Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evolution and Understanding of the D-Block Elements in the Periodic Table Cite This: Dalton Trans., 2019, 48, 9408 Edwin C
Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding. -
Spectrophotometric Determination of Praseodymium by 1,4
Arab Journal of Sciences & Research publishing Issue (2), Volume (1) September 2015 ISSN: 2518 - 5780 Spectrophotometric Determination of Praseodymium by 1,4- Dihydroxyanthraquinone after its Selective Separation from Rosetta Monazite Rare Earth Concentrate by Solvent Extraction Abdel Fattah N. A a Sadeek A. S b Ali B. H a Abdo, A. A a Weheish, H. L.a a Nuclear Materials Authority || Egypt b Faculty of Science || Zagazig University || Egypt Abstract: A rare earths concentrate of Rosetta monazite assays about 44, 23, 16.94 and 5.91 % for Ce, La, Nd and Pr respectively. Separation of cerium by air oxidation at 200oC. Selective separation of Pr by D2EHPA at pH1 followed by a sensitive spectrophotometric method which described for the determination of praseodymium (Pr) with l,4- dihydroxyanthraquinone . The calibration curve was linear from 0.1 to 12 µgml -1 praseodymium. The influences of various parameters and reaction conditions for maximum colour development were investigated. The relative standard deviation for determination of 1 µgml-1 praseodymium has found to be 1.3 after 5 repeated determinations; percent error 5.02%, molar absorptivity (ε) was 1.23x106M-1 cm-1and detection limit was 0.1µgml-1. The method for determination of praseodymium showed good accuracy and selectivity. INTRODUCTION Rare earth elements (REEs), represent one of a set of seventeen chemical elements in the periodic table, specifically the fifteen lanthanides, as well as scandium and yttrium (Connelly, N.G., et al., 2005). It was discovered of the black mineral Gadolinite by Carl Axel Arrhenius in 1787 (Gschneidner, and Cappellen, 1987). Traditionally, the REEs are divided into two groups on the basis of atomic weight; the light REEs are lanthanum through gadolinium (atomic numbers 57 through 64); and the heavy REEs comprise terbium through lutetium (atomic numbers 65 through 71). -
Yttrium Från Ytterby Och Litium Från Utö – Del 1 En Topografisk Karta Stockholm Vid 1200-Talets Slut
Grundämnenas upptäckt Grundämnenas upptäckt Exkursioner till Ytterby och Utö 6-7 juni eller 8-9 juni 6 juni Färje 1371: Strömkajen 08:30 Ytterby 09:30 09:45 – 10:45 Ytterby gruva Buss 682: Ytterby 11:03 Engarn 11:07 Buss 670: Engarn 11:09 Tekniska högskolan 11:44 Buss 4: Östra station 11:52 S:t Eriksplan 12:02 12:15 – 14:00 Rörstrands slott (lunch och visning) 14:00 – 16:00 Birkastan 7 juni Tåg 43: Stockholm City 08:16 Västerhaninge station 08:48 Buss 846: Västerhaninge station 09:09 Årstra brygga 09:22 Färje 2173: Årsta brygga 09:30 Gruvbryggan (Utö) 10:10 10:15 – 14:15 Rävstavik och Utö gruvor (matsäck) Färje 2178: Gruvbryggan (Utö) 14:30 Årsta brygga 15:25 Buss 846: Årstra brygga 15:32 Västerhaninge station 15:50 Tåg 43: Västerhaninge station 15:57 Stockholm City 16:29 Grundämnenas upptäckt Exkursioner till Ytterby och Utö 6-7 juni eller 8-9 juni 8 juni Färje 951: Strömkajen 09:15 Ytterby 10:40 10:55 – 11:45 Ytterby gruva Buss 682: Ytterby 12:03 Engarn 12:07 Buss 670: Engarn 12:09 Tekniska högskolan 12:44 Buss 4: Östra station 12:52 S:t Eriksplan 13:02 13:15 – 15:00 Rörstrands slott (lunch och visning) 15:00 – 17:00 Birkastan 9 juni Tåg 43: Stockholm City 08:16 Västerhaninge station 08:48 Buss 846: Västerhaninge station 09:09 Årstra brygga 09:22 Färje 2173: Årsta brygga 09:30 Gruvbryggan (Utö) 10:10 10:15 – 14:15 Rävstavik och Utö gruvor (matsäck) Färje 2178: Gruvbryggan (Utö) 14:30 Årsta brygga 15:25 Buss 846: Årstra brygga 15:32 Västerhaninge station 15:50 Tåg 43: Västerhaninge station 15:57 Stockholm City 16:29 -
GLOBAL RARE-EARTH PRODUCTION: HISTORY and OUTLOOK History – the Discovery
Center for Strategic and International Studies Rare Earth Elements: Geology, Geography, and Geopolitics James B. Hedrick Hedrick Consultants, Inc. U.S. Rare Earths, Inc. Burke, Virginia December 15, 2010 Washington, DC GLOBAL RARE-EARTH PRODUCTION: HISTORY AND OUTLOOK History – The Discovery . The rare earths were discovered in 1787 by Swedish Army Lieutenant Carl Axel Arrhenius . Carl, an amateur mineralogist collected the black mineral ytterbite, later renamed gadolinite, from a small feldspar and quartz mine at Ytterby, Sweden . With similar chemical structures the rare earths proved difficult to separate . It was not until 1794 that Finnish chemist Johann Gadolin separated the first impure yttrium oxide from the mineral ytterbite History – The Discovery History – The Commercialization . The rare earths were commercialized when the incandescent lamp mantle industry was established in 1884 with mantles of zirconium, lanthanum, and yttrium oxides with later improvements requiring only the oxides of thorium and cerium. The lamp mantle was discovered by Baron Carl Auer von Welsbach . The mantles also used small amounts of neodymium and praseodymium as an indelible brand name Welsbach label History – The Early Mining . Rare earths were first produced commercially in the 1880s with the mining in Sweden and Norway of the rare-earth thorium phosphate mineral monazite . Foreign Production Brazil produced monazite as early as 1887 India produced monazite starting in 1911 . Domestic Production Monazite production in the United States was first recorded in 1893 in North Carolina - a small tonnage of monazite was reportedly mined in 1887 Monazite mining in South Carolina began in 1903 History – The Processing . Three main methods for separating and refining the rare- earth elements since they were discovered . -
EMD Uranium (Nuclear Minerals) Committee
EMD Uranium (Nuclear Minerals) Committee EMD Uranium (Nuclear Minerals) Mid-Year Committee Report Michael D. Campbell, P.G., P.H., Chair December 12, 2011 Vice-Chairs: Robert Odell, P.G., (Vice-Chair: Industry), Consultant, Casper, WY Steven N. Sibray, P.G., (Vice-Chair: University), University of Nebraska, Lincoln, NE Robert W. Gregory, P.G., (Vice-Chair: Government), Wyoming State Geological Survey, Laramie, WY Advisory Committee: Henry M. Wise, P.G., Eagle-SWS, La Porte, TX Bruce Handley, P.G., Environmental & Mining Consultant, Houston, TX James Conca, Ph.D., P.G., Director, Carlsbad Research Center, New Mexico State U., Carlsbad, NM Fares M Howari, Ph.D., University of Texas of the Permian Basin, Odessa, TX Hal Moore, Moore Petroleum Corporation, Norman, OK Douglas C. Peters, P.G., Consultant, Golden, CO Arthur R. Renfro, P.G., Senior Geological Consultant, Cheyenne, WY Karl S. Osvald, P.G., Senior Geologist, U.S. BLM, Casper WY Jerry Spetseris, P.G., Consultant, Austin, TX Committee Activities During the past 6 months, the Uranium Committee continued to monitor the expansion of the nuclear power industry and associated uranium exploration and development in the U.S. and overseas. New power-plant construction has begun and the country is returning to full confidence in nuclear power as the Fukushima incident is placed in perspective. India, Africa and South America have recently emerged as serious exploration targets with numerous projects offering considerable merit in terms of size, grade, and mineability. During the period, the Chairman traveled to Columbus, Ohio to make a presentation to members of the Ohio Geological Society on the status of the uranium and nuclear industry in general (More). -
From Bedrock to Porcelain a Study Regarding The
Bachelor Thesis Degree Project in Geology 15 hp From Bedrock to Porcelain A study regarding the history of porcelain, Ytterby mine and the discovery of yttrium in Sweden Timmy Kärrström Stockholm 2017 Department of Geological Sciences Stockholm University SE-106 91 Stockholm Sweden Abstract Porcelain is a translucent vitreous material that consists of clay (kaolin), feldspar and quartz which has been mixed and heated together to cause a metamorphic reaction. In Sweden, the Porcelain industry was established in 1726 at Rörstrands castle in Stockholm and is today one of the oldest industries in Europe to produce porcelain. Around the 1790’s Rörstrand got its feldspars and quartz from the Ytterby mine that was located at Resarö in Stockholm’s archipelago making the raw material somewhat easy to access. Rörstrand owned the mine in the 1850’s to 1926. During the time Ytterby mine was active, an amateur geologist by the name of Carl Axel Arrhenius, discovered an unusual black mineral in the quarry ore in 1787 which later led to the discovery of 8 new rare earth elements (REE) with the help of several Swedish chemists throughout time. These elements are Yttrium, Ytterbium, Gadolinium, Terbium, Thulium, Erbium, Holmium and scandium. This study will focus on the Swedish porcelain industry and how it has evolved throughout history and Rörstrand’s role in the discovery of yttrium. PAGE 1 Contents Abstract ........................................................................................................................................... 1 -
INHIGEO-1993-25.Pdf
INTERNATIONAL UNION OF GEOLOGICAL SCIENCES INTERNATIONAL UNION OF THE HISTORY AND PHILOSOPHY OF SCIENCES INTERNATIONAL COMMISSION ON THE HISTORY OF GEOLOGICAL SCIENCES INHIGEO NEWSLETTER No. 25 for 1992 Issued in 1993 Complied and Edited by Ursula B. Marvin INHIGEO Secretary-General Printed at the Smithsonian Astrophysical Observatory Cambridge, Massachusetts, U.S.A. CONTENTS Preface 1 The INHIGEO Board 1992-19 1 INHIGEO at the 29th International Geological Congress, Kyoto, 1992 3 Symposium 11-25-1 on History of Geology 4 Symposium 11-25-3 on History of Meteoritics 5 INHIGEO Board Meeting 8 Opening remarks by President Guntau 8 Future INHIGEO Symposia 8 Discussion of proposed revisions to bylaws 9 Election of INHIGEO Board and new members 9 Comments by incoming President Branagan 1 о Report of President Guntau to IUGS Council 10 New INHIGEO Bylaws 11 Activities of the International Union of History and Philosophy of Science 13 Notices of General Interest to Historians of Geology 14 GSA Penrose Conference, San Diego, March 1994 14 500th Birthday of Georgius Agricola, Chemnitz, March 1994 15 Report on 90th Anniversary of Carnegie Institution of Washington 15 Activities of History of Earth Sciences Society 16 History of the IUGS 16 Facsimile Edition available of book by John Farey, 1811 17 Reprints available of Meteorite of Ensisheim, 1492 to 1992 17 Copies available of Centennial History of Geological Society of Washington 17 Country Reports 18 Australia 18 Austria 19 Brazil 19 Canada 20 China 21 France 22 Germany 22 Hungary 24 Italy 25 Japan 26 The Netherlands 26 Peru 27 Poland 27 South Africa 28 Spain 29 United Kingdom 31 United States of America 33 Venezuela 37 Book Reviews 37 i Book Reviews 37 Scenes from Deep Time by M.J.S. -
Act I, Signature Viii - (1)
We walked seven miles along the mournful Susquehanna. It is a terrifying river. It has bushy cliffs on both sides that lean like hairy ghosts over the unknown waters. Inky night covers all. Sometimes from the railyards across the river rises a great red locomotive flare that illuminates the horrid cliffs [J. Kerouac, On the Road (New York: Penguin Books, 1976), p. 104]. I - viii - The Parallel Nation of Ossian. The Emperor Frederick, arrived in Hades, joins the others in listening as Ahem describes his youth in Ossian. While tictuses continue narrating their own tale of captivity, three Nicean principles: ‘scrapmon, an historian (all too busy), and the Ambassador an An Indocile, reach the Sunrise Cage and hot wash their recent expedition at Mount Period. A tictic takes the lumine to visit a discoverer (all too busy), marooned in the Forgotten Tents, and tries to explain the structure of the Nicean races. The Nicean Grand Fleet, the omega wave, arrives, distorting the boundaries between time and space. ~ page 101 ~ James Macpherson (Scottish Gaelic: Seumas Mac a' Phearsain or Seumas MacMhuirich; 27 October 1736 – 17 February 1796) was a Scottish poet, known as the "translator" of the Ossian cycle of poems.* Ossian Act I, Signature viii - (1) Gaelic Oisín. Irish warrior-poet of the Fenian cycle of hero tales. The name Ossian became known throughout Europe in 1762–63 when the Scottish poet James Macpherson (1736–96) published the epics Fingal and Temora, which he represented as translations of works by the 3rd-century Gaelic poet Ossian. The poems were widely acclaimed and influential in the Romantic movement, but their authorship was later doubted, notably by Samuel Johnson (1775), and they were eventually determined to have been written largely by Macpherson. -
Dalton Transactions
Dalton Transactions View Article Online PERSPECTIVE View Journal | View Issue Evolution and understanding of the d-block elements in the periodic table Cite this: Dalton Trans., 2019, 48, 9408 Edwin C. Constable Received 20th February 2019, The d-block elements have played an essential role in the development of our present understanding of Accepted 6th March 2019 chemistry and in the evolution of the periodic table. On the occasion of the sesquicentenniel of the dis- DOI: 10.1039/c9dt00765b covery of the periodic table by Mendeleev, it is appropriate to look at how these metals have influenced rsc.li/dalton our understanding of periodicity and the relationships between elements. Introduction and periodic tables concerning objects as diverse as fruit, veg- etables, beer, cartoon characters, and superheroes abound in In the year 2019 we celebrate the sesquicentennial of the publi- our connected world.7 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. cation of the first modern form of the periodic table by In the commonly encountered medium or long forms of Mendeleev (alternatively transliterated as Mendelejew, the periodic table, the central portion is occupied by the Mendelejeff, Mendeléeff, and Mendeléyev from the Cyrillic d-block elements, commonly known as the transition elements ).1 The periodic table lies at the core of our under- or transition metals. These elements have played a critical rôle standing of the properties of, and the relationships between, in our understanding of modern chemistry and have proved to the 118 elements currently known (Fig. 1).2 A chemist can look be the touchstones for many theories of valence and bonding. -
A Biographical Sketch of Francisco De Paula Sanz, Spanish Colonial Official
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1977 A Biographical Sketch of Francisco De Paula Sanz, Spanish Colonial Official. Christopher Thomas Williams Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Williams, Christopher Thomas, "A Biographical Sketch of Francisco De Paula Sanz, Spanish Colonial Official." (1977). LSU Historical Dissertations and Theses. 3142. https://digitalcommons.lsu.edu/gradschool_disstheses/3142 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a targe round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. -
Crystallography News British Crystallographic Association
Crystallography News British Crystallographic Association Issue No. 151 December 2019 ISSI 1467-2790 Serendipitous Crystallography Exhibits Spring Meeting 2020 Preview p6 Carl Schwalbe 1942-2019 p10 Council Elections: Candidate Statements p14 ECM32, Vienna p16 TCB Meeting Report p18 Valencia Female Scientists Exhibition p20 LEADERS IN X-RAY INSTRUMENTATION • Single Crystal X-ray Diffraction • General Purpose X-ray Diffraction • Small Angle X-ray Scattering Rigaku has been at the forefront of X-ray instrumentation since the 1950s, and is a world leader in the fi elds of: macromolecular and small molecule single crystal diffraction; general purpose X-ray diffraction; X-ray thin fi lm analysis; X-ray fl uorescence spectrometry; small angle X-ray scattering; semiconductor metrology; hts reserved. g X-ray computed tomography; X-ray microscopy; non- destructive testing; X-ray optics and X-ray detectors. Rigaku also manufactures instrumentation for Raman and laser-induced breakdown spectroscopy, and thermal analysis. aku Corporation and its Global Subsidiaries. All ri aku Corporation g © 2019 Ri Rigaku Europe SE | Hugenottenallee 167 | 63263 Neu Isenburg | Germany | www.rigaku.com | [email protected] BCA Corporate_advert_en_Ver2_2019.10.18.indd 1 10/18/2019 11:07:31 AM Are you involved with the introduction, development and practical application of crystallographic concepts and techniques? Particularly in an industrial or applied The IG provides several awards to support BCA members. context relating to the structure and properties of materials? Bursaries at our group meetings to cover registration fees for students. Then the Industrial Group of the BCA wants to hear from you! Carers award of up to £250 for members at any career stage We have spaces available on our who have caring responsibilities. -
Annotations for Alexander Von Humboldt's Political Essay on The
Annotations for Alexander von Humboldt’s Political Essay on the Kingdom of New Spain by Giorleny D. Altamirano Rayos, Tobias Kraft, and Vera M. Kutzinski Unless context made it more sensible to do otherwise, we have annotated a reference or allusion at its first occurrence. Entries in boldface refer back to a main entry. The page numbers that precede each entry refer to the pagination of Alexander von Humboldt’s 1826 French edition; those page numbers are are printed in the margins of our translation of the Political Essay on the Kingdom of New Spain. In that edition, the names and concepts that appear in SMALL CAPS in the annotations are marked with an ▼. Weights and Measures What follows are some of the most common weights and measures that Alexander von Humboldt regularly uses. This is not an exhaustive list. ACRE: an old English unit of surface area equivalent to 4,840 square yards (or about 4,046.85 square meters) in the USA and Canada. The standard unit of measurement for surface area in the UK, an acre in its earliest English uses was probably the amount of land that one yoke of oxen could plow in a day. Its value varied slightly in Ireland, Scotland, and England. In France, the size of the acre varied depending on region. Humboldt states that an acre is 4,029 square meters. 2 ARPENT: a unit either of length or of land area used in France, Québec, and Louisiana from the sixteenth to the eighteenth century. The main measurement for land throughout France (sometimes called the French acre), the arpent varied in value depending on region.