A New Molecular Factory from the Emission Profiles of Lines

Total Page:16

File Type:pdf, Size:1020Kb

A New Molecular Factory from the Emission Profiles of Lines NATURE|Vol 447|28 June 2007 NEWS & VIEWS ASTRONOMY as a result of the Doppler effect, Ziurys et al. were also able to derive the kinematic struc- tures of the different components of the winds A new molecular factory from the emission profiles of lines. Imaging of Sun Kwok VY CMa by the Hubble Space Telescope has shown that the winds have complicated Carbon-rich stars are known to be prolific producers of molecules. Against morphologies (Fig. 1), and the origin of the expectations, astronomers have identified an old, oxygen-rich star that can different molecules can be traced to different morphological features3. So these observations also synthesize a chemically varied molecular cocktail. can also be used as probes to help elucidate the physics of the winds. For 30 years, astronomers’ favourite star in Our interest in old stars is not confined to the search for molecules was a nearby, old, the molecules they may be producing. In the carbon-rich star called CW Leo. This star gas phase, molecules are in turn believed to be produces such a variety of molecules that it the building-blocks of more complex inorganic constitutes a veritable ‘molecular factory’. On and organic solids that consist of hundreds of page 1094 of this issue, Ziurys et al.1 describe atoms. These solids have been detected by how they have discovered another stellar infrared spectroscopy through their vibrational molecular factory that is almost as prolific. modes. Planetary nebulae, the descendants of VY Canis Majoris (VY CMa) is a cool, old old red-giant stars such as CW Leo, have been star like CW Leo, and like CW Leo it is in our seen to contain carbonaceous compounds Galactic neighbourhood. But it is different in with both ring and chain structures typical of one crucial respect: it is rich in oxygen. Appar- complex organic substances4. The detection ently, then, oxygen-rich stars can also produce of additional gas-phase molecules will help a wide variety of molecules when they are near us draw a more complete picture of chemical the ends of their lives. synthesis in stars. Most people think of stars as sources of light. Ziurys and colleagues’ report1 shows that But since the early 1970s, and the development there is much more to be learnt about the use of infrared and microwave astronomy, stars of old stars as laboratories for studying inter- have also proved to be sources of matter. We stellar chemistry. How do these stars manage now know that old stars generate strong stellar to make complex molecules in the extreme Figure 1 | Stellar performance. This colour- winds that eject material from the parent star composite picture of VY CMa consists of low-density environment? Do physical shocks, into interstellar space. Because many heavy separate images, taken in blue, green, red radiation or even grain-surface chemistry con- elements are synthesized by nuclear processes and near-infrared light, obtained with the tribute to the molecular-formation process? in the interior of old stars, stellar winds are a Hubble Space Telescope (HST) Wide Field and What chemical pathways lead from the simple major avenue for feeding those elements into Planetary Camera 2. The image reveals complex gas-phase molecules to complex organic the interstellar medium. circumstellar ejecta, with arcs, filaments and solids? And what roles do these molecules have What kinds of matter are in the stellar winds? knots of material formed by the massive outflows in the enrichment of the Galaxy and maybe 1 In addition to atomic nuclei, it turns out that created during several outbursts. As Ziurys et al. even the early Solar System? Such questions the stellar winds have very rich chemical con- recount, the observed emission from different have broad implications beyond astronomy molecular species can be traced to the different tents. Spectroscopic observations at millimetre and chemistry — winds from old stars will optical features. (Composite image created from and submillimetre wavelengths have resulted HST data taken by R. Humphreys.) be an enticing target of observations for some in the detection of more than 60 types of mol- time to come. ■ ecule. These include inorganic molecules (for Sun Kwok is in the Department of Physics, example, CO, SiO, SiS, NH3, AlCl), organic of molecules is striking as well. Among the University of Hong Kong, Pokfulam, Hong Kong. molecules (C2H2, CH4, H2CO, CH3CN), seven are molecules containing sulphur (NS), e-mail: [email protected] + radicals (CN, C2H, C3, HCO ), rings (C3H2) phosphorus (PN), silicon (SiS) and even met- 2 1. Ziurys, L. M., Milam, S. N., Apponi, A. J. & Woolf, N. J. and chains (HC5N, HC7N) . The winds are dis- als (NaCl, or salt). Phosphorus is of particular Nature 447, 1094–1097 (2007). persing fast, so the formation processes must interest because this element has an essential 2. Olofsson, H. in Molecules in Astrophysics: Probes and take place on timescales as short as hundreds role in the biochemistry of life, in spite of its Processes IAU Symp. 178 (ed. Van Dishoeck, E.) 457–468 (Kluwer, Dordrecht, 1997). of years. low abundance in the cosmos. The authors’ dis- 3. Humphreys, R. M., Helton, L. A. & Jones, T. J. Astron. J. 133, Conventional wisdom suggests that if oxy- covery also reveals unexpected physical com- 2716–2729 (2007). gen is more abundant than carbon, most of the plexity. They found the molecular ion HCO+, 4. Kwok, S. Nature 430, 985–991 (2004). carbon atoms in the wind of VY CMa should even though it is not expected to be present in be locked up in the CO molecule, a simple the low-temperature, neutral environment of and stable molecular species that forms in a cool star. Robert Cahn (1924–2007) the atmosphere of the star. Given the lack of The molecules in VY CMa were identified Robert Cahn, who died on 9 April 2007, was available carbon atoms, an oxygen-rich star is through their rotational transitions. When a a much-valued and prolific contributor to not expected to have the chemical versatility molecule decays to a lower rotational state, Nature, and to News & Views in particular. His of a carbon-rich star and is therefore much having been excited by collisions or radiation articles first appeared in the mid-1960s, and less likely to have a chemically rich molecular to a higher rotational state, it emits microwaves ranged widely across the discipline of materi- content. at specific wavelengths. Modern spectrometers als science. The July issue of Nature Materials So it comes as a surprise that Ziurys et al.1 can have high spectral resolution, so different includes a full obituary by A. Lindsay Greer, announce seven newly discovered molecules molecular species can be uniquely identified which is freely available at http://dx.doi. in the stellar wind of VY CMa. Not only is by the wavelengths of the observed spectral org/10.1038/nmat1941 the production of these increased numbers lines. Because the observed line wavelengths Editor, News & Views of molecules a feat in itself1, but the variety are shifted by the velocities of the emitting gas, 1063.
Recommended publications
  • The Aromatic Universe.Pdf
    The aromatic universe Alessandra Candian, Junfeng Zhen, and Alexander G. G. M. Tielens Citation: Physics Today 71, 11, 38 (2018); doi: 10.1063/PT.3.4068 View online: https://doi.org/10.1063/PT.3.4068 View Table of Contents: https://physicstoday.scitation.org/toc/pto/71/11 Published by the American Institute of Physics ARTICLES YOU MAY BE INTERESTED IN When condensed-matter physics became king Physics Today 72, 30 (2019); https://doi.org/10.1063/PT.3.4110 Quantum foundations still not cemented Physics Today 71, 51 (2018); https://doi.org/10.1063/PT.3.4070 Measuring cosmic distances with standard sirens Physics Today 71, 34 (2018); https://doi.org/10.1063/PT.3.4090 Astrophysical high-energy neutrinos Physics Today 71, 36 (2018); https://doi.org/10.1063/PT.3.4043 Humans control complex objects by guiding them toward stability Physics Today 71, 16 (2018); https://doi.org/10.1063/PT.3.4060 Has elegance betrayed physics? Physics Today 71, 57 (2018); https://doi.org/10.1063/PT.3.4022 aromaticThe UNIVERSE Alessandra Candian, Junfeng Zhen, and Alexander G. G. M. Tielens The rich molecular structures of polycyclic aromatic hydrocarbons— essentially planar flakes of fused benzene rings—and their fullerene cousins are revealed through their vibrational and electronic spectra. The Mountains of Creation in the Eagle Nebula. (Courtesy of NASA/JPL-Caltech/L. Allen, Harvard–Smithsonian CfA.) Alessandra Candian is a Veni Research Fellow and Xander Tielens is a professor of physics and chemistry of the interstellar medium, both at the Leiden Observatory at Leiden University in the Netherlands.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect This Document
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) 4. ti 4bASA-C6- 17 11j4s) itLSIULUT bESkAhLA ASSUCIA'k5b,LLS. ILSILLC'ICEAL A ► L SEbICb bbskAi /b AL LS: CEPLEIU161711S EAFt LLStARCH Al 'IH %^l kULPLLSILb LAL'CEA1rkV AuaUdi 441p i i tit kru}ulsio p Lal.) 61 F NE5-1E945 IU/%SA UuC I a s National A G31 ^ 9 01 C 94 etut outics and Space Admit -iistration 0 ./ r ^` l `i^ Resident Research Associateships Postdoctoral and Senior Research Awards 1984 OPPORTUNITIES FOR RESEARCH at tho JET PROPULSION LABORATORY California Institute of Technology Pasadena, California 91109 in association with the NATIONAL RESEARCH COUNCIL National Academy of Sciences National Academy of Engineering Institute of Medicine 2101 Constitution Avenue W3shington,D C 20418 ^WY T , a V- AW ^V O r^ 1 Foreword.
    [Show full text]
  • The Chemical Origin of Behavior Is Rooted in Abiogenesis
    Life 2012, 2, 313-322; doi:10.3390/life2040313 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article The Chemical Origin of Behavior is Rooted in Abiogenesis Brian C. Larson, R. Paul Jensen and Niles Lehman * Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207, USA; E-Mails: [email protected] (B.C.L.); [email protected] (R.P.J.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-503-725-8769. Received: 6 August 2012; in revised form: 29 September 2012 / Accepted: 2 November 2012 / Published: 7 November 2012 Abstract: We describe the initial realization of behavior in the biosphere, which we term behavioral chemistry. If molecules are complex enough to attain a stochastic element to their structural conformation in such as a way as to radically affect their function in a biological (evolvable) setting, then they have the capacity to behave. This circumstance is described here as behavioral chemistry, unique in its definition from the colloquial chemical behavior. This transition between chemical behavior and behavioral chemistry need be explicit when discussing the root cause of behavior, which itself lies squarely at the origins of life and is the foundation of choice. RNA polymers of sufficient length meet the criteria for behavioral chemistry and therefore are capable of making a choice. Keywords: behavior; chemistry; free will; RNA; origins of life 1. Introduction Behavior is an integral feature of life. Behavior is manifest when a choice is possible, and a living entity responds to its environment in one of multiple possible ways.
    [Show full text]
  • Interferometric Observations of Large Biologically Interesting Interstellar and Cometary Molecules
    SPECIAL FEATURE: PERSPECTIVE Interferometric observations of large biologically interesting interstellar and cometary molecules Lewis E. Snyder* Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 Edited by William Klemperer, Harvard University, Cambridge, MA, and approved May 26, 2006 (received for review March 3, 2006) Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have sub- stantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled ‘‘biomolecules.’’ Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated inter- stellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to under- standing hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from obser- vations with the next generation of sensitive, high-resolution arrays.
    [Show full text]
  • Cosmochemistry Cosmic Background RadiaOn
    6/10/13 Cosmochemistry Cosmic background radiaon Dust Anja C. Andersen Niels Bohr Instute University of Copenhagen hp://www.dark-cosmology.dk/~anja Hauser & Dwek 2001 Molecule formation on dust grains Multiwavelenght MW 1 6/10/13 Gas-phase element depleons in the Concept of dust depleon interstellar medium The depleon of an element X in the ISM is defined in terms of (a logarithm of) its reducon factor below the expected abundance relave to that of hydrogen if all of the atoms were in the gas phase, [Xgas/H] = log{N(X)/N(H)} − log(X/H) which is based on the assumpon that solar abundances (X/H)are good reference values that truly reflect the underlying total abundances. In this formula, N(X) is the column density of element X and N(H) represents the column density of hydrogen in both atomic and molecular form, i.e., N(HI) + 2N(H2). The missing atoms of element X are presumed to be locked up in solids within dust grains or large molecules that are difficult to idenfy spectroscopically, with fraconal amounts (again relave to H) given by [Xgas/H] (Xdust/H) = (X/H)(1 − 10 ). Jenkins 2009 Jenkins 2009 2 6/10/13 Jenkins 2009 Jenkins 2009 The Galacc Exncon Curve Extinction curves measure the difference in emitted and observed light. Traditionally measured by comparing two stars of the same spectral type. Galactic Extinction - empirically determined: -1 -1 <A(λ)/A(V)> = a(λ ) + b(λ )/RV (Cardelli et al. 1999) • Bump at 2175 Å (4.6 µm-1) • RV : Ratio of total to selective extinction in the V band • Mean value is RV = 3.1 (blue) • Low value: RV = 1.8 (green) (Udalski 2003) • High value: RV = 5.6-5.8 (red) (Cardelli et al.
    [Show full text]
  • The Diffuse Interstellar Bands
    Proceedings of the International Astronomical Union IAU Symposium No. 297 IAU Symposium IAU Symposium 20–24 May 2013 This volume describes the current state of the art in research aimed at unraveling the carriers of the enigmatic diffuse interstellar bands 297 Noordwijkerhout, (DIBs). The DIBs are a set of hundreds of absorption bands that are The Netherlands seen from the near-ultraviolet to near-infrared wavelengths. Their interstellar origin is well established, but the precise chemical identity of the DIB carriers remains to date one of the greatest 20–24 May 2013 297 20–24 May 2013 The Diffuse unsolved mysteries in astronomical spectroscopy. These Noordwijkerhout, The Diffuse proceedings of IAU Symposium 297 include more than 70 Noordwijkerhout, contributions that cover a wide range of topics in observational The Netherlands Interstellar astronomy and astrophysics; laboratory astrophysics and The Netherlands Interstellar Bands spectroscopy; astrochemistry; and theoretical, experimental and computational chemistry. This interdisciplinary overview contains Bands all the required background material to make the volume an ideal starting point for researchers and graduate students to learn about the various aspects of DIBs and related topics. Proceedings of the International Astronomical Union Editor in Chief: Prof. Thierry Montmerle This series contains the proceedings of major scientifi c meetings held by the International Astronomical Union. Each volume contains a series of articles on a topic of current interest in astronomy, giving a timely overview of research in the fi eld. With contributions by leading scientists, these books are at a level The Diffuse suitable for research astronomers and graduate students. Interstellar Edited by Bands Cami Cox Jan Cami Nick L.J.
    [Show full text]
  • Introduction to Chemistry
    Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable.
    [Show full text]
  • Astrochemistry from Astronomy to Astrobiology
    Astrochemistry from Astronomy to Astrobiology Astrochemistry from Astronomy to Astrobiology Andrew M. Shaw University of Exeter Copyright 2006 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.
    [Show full text]
  • The Water Molecule
    Seawater Chemistry: Key Ideas Water is a polar molecule with the remarkable ability to dissolve more substances than any other natural solvent. Salinity is the measure of dissolved inorganic solids in water. The most abundant ions dissolved in seawater are chloride, sodium, sulfate, and magnesium. The ocean is in steady state (approx. equilibrium). Water density is greatly affected by temperature and salinity Light and sound travel differently in water than they do in air. Oxygen and carbon dioxide are the most important dissolved gases. 1 The Water Molecule Water is a polar molecule with a positive and a negative side. 2 1 Water Molecule Asymmetry of a water molecule and distribution of electrons result in a dipole structure with the oxygen end of the molecule negatively charged and the hydrogen end of the molecule positively charged. 3 The Water Molecule Dipole structure of water molecule produces an electrostatic bond (hydrogen bond) between water molecules. Hydrogen bonds form when the positive end of one water molecule bonds to the negative end of another water molecule. 4 2 Figure 4.1 5 The Dissolving Power of Water As solid sodium chloride dissolves, the positive and negative ions are attracted to the positive and negative ends of the polar water molecules. 6 3 Formation of Hydrated Ions Water dissolves salts by surrounding the atoms in the salt crystal and neutralizing the ionic bond holding the atoms together. 7 Important Property of Water: Heat Capacity Amount of heat to raise T of 1 g by 1oC Water has high heat capacity - 1 calorie Rocks and minerals have low HC ~ 0.2 cal.
    [Show full text]
  • LABORATORY FORMATION of FULLERENES from PAHS: TOP-DOWN INTERSTELLAR CHEMISTRY Junfeng Zhen1,2, Pablo Castellanos1,2, Daniel M
    Draft version June 19, 2021 Preprint typeset using LATEX style emulateapj v. 5/2/11 LABORATORY FORMATION OF FULLERENES FROM PAHS: TOP-DOWN INTERSTELLAR CHEMISTRY Junfeng Zhen1;2, Pablo Castellanos1;2, Daniel M. Paardekooper2, Harold Linnartz2, Alexander G.G.M. Tielens1 1Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands and 2Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands Draft version June 19, 2021 ABSTRACT Interstellar molecules are thought to build up in the shielded environment of molecular clouds or in the envelope of evolved stars. This follows many sequential reaction steps of atoms and simple molecules in the gas phase and/or on (icy) grain surfaces. However, these chemical routes are highly inefficient for larger species in the tenuous environment of space as many steps are involved and, indeed, models fail to explain the observed high abundances. This is definitely the case for the C60 fullerene, recently identified as one of the most complex molecules in the interstellar medium. Observations have shown that, in some PDRs, its abundance increases close to strong UV-sources. In this letter we report laboratory findings in which C60 formation can be explained by characterizing the photochemical evolution of large PAHs. Sequential H losses lead to fully dehydrogenated PAHs and subsequent losses of C2 units convert graphene into cages. Our results present for the first time experimental evidence that PAHs in excess of 60 C-atoms efficiently photo-isomerize to Buckminsterfullerene, C60. These laboratory studies also attest to the importance of top-down synthesis routes for chemical complexity in space.
    [Show full text]
  • 4 Organic Compounds
    Name Class Date CHAPTER 3 Chemical Compounds SECTION 4 Organic Compounds National Science BEFORE YOU READ Education Standards After you read this section, you should be able to answer PS 1a, 1b, 1c these questions: • Why are there so many organic compounds? • What are the names and the properties of organic compounds? • What organic compounds are found in living things? How Does Carbon Form Compounds? Most of the chemical compounds that exist contain STUDY TIP carbon. These compounds are called organic compounds. Brainstorm With a partner, Organic compounds are compounds made of molecules write down the names of several of your favorite foods. in which carbon atoms are covalently bonded to other After you have read about atoms. the carbohydrates, lipids, and Every organic compound contains carbon. Carbon proteins, identify which of atoms have four outer electrons. This means that each these groups are in the foods. carbon atom can make four covalent bonds with other atoms. Most organic molecules have two or more carbon atoms linked to one another. READING CHECK The illustrations in the figure below are models of 1. Identify What do most organic molecules. These models are called structural organic molecules have in formulas. They show the order in which atoms in a mol- them? ecule are connected to one another. A line between two element symbols represents a covalent bond, or one pair of shared electrons. Models of Organic Molecules H H H C H H C H H H H C H H H H C H H C H C H H C C H H C C H H C H H C C H H C H H C H C H H H TAKE A LOOK H C H H H H C H H 2.
    [Show full text]
  • CAPILANO UNIVERSITY COURSE OUTLINE Term: FALL 2015 Course No
    CAPILANO UNIVERSITY COURSE OUTLINE Term: FALL 2015 Course No. CHEM 300 Course: CHEMISTRY AND SOCIETY Credits: 3.0 Section: INSTRUCTOR Office: Tel: 604-986-1911 (Ext. ) email: @capilanou.ca COURSE FORMAT: Three hours of class time plus an additional hour of supplemental activity delivered through on-line or other activities for a 15 week semester, which includes two weeks for final exams. PRE-REQUISITES: 45 credits of 100-level or higher coursework. COURSE DESCRIPTION: In the last century, chemistry and related sciences have taken on an increasingly central role in human society, with many consequences that are both helpful and harmful for the survival of our species. This course is intended to help students in developing perspective on the contributions of chemistry to society. There will be a strong emphasis on the critical analysis of a variety of areas in contemporary chemistry, particularly focusing on their social, cultural, and environmental impacts. STUDENT LEARNING OUTCOMES: Upon successful completion of this course, students will be able to: apply the scientific method to problem solving; analyze and critique current news, recent research, and new developments in chemistry and related disciplines; and engage in informed debate on controversial topics in chemistry. COURSE WEBSITE: Course resources will be delivered via Moodle. The instructor will provide information on how to access the Moodle site in the first lecture. CHEM 300 Page 2 REQUIRED COURSE MATERIALS: Textbook: Chemistry and Society: custom e-book published for Capilano University incorporating material from Chemistry in Context, 7th ed. (2012) C.H. Middlecamp, S.W. Keller, K. L. Anderson, A.K.
    [Show full text]