, 2010 Washington, DC GLOBAL RARE-EARTH PRODUCTION: HISTORY AND OUTLOOK History – The Discovery . The rare earths were discovered in 1787 by Swedish Army Lieutenant Carl Axel Arrhenius . Carl, an amateur mineralogist collected the black mineral ytterbite, later renamed gadolinite, from a small feldspar and quartz mine at Ytterby, Sweden . With similar chemical structures the rare earths proved difficult to separate . It was not until 1794 that Finnish chemist Johann Gadolin separated the first impure yttrium oxide from the mineral ytterbite History – The Discovery History – The Commercialization . The rare earths were commercialized when the incandescent lamp mantle industry was established in 1884 with mantles of zirconium, lanthanum, and yttrium oxides with later improvements requiring only the oxides of thorium and cerium. The lamp mantle was discovered by Baron Carl Auer von Welsbach . The mantles also used small amounts of neodymium and praseodymium as an indelible brand name Welsbach label History – The Early Mining . Rare earths were first produced commercially in the 1880s with the mining in Sweden and Norway of the rare-earth thorium phosphate mineral monazite . Foreign Production Brazil produced monazite as early as 1887 India produced monazite starting in 1911 . Domestic Production Monazite production in the United States was first recorded in 1893 in North Carolina - a small tonnage of monazite was reportedly mined in 1887 Monazite mining in South Carolina began in 1903 History – The Processing . Three main methods for separating and refining the rare- earth elements since they were discovered .
    [Show full text]
  • ~Ui&£R5itt! of J\Rij!Oua
    Minerals and metals of increasing interest, rare and radioactive minerals Authors Moore, R.T. Rights Arizona Geological Survey. All rights reserved. Download date 06/10/2021 17:57:35 Link to Item http://hdl.handle.net/10150/629904 Vol. XXIV, No.4 October, 1953 ~ui&£r5itt! of J\rij!oua ~ul1etiu ARIZONA BUREAU OF MINES MINERALS AND METALS OF INCREASING INTEREST RARE AND RADIOACTIVE MINERALS By RICHARD T. MOORE ARIZONA BUREAU OF MINES MINERAL TECHNOLOGY SERIES No. 47 BULLETIN No. 163 THIRTY CENTS (Free to Residents of Arizona) PUBLISHED BY ~tti£ll~r5itt! of ~rh!Omt TUCSON, ARIZONA TABLE OF CONTENTS INTRODUCTION 5 Acknowledgments 5 General Features 5 BERYLLIUM 7 General Features 7 Beryllium Minerals 7 Beryl 7 Phenacite 8 Gadolinite 8 Helvite 8 Occurrence 8 Prices and Possible Buyers ,........................................ 8 LITHIUM 9 General Features 9 Lithium Minerals 9 Amblygonite 9 Spodumene 10 Lepidolite 10 Triphylite 10 Zinnwaldite 10 Occurrence 10 Prices and Possible Buyers 10 CESIUM AND RUBIDIUM 11 General Features 11 Cesium and Rubidium Minerals 11 Pollucite ..................•.........................................................................., 11 Occurrence 12 Prices and Producers 12 TITANIUM 12 General Features 12 Titanium Minerals 13 Rutile 13 Ilmenite 13 Sphene 13 Occurrence 13 Prices and Buyers 14 GALLIUM, GERMANIUM, INDIUM, AND THALLIUM 14 General Features 14 Gallium, Germanium, Indium and Thallium Minerals 15 Germanite 15 Lorandite 15 Hutchinsonite : 15 Vrbaite 15 Occurrence 15 Prices and Producers ~ 16 RHENIUM 16
    [Show full text]
  • EMD Uranium (Nuclear Minerals) Committee
    EMD Uranium (Nuclear Minerals) Committee EMD Uranium (Nuclear Minerals) Mid-Year Committee Report Michael D. Campbell, P.G., P.H., Chair December 12, 2011 Vice-Chairs: Robert Odell, P.G., (Vice-Chair: Industry), Consultant, Casper, WY Steven N. Sibray, P.G., (Vice-Chair: University), University of Nebraska, Lincoln, NE Robert W. Gregory, P.G., (Vice-Chair: Government), Wyoming State Geological Survey, Laramie, WY Advisory Committee: Henry M. Wise, P.G., Eagle-SWS, La Porte, TX Bruce Handley, P.G., Environmental & Mining Consultant, Houston, TX James Conca, Ph.D., P.G., Director, Carlsbad Research Center, New Mexico State U., Carlsbad, NM Fares M Howari, Ph.D., University of Texas of the Permian Basin, Odessa, TX Hal Moore, Moore Petroleum Corporation, Norman, OK Douglas C. Peters, P.G., Consultant, Golden, CO Arthur R. Renfro, P.G., Senior Geological Consultant, Cheyenne, WY Karl S. Osvald, P.G., Senior Geologist, U.S. BLM, Casper WY Jerry Spetseris, P.G., Consultant, Austin, TX Committee Activities During the past 6 months, the Uranium Committee continued to monitor the expansion of the nuclear power industry and associated uranium exploration and development in the U.S. and overseas. New power-plant construction has begun and the country is returning to full confidence in nuclear power as the Fukushima incident is placed in perspective. India, Africa and South America have recently emerged as serious exploration targets with numerous projects offering considerable merit in terms of size, grade, and mineability. During the period, the Chairman traveled to Columbus, Ohio to make a presentation to members of the Ohio Geological Society on the status of the uranium and nuclear industry in general (More).
    [Show full text]
  • Study on Extraction of Lanthanum Oxide from Monazite Concentrate
    World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering Vol:2, No:10, 2008 Study on Extraction of Lanthanum Oxide from Monazite Concentrate Nwe Nwe Soe, Lwin Thuzar Shwe, and Kay Thi Lwin La2O3 has more extensive applications. It is a white Abstract—Lanthanum oxide is to be recovered from monazite, amorphous powder; insoluble in water improves the alkali which contains about 13.44% lanthanum oxide. The principal resistance of glass. The Kodak's camera objectives contain objective of this study is to be able to extract lanthanum oxide from from 20 to 40% La2O3. Lanthanum oxide can also be used in monazite of Moemeik Myitsone Area. The treatment of monazite in optical glasses where it imparts improved alkali resistance, this study involves three main steps; extraction of lanthanum La-Ce-Tb phosphors for fluorescent lamps, dielectric and hydroxide from monazite by using caustic soda, digestion with nitric conductive ceramics, Barium titanate capacitors, X-Ray acid and precipitation with ammonium hydroxide and calcination of lanthanum oxalate to lanthanum oxide. intensifying screens and lanthanum metal production [1]. Keywords—Calcination, Digestion, Precipitation. II. EXPERIMENTAL PROCEDURE Monazite from Moemeik Myitsone Area was used as raw I. INTRODUCTION material for the experiments. Monazite was ground to obtain - ANTHANUM was discovered in 1839 by Swedish 325 mesh. It has beach color. The flow diagram of the L Chemist Carl Gustav Mosandar when he partially extraction of lanthanum oxide is shown in Fig. 1. decomposed a sample of cerium nitrate by heating and treating Monazite the resulting salt with nitric acid.
    [Show full text]
  • Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
    Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding.
    [Show full text]
  • Alphabetical List
    LIST L - MINERALS - ALPHABETICAL LIST Specific mineral Group name Specific mineral Group name acanthite sulfides asbolite oxides accessory minerals astrophyllite chain silicates actinolite clinoamphibole atacamite chlorides adamite arsenates augite clinopyroxene adularia alkali feldspar austinite arsenates aegirine clinopyroxene autunite phosphates aegirine-augite clinopyroxene awaruite alloys aenigmatite aenigmatite group axinite group sorosilicates aeschynite niobates azurite carbonates agate silica minerals babingtonite rhodonite group aikinite sulfides baddeleyite oxides akaganeite oxides barbosalite phosphates akermanite melilite group barite sulfates alabandite sulfides barium feldspar feldspar group alabaster barium silicates silicates albite plagioclase barylite sorosilicates alexandrite oxides bassanite sulfates allanite epidote group bastnaesite carbonates and fluorides alloclasite sulfides bavenite chain silicates allophane clay minerals bayerite oxides almandine garnet group beidellite clay minerals alpha quartz silica minerals beraunite phosphates alstonite carbonates berndtite sulfides altaite tellurides berryite sulfosalts alum sulfates berthierine serpentine group aluminum hydroxides oxides bertrandite sorosilicates aluminum oxides oxides beryl ring silicates alumohydrocalcite carbonates betafite niobates and tantalates alunite sulfates betekhtinite sulfides amazonite alkali feldspar beudantite arsenates and sulfates amber organic minerals bideauxite chlorides and fluorides amblygonite phosphates biotite mica group amethyst
    [Show full text]
  • Zircon, Monazite and Other Minerals Used in the Production of Chemical Com- Pounds Employed in the Manufac- Ture of Lighting Apparatus
    North Carolina State Library GIFT OF \*J.^. M «v* Digitized by the Internet Archive in 2013 http://archive.org/details/zirconmonaziteot25prat V C*> ttonh Carolina Stat© ^vtef <^ Raleigh NORTH CAROLINA GEOLOGICAL AND ECONOMIC SURVEY JOSEPH HYDE PRATT, State Geologist BULLETIN No. 25 Zircon, Monazite and Other Minerals Used in the Production of Chemical Com- pounds Employed in the Manufac- ture of Lighting Apparatus BY JOSEPH HYDE PRATT, Ph.D. Raleigh, N. 0. Edwards & Broughton Printing Co. State Printers and Binders 1916 GEOLOGICAL BOARD Governor Locke Craig, ex officio chairman Raleigh Frank R. Hewitt Asheville Hugh MacRae Wilmington Henry E. Fries ". Winston-Salem John Sprunt Hill Durham Joseph Hyde Pratt, State Geologist Chapel Hill ^5 LETTER OF TRANSMITTAL Chapel Hill, M". C, October 1, 1915. To His Excellency , Honorable Locke Craig, Governor of North Carolina. Sir :—I have the honor to submit herewith for publication as Bulletin 25 a report on Zircon, Monazite and other Minerals Used in the Pro- duction of Chemical Compounds Employed in the Manufacture of Light- ing Apparatus. There is a renewed interest in the deposits of these min- erals in North Carolina, and the present report takes up not only a description of the localities in which these minerals are found, but is a technical review of the development of the lighting industry. Very truly yours, Joseph Hyde Pratt, State Geologist. ±o 5 ,3 3 2 7 CONTENTS PAGE Introduction 7 Zircon 7 Sources of Zirconia 10 Zircon 10 Baddeleyite 10 Other Zirconia-bearing Minerals 11 Occurrences and localities of Zircon 13 Zircon from Henderson County, N.
    [Show full text]