Phasmid Study Group Newsletter, 28

Total Page:16

File Type:pdf, Size:1020Kb

Phasmid Study Group Newsletter, 28 ISSN 0268-3806 Chairman: Mrs Judith Marshall Department of Entomology British Museum (Natural History) Cromwell Road, London SW7 5BD Membership: Paul Brock (Phone 0753-79447) "Papillon", 40 Thorndike Road Slough, Berks SL2 1SR NEWSLETTER NO. 28 September 1986 Once again thanks to Peter Curry (No. 91) for opening up the Centre for Life Studies for the Group's summer meeting. Some 30 members attended (including three from abroad), about half of whom gave away some 20 different species - thanks also to Tim Branney (No. 239) for coping with the surplus. Paul Brock (No. 26) showed his new video, which included shots of some "British" sticks in their natural habitats in this country. Three members showed the very latest species ­ 91, 92 and 93~ The Committee discussed a proposal from Peter Curry to build up, in conjunc­ tion with the British Museum (Natural History), an up-to-date reference collection of all phasmid species within the Group, showing eggs, nymphs and adults and including morphological variations. As part of this, Tony James (No. 1) offered to collect a similar file of photographs, and members are invited to send these (preferably in colour) to him for inclusion. (Peter recommends Kodachrome 64· or 25 for goo d colour rendering.) COMPUTER LIST OF MEMBERS' NAMES AND ADDRESSES - Members are asked to note that their names and addresses are held in a computer by David Robinson (No. 29) for generating address labels (for posting Newsletters, etc), in case anyone wishes to object , This list is registered under the recent Data Protection Act. and its release for other purposes without the consent of the individuals is prohibited. AGM for 1987 will provisionally be on Saturday lOth January in the Conversazione Room at the British Museum (National History) in South Kensington. AMATEUR ENTOMOLOGISTS' SOCIETY EXHIBITION - Saturday 11th October 1986 at the Hounslow Civic Centre in Lampton Road, open from 11 a.m. to 5 p.m. Your Group has two tables - you can bring your interesting sticks/photos, etc, for display. Please bring any give-aways pre-packed, with food, as suitable starting cultures, and be sure you collect any leftovers at the end of the day. Volunteers are needed to run the stand, please. LIVESTOCK SUPPLIERS PANEL - Peter Wilcox's (No. 24 0 ) phone number is now 0344­ 50021. WANTS AND SURPLUSES Member 132 wants eggs of species 2, 10, 11, 16, 17, 26, 29, 30, 37, 49, 57, and offers eggs of 1 3, 23, 31 , 7 3. Member 232 has surplus nymphs of species 9. Member 359 wants species 6, 7, 15, 16, 20, 26, 30 , 58, 70, 74, 78, and offers in exchange eggs or nymphs of 1, 2, 5, 48, 84, 86; eggs of 9, 22, 23, 32, 73, 75, 85; and nymphs of 4, 76 (eggs only to and from the UK please - Eds). His name and address is Mr Xavier Singy, 55 ch. des Rannaux, 1296 Coppet, Switzerland. THE NORTH LONDON ENTOMOLOGICAL FAIR was much less crowded than the AES Exhibition ­ perhaps just as well, as your Editors had only 7 species to give away (from 3 members). Haaniella echinata received their first public showing, and the Insect House at the London Zoo was recruited to membership (with 4 others) • Sadly there was more emphasis on dead butterflies at the Fair. NEW REPRINTS FOR THE LIBRARY by David Robinson (no. 29) I have recently received two parcels of reprints for the library, and so I am providing a list in case members wish to consult them: Carlberg, U., Chemical defence in Anisomorpha buprestoides, Zool. Anz., Jena 215 (1985) 177-88. Carlberg, U., Chemical defence in Extatosoma tiaratum, Zool. Anz., Jena 214 (1985) 185-92. Carlberg, U., Secondary defence in Carausius morosus, Zool. Anz., Jena 215 (1985) 373-84. Carlberg, U., Phasmida: a biological review, Zool. Anz., Jena 216 (1986) 1~18. Hofmann, T., & Bassler, U., Response characteristics of single trochanteral campariform sensilla in the stick insect Carausius morosus, Physiological Entomol. 11 (1986) 17-21. Bassler, U., Afferent control of walking movements in the stick insect Cuniculina impigra, J. Oomp. Physiol. A 158 (1986) 345-62. Bassler, U., On the definition of central pattern generator and its sensory control, BioI. Cybern. 54 (1986) 65-9. NEW ZEALAND PHASMIDS ESTABLISHED IN SOUTH~WEST ENGLAND by Paul D. Brock (No. 26) This article in the AES Bulletin (Vol. 44, August 1985, pages 133-6) includes notes on their distribution, and foodplants for A. prasina. COLOUR VARIATIONS IN THE THAILAND STICK INSECT (PSG 22) by Peter Wilcox (No. 240) When I first started keeping this stick insect two years ago all the adult females were brown in colour. The brown tended to vary from light to dark. All n~phs were green throughout all instars. I kept them at a temperature of about 0C 200C during the day and at 5-10 at night (perhaps falling to zero on very cold 0C nights) during the winter, and at 24 upwards to maybe 28 C during the summer days; during the summer nights I did not heat them at all. I sprayed them regularly with tap water once or twice a day during the summer. The second year I decided to change my method. About February/March I 0C switched off the heating so that the daytime temperatures fell to between 14 and 200C (lower in really cold spells). During the night my room is not heated at all so that the night-time temperatures remained as before. All the female nymphs which turned adult after I switched off the heating came out green; two females which were already adult remained brown (the green was approximately the same shade as bramble) • The male Thailand stick insects did not appear to change colour at all, although I did notice that the nice dark blue patches on the first thoracic segment were not there ·the second year; these patches were previously noticeable on only one or two adult males. I have noticed the insects copulating on only one occasion the second year; in the first year they were joined for days at a time and the males were always fighting over the females. All were fed mainly on bramble during the two years. UNUSUAL MATING BEHAVIOUR IN A NEW PHILIPPINES SPECIES by Eric van Gorkom (No. 250) When a pair meet they shiver and the female raises her ovipositor at right angles to her body. The male then glides down this ovipositor to reach the right spot to mate. SOME NEW SPECIES FROM PERU by Xavier Singy (No. 349) Oreophoetes peruanas (?) (PSG 84) is illustrated below. Their peculiarity is that they are coloured red, especially the males. Their eggs are like black lentils, but with white opercula. When the insects are disturbed they sometimes eject a white, odorous liqued. They eat ferns. Their life cycle is about 7 months and they are easy to rear at high humidity. x.s. Paraphasma rufipes (PSG 85) females look like Creoxylus spinosus males, but they are 2~ times as large and completely dark. Their wings are pinky red. This species is quite difficult to rear. Dyme raraspinosa (PSG 86) females look like PSG 17 ("warty") but they do not have any wart and can be green or dark brown; the male is always grey­ brown. Both sexes are coloured blue at the base of their front legs. They eat bramble, prefer a high humidity and are very prolific. All these three species were found by Didier Mottaz (No. 45) during a trip to Peru. (Since the Group is acquiring new species much faster than we can issue Species Reports, notes on new species (ideally with drawings) are always welcome. Please keep them short (but including any unusual features) so as not to pre-empt any eventual Report too much. Eds) PHENACEPHORUS APPENDICULATUS (= P. CORNUCERVI) FEMALE BEHAVIOUR by Alain Deschandol (No. 238) The females of this species are very good twig mimics and when they are motionless their bodies take up very curious shapes. I have recorded some of them (see below), but I think others exist~ 2'3:4 ­ ULF CARLBERG'S PAPERS by Michael and Frances (No. 3) PART 3. E. tiaratum adults "Copulation in E. tiaratum" (Zool. Anz., Jena 210 (1983) 5/6, 340-56) reports results on 4 males and 4 females. Between the same couple, matings were separated rather than consecutive, the period between their matings varying from 2 to 36 days. The total number of matings throughout an adult's life varied from one to 12. Insects which did most mating seemed to mate more often with each other; insects which did less mating mated more often with insects which did more mating, and insects which did least mating mated with those which did most mating and not with those which only did more mating. The females started laying 33 days after becoming adult. The sexual activity was high during a relatively short period around this time and very low or absent near the end of their lives. Smaller males more often mated with larger females than did larger males with smaller females. This is shown to tie in with the geometry of the particular mating positions taken up by this species (6 basic mating positions in phasmids are described). Male defensive behaviour observed included odour production, wing display, and active attack with the spiny hind legs. Sound production by fast wing beating was also observed. All these results are related to those for other phasmids. "Defensive behaviour in adult female E. tiaratum" (Ent. mono Mag. 116 (1980) 133-8) describes 3 primary defences of body colour, nocturnal activity and wing­ size reduction, and 7 secondary defences of displays, immobility, active escape, sound production, defensive secretion, attacking the predator and autotomy (leg shedding).
Recommended publications
  • Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • PROCEEDINGS of the WORKSHOP on TRADE and CONSERVATION of PANGOLINS NATIVE to SOUTH and SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S
    PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S. Pantel and S.Y. Chin Wildlife Reserves Singapore Group PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 JUNE –2JULY 2008, SINGAPORE ZOO EDITED BY S. PANTEL AND S. Y. CHIN 1 Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in these proceedings is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in these proceedings do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Sandrine Pantel, TRAFFIC Southeast Asia Suggested citation: Sandrine Pantel and Chin Sing Yun (ed.). 2009. Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia, 30 June-2 July
    [Show full text]
  • The Culture of Bornean Phasmids. P.E
    The culture of Bornean phasmids. P.E. Bragg, 51 Longfield Lane, Dkeston, Derbyshire, DE7 4DX, UK. Key words Phasmida, Culture potential, Borneo, Taxonomic assessment, Polyphagy, Monophagy Introduction At the PSG meeting at the Natural History Museum, London, on 22Dd 1995, I gave an illustrated lecture on the species of Bornean phasmids which have been reared in captivity. The talk stressed that the "culture potential" i.e. the likelihood of establishing a culture, of a given species appears to depend upon the flight capability of the species. There is a close correlation between culture potential and taxonomic position; this is not unexpected as flight capability is generally closely linked to the taxonomic position of phasmids. This article summarises the lecture. Since December 1987 I have visited Borneo on 7 occasions, spending a total of about six months on the island. Borneo is the third largest island in the world and is composed of four political units: Brunei (an independent country), Kalimantan (part of Indonesia), Sarawak (a State of Malaysia) and Sabah (also part of Malaysia). Most of my collecting has been done in Sarawak, although I spent five weeks in Kalimantan, three in Brunei, and two in Sabah. My first visit to Borneb was a two week holiday with my wife and Lee Yong Tsui in December 1987 and January 1988, during this time we stayed with Dr Lee's family in Sarawak. Although not a collecting trip, seven species were collected over two nights and five of these were bred in the UK. All subsequent trips have been made specifically to collect phasmids and, whenever possible, to attempt to rear them in the UK.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Kataloge Der Wissenschaftlichen Sammlungen Des Naturhistorischen Museums in Wien Band 13
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Kataloge der wissenschaftlichen Sammlungen des Naturhistorischen Museums in Wien Jahr/Year: 1998 Band/Volume: 13 Autor(en)/Author(s): Brock Paul D. Artikel/Article: Catalogue of type specimens of Stick- and Leaf-Insects in the Naturhistorisches Museum Wien (Insecta: Phasmida). 3-72 ©NaturhistorischesKataloge Museum Wien, download unter www.biologiezentrum.at der wissenschaftlichen Sammlungen des Naturhistorischen Museums in Wien Band 13 Entomologie, Heft 5 Paul D. BROCK Catalogue of type specimens of Stick- and Leaf-Insects in the Naturhistorisches Museum Wien (Insecta: Phasmida) Selbstverlag Naturhistorisches Museum Wien Juli 1998 ISBN 3-900 275-67-X ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at 5 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Catalogue of type specimens of Stick- and Leaf-Insects in the Naturhistorisches Museum Wien (Insecta: Phasmida) P. D. Brock* Abstract Type specimens of784 taxa of Phasmida have been located in the Naturhistorisches Museum Wien (NHMW), which is the most important collection in the world for phasmid taxonomy. The species are listed alphabetically, with the number of specimens, sex and locality data, which, excepting very few instances, have never been recorded before. The most important material relates to species described by Brunner von Wattenwyl and Redtenbacher (mainly published in their monograph, between1906-1908) and the majority of Stäl's types. There are a number of discrepancies in the literature, relating to the where­ abouts of type specimens, which are commented on; in particular, a number of specimens recorded from other museums are only present in the NHMW and data labels invariably refer to the other museum(s) and, in some instances, are known to have been 'loaned' especially for the monograph.
    [Show full text]
  • The Pregenital Abdominal Musculature in Phasmids and Its Implications for the Basal Phylogeny of Phasmatodea (Insecta: Polyneoptera) Rebecca Klugã, Sven Bradler
    ARTICLE IN PRESS Organisms, Diversity & Evolution 6 (2006) 171–184 www.elsevier.de/ode The pregenital abdominal musculature in phasmids and its implications for the basal phylogeny of Phasmatodea (Insecta: Polyneoptera) Rebecca KlugÃ, Sven Bradler Zoologisches Institut und Museum, Georg-August-Universita¨tGo¨ttingen, Berliner Str. 28, 37073 Go¨ttingen, Germany Received 7 June 2005; accepted 25 August 2005 Abstract Recently several conflicting hypotheses concerning the basal phylogenetic relationships within the Phasmatodea (stick and leaf insects) have emerged. In previous studies, musculature of the abdomen proved to be quite informative for identifying basal taxa among Phasmatodea and led to conclusions regarding the basal splitting events within the group. However, this character complex was not studied thoroughly for a representative number of species, and usually muscle innervation was omitted. In the present study the musculature and nerve topography of mid-abdominal segments in both sexes of seven phasmid species are described and compared in detail for the first time including all putative basal taxa, e.g. members of Timema, Agathemera, Phylliinae, Aschiphasmatinae and Heteropteryginae. The ground pattern of the muscle and nerve arrangement of mid-abdominal segments, i.e. of those not modified due to association with the thorax or genitalia, is reconstructed. In Timema, the inner ventral longitudinal muscles are present, whereas they are lost in all remaining Phasmatodea (Euphasmatodea). The ventral longitudinal muscles in the abdomen of Agathemera, which span the whole length of each segment, do not represent the plesiomorphic condition as previously assumed, but might be a result of secondary elongation of the external ventral longitudinal muscles.
    [Show full text]
  • Fam: Bacillidae, Suborden: Areolatae, Orden: Phasmida
    Fásmidos espinosos. La Familia Heteropterygidae ( orden: Phasmatodea, suborden: Areolatae, Zompro 2005) Por Sergi Romeu 1- Introducción: En esta familia Heteropterygidae encontramos los insectos más peculiares que podemos imaginarnos, llenos de espinas por todo el cuerpo y con un camuflaje de formas y colores típico del hábitat de sotobosque de las selvas húmedas. Hojas secas, líquenes, musgos, cortezas, pequeñas ramas, brotes, astillas...toman vida al intentar leerlos en este artículo. Principalmente estamos hablando de especies de distribución Asiática presentes en Malaysia, Sumatra, Borneo y muchas otras islas de Indonesia. 2- Clasificación: Durante los últimos años, varios autores han estudiado la sistemática del orden phasmatodea. Principalmente se trata de revisiones teóricas, basadas en descripciones de los ejemplares tipo depositados en los museos de todo el mundo. Paul Brock trata el grupo que nos interesa dentro la familia Bacillidae, como una sub-familia llamada Heteropteryginae, dividiéndola a su vez en cuatro tribus: Datamini, Anisacanthini, Obrimini y Heteropterygini. La mayoría de especies de esta familia Bacillidae no tienen alas, exceptuando algunas especies con rudimentos alares o alas reducidas dentro de nuestra sub-familia Heteropteryginae. Desde la familia Bacillidae, la clave taxonómica para llegar a la sub-familia Heteropteryginae es según P. Brock (1999): - 1) Antena mas larga que el fémur delantero. Alados o sin alas, pero nunca presentes en África y Europa........................................................................................................................................................2
    [Show full text]
  • Phasmid Studies, 2(1&2)
    ISSN 0966-0011 PHASMID STUDIES. volume 2, numbers 1 & 2. June & December 1993. Editor: P.E. Bragg. Published by the Phasmid Study Group. Phasmid Studies ISSN 0966-0011 volume 2, numbers 1 & 2. Contents The World of Stick and Leaf-Insects in Books, some general remarks Paul D . Brock . A very pretty phasmid : Parectatosoma hystrix J. Roget . 7 Looking at Baculum eggs John Sellick . .. 10 Keeping and breeding Haani ella species successfully Ian Abercrombie . 14 List of stick and leaf-insect (Phasmatod ea = Phasmida) type material in the Natural History Museum, published since Kirby's 1904 Cat alogue Paul D. Brock . .. 17 A survey of the distribution of the unarmed stick insect Acanthoxyla inermis in Port Gaverne and Port Isaac, North Cornwall in 1992 Malcolm Lee. .. 25 The Phasmid Database: changes to version 1 P.E . Bragg 33 Reviews and Abstracts Phasmid Abstracts . .. 35 PSG 121 , Phenac ephorus spinulosus (Haus1eithner) P .E . Bragg . .. 41 Pharnacia serratipes (Gray) Frank Hennemann . ... 45 Phena cocephalus coronatus Werner P.E. Bragg . 51 The leaf-piercing eggs of Asceles John Sellick . 54 Defensive and flying behaviour in Sipyloidea sp. (PSG 103) R .P. Bradburne 56 A new Libethra from Ecuador Wim Potvin . 59 Some notes on Din ophasma gutti gera (Westwood) from Borneo P.E. Bragg . 62 Revi ews and Abstracts Pha smid Abstracts . 66 Publications not ed . 67 Cover illustration: Female Phenacephorus spinulosus (Hausleithner) by P.E . Bragg. The World of Stick and Leaf-Insects in Books, some general remarks. Paul D. Brock, "Papillon , 40, Thorndike Road , Slough, SU ISR. UK. Key words Stick and Leaf Insects, Books.
    [Show full text]
  • Standardisation of Bioacoustic Terminology for Insects
    Biodiversity Data Journal 8: e54222 doi: 10.3897/BDJ.8.e54222 Research Article Standardisation of bioacoustic terminology for insects Edward Baker‡, David Chesmore‡ ‡ University of York, York, United Kingdom Corresponding author: Edward Baker ([email protected]) Academic editor: Therese Catanach Received: 12 May 2020 | Accepted: 22 Jul 2020 | Published: 04 Aug 2020 Citation: Baker E, Chesmore D (2020) Standardisation of bioacoustic terminology for insects. Biodiversity Data Journal 8: e54222. https://doi.org/10.3897/BDJ.8.e54222 Abstract After reviewing the published literature on sound production in insects, a standardised terminology and controlled vocabularies have been created. This combined terminology has potential for use in automated identification systems, evolutionary studies, and other use cases where the synthesis of bioacoustic traits from the literature is required. An example implementation has been developed for the BioAcoustica platform. It is hoped that future development of controlled vocabularies will become a community effort. Keywords insect, sound production, vocabulary, bioacoustics Introduction "Two dangers face the student seeking to rationalize and codify a terminology that has grown up empirically and that is beginning to differentiate regionally or according to faculty or in other ways - as must always tend to happen. One danger is that of legislating prematurely and clumsily for hypothetical future requirements; the other is a too easy-going and long-sustained attitude of laissez-faire arising from wishing to let the mud settle before trying to penetrate the shadows of often chaotic and obscure usages. If the former danger © Baker E, Chesmore D. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Evolution of Flight Morphology in Stick Insects
    1 2 A tale of winglets: evolution of flight morphology in stick insects 3 4 Yu Zeng1,2,†, Conner O’Malley1, Sonal Singhal1,3, Faszly Rahim4,5, 5 Sehoon Park1, Xin Chen6,7, Robert Dudley1,8 6 7 1Department of Integrative Biology, University of California, Berkeley, CA 92870, 8 USA 9 2Schmid College of Science and Technology, Chapman University, Orange, CA 10 92866, USA 11 3 Department of Biology, CSU Dominguez Hills, Carson, CA 90747 USA 12 4Islamic Science Institute (ISI), Universiti Sains Islam Malaysia, 71800 Bandar Baru 13 Nilai, Negeri Sembilan, Malaysia 14 5Centre for Insect Systematics (CIS), Universiti Kebangsaan Malaysia, 43600 15 Bangi, Selangor, Malaysia 16 6Department of Biology, The College of Staten Island, The City University of New 17 York, NY 10314, USA 18 7Department of Biology, The Graduate School and University Center, The City 19 University of New York, NY 10016, USA 20 8Smithsonian Tropical Research Institute, Balboa, 21 Republic of Panama 22 23 †Corresponding author: [email protected] 24 25 1 26 27 Abstract 28 29 The evolutionary transition between winglessness and a full-winged morphology requires 30 selective advantage for intermediate forms. Conversely, repeated secondary wing 31 reductions among the pterygotes indicates relaxation of such selection. However, 32 evolutionary trajectories of such transitions are not well characterized. The stick insects 33 (Phasmatodea) exhibit diverse wing sizes at both interspecific and intersexual levels, and 34 thus provide a system for examining how selection on flight capability, along with other 35 selective forces, drives the evolution of flight-related morphology. Here, we examine 36 variation in relevant morphology for stick insects using data from 1100+ individuals 37 representing 765 species.
    [Show full text]
  • New Stem-Phasmatodea from the Middle Jurassic of China
    Eur. J. Entomol. 108: 677–685, 2011 http://www.eje.cz/scripts/viewabstract.php?abstract=1667 ISSN 1210-5759 (print), 1802-8829 (online) New stem-Phasmatodea from the Middle Jurassic of China LIANGJIE SHANG1, OLIVIER BÉTHOUX2 and DONG REN1* 1College of Life Science, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, China; e-mail: [email protected] 240 rue d’Aveillans, 38770 La Motte d’Aveillans, France; e-mail: [email protected] Key words. Adjacivena rasnitsyni gen. n., sp. n., Phasmatodea, Susumaniidae, Heteropteryx dilatata, China, Daohugou, intra-specific variability, sexual dimorphism, fossil, Middle Jurassic Abstract. Adjacivena rasnitsyni gen. n., sp. n., from the Middle Jurassic Jiulongshan Formation (Daohugou Village, Inner Mongolia, China), is described based on a set of well-preserved specimens, interpreted as two females and a male of the same species. The new taxon is assigned to the family Susumaniidae, i.e. is a candidate stem-Phasmatodea. This ordinal assignment is supported by genital elements, chiefly a putative operculum concealing the ovipositor observed in one female specimen and a putative extension of the 10th tergum with a thorn pad in the male specimen. Variation in the venation of the forewing is appreciated based on more or less complete pairs of wings and a comparison with that in the forewings of male Heteropteryx dilatata (Parkinson, 1798). This material offers new perspectives on the primary homologies of the hind wing venation of stick-insects. INTRODUCTION “Cu” is concave). This situation has two interrelated con- Stick-insects (also known as Cheleutoptera, Phasmato- sequences: conjectures about the primary homologies of dea, Phasmida and Phasmatoptera, among others) com- stick-insect wing venation and the identification of sev- pose a rather small order of insects, which currently eral Mesozoic representatives of the order are both uncer- includes over 3,000 extant species (Bragg, 2001; Brock & tain.
    [Show full text]