Phasmid Studies, 2(1&2)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs. -
Shifting Ranges of Two Tree Weta Species (Hemideina Spp.)
Journal of Biogeography (J. Biogeogr.) (2014) 41, 524–535 ORIGINAL Shifting ranges of two tree weta species ARTICLE (Hemideina spp.): competitive exclusion and changing climate Mariana Bulgarella*, Steven A. Trewick, Niki A. Minards, Melissa J. Jacobson and Mary Morgan-Richards Ecology Group, IAE, Massey University, ABSTRACT Palmerston North, 4442, New Zealand Aim Species’ responses to climate change are likely to depend on their ability to overcome abiotic constraints as well as on the suite of species with which they interact. Responses to past climate change leave genetic signatures of range expansions and shifts, allowing inferences to be made about species’ distribu- tions in the past, which can improve our ability to predict the future. We tested a hypothesis of ongoing range shifting associated with climate change and involving interactions of two species inferred to exclude each other via competition. Location New Zealand. Methods The distributions of two tree weta species (Hemideina crassidens and H. thoracica) were mapped using locality records. We inferred the likely mod- ern distribution of each species in the absence of congeneric competitors with the software Maxent. Range interaction between the two species on an eleva- tional gradient was quantified by transect sampling. Patterns of genetic diver- sity were investigated using mitochondrial DNA, and hypotheses of range shifts were tested with population genetic metrics. Results The realized ranges of H. thoracica and H. crassidens were narrower than their potential ranges, probably due to competitive interactions. Upper and lower elevational limits on Mount Taranaki over 15 years revealed expan- sion up the mountain for H. thoracica and a matching contraction of the low elevation limits of the range of H. -
An Inordinate Disdain for Beetles
An Inordinate Disdain for Beetles: Imagining the Insect in Colonial Aotearoa A Thesis submitted in partial fulfillment of the requirements for the Degree of Masters of Arts in English By Lillian Duval University of Canterbury August 2020 Table of Contents: TABLE OF CONTENTS: ................................................................................................................................. 2 TABLE OF FIGURES ..................................................................................................................................... 3 ACKNOWLEDGEMENT ................................................................................................................................ 6 ABSTRACT .................................................................................................................................................. 7 INTRODUCTION: INSECTOCENTRISM..................................................................................................................................... 8 LANGUAGE ........................................................................................................................................................... 11 ALICE AND THE GNAT IN CONTEXT ............................................................................................................................ 17 FOCUS OF THIS RESEARCH ....................................................................................................................................... 20 CHAPTER ONE: FRONTIER ENTOMOLOGY AND THE -
Insecta: Phasmatodea) and Their Phylogeny
insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y. -
Evolution of Flight Morphology in Stick Insects
bioRxiv preprint doi: https://doi.org/10.1101/774067; this version posted September 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 A tale of winglets: evolution of flight morphology in stick insects 3 4 Yu Zeng1,2,†, Conner O’Malley1, Sonal Singhal1,3, Faszly Rahim4,5, 5 Sehoon Park1, Xin Chen6,7, Robert Dudley1,8 6 7 1Department of Integrative Biology, University of California, Berkeley, CA 92870, 8 USA 9 2Schmid College of Science and Technology, Chapman University, Orange, CA 10 92866, USA 11 3 Department of Biology, CSU Dominguez Hills, Carson, CA 90747 USA 12 4Islamic Science Institute (ISI), Universiti Sains Islam Malaysia, 71800 Bandar Baru 13 Nilai, Negeri Sembilan, Malaysia 14 5Centre for Insect Systematics (CIS), Universiti Kebangsaan Malaysia, 43600 15 Bangi, Selangor, Malaysia 16 6Department of Biology, The College of Staten Island, The City University of New 17 York, NY 10314, USA 18 7Department of Biology, The Graduate School and University Center, The City 19 University of New York, NY 10016, USA 20 8Smithsonian Tropical Research Institute, Balboa, 21 Republic of Panama 22 23 †Corresponding author: [email protected] 24 25 1 bioRxiv preprint doi: https://doi.org/10.1101/774067; this version posted September 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
The New Stick Insect Genus Pterulina Gen. Nov., a Second Winged
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342530173 The new stick insect genus Pterulina gen. nov., a second winged Clitumninae genus from Vietnam with a new combination and a new species (Phasmida, Phasmatidae, Clitumninae, Clitumn... Article in Belgian Journal of Entomology · June 2020 CITATIONS READS 0 1,328 2 authors: Joachim Bresseel Jérôme Constant Royal Belgian Institute of Natural Sciences Royal Belgian Institute of Natural Sciences 28 PUBLICATIONS 140 CITATIONS 126 PUBLICATIONS 509 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Systematics of Philippine Auchenorrhyncha View project GLOBAL TAXONOMY INITIATIVE - Entomodiversity of VIETNAM View project All content following this page was uploaded by Jérôme Constant on 29 June 2020. The user has requested enhancement of the downloaded file. Belgian Journal of Entomology 96: 1–30 (2020) ISSN: 2295-0214 www.srbe-kbve.be urn:lsid:zoobank.org:pub:86A63507-90DC-445B-96A7-0BCA112D6C4D Belgian Journal of Entomology The new stick insect genus Pterulina gen. nov., a second winged Clitumninae genus from Vietnam with a new combination and a new species (Phasmida, Phasmatidae, Clitumninae, Clitumnini) Joachim BRESSEEL1 & Jérôme CONSTANT2 1, 2 Royal Belgian Institute of Natural Sciences, O.D. Phylogeny and Taxonomy, Entomology, Vautier street 29, B-1000 Brussels, Belgium 1 E-mail:[email protected] (corresponding author) urn:lsid:zoobank.org:author:3C4EF358-9716-46F0-8575-26BE1EDE4349 2 E-mail: [email protected] urn:lsid:zoobank.org:author:6E6072A1-9415-4C8D-8E60-2504444DB290 Published: Brussels, June 29, 2020 BRESSEEL J. -
Phasmida (Stick and Leaf Insects)
● Phasmida (Stick and leaf insects) Class Insecta Order Phasmida Number of families 8 Photo: A leaf insect (Phyllium bioculatum) in Japan. (Photo by ©Ron Austing/Photo Researchers, Inc. Reproduced by permission.) Evolution and systematics Anareolatae. The Timematodea has only one family, the The oldest fossil specimens of Phasmida date to the Tri- Timematidae (1 genus, 21 species). These small stick insects assic period—as long ago as 225 million years. Relatively few are not typical phasmids, having the ability to jump, unlike fossil species have been found, and they include doubtful almost all other species in the order. It is questionable whether records. Occasionally a puzzle to entomologists, the Phasmida they are indeed phasmids, and phylogenetic research is not (whose name derives from a Greek word meaning “appari- conclusive. Studies relating to phylogeny are scarce and lim- tion”) comprise stick and leaf insects, generally accepted as ited in scope. The eggs of each phasmid are distinctive and orthopteroid insects. Other alternatives have been proposed, are important in classification of these insects. however. There are about 3,000 species of phasmids, although in this understudied order this number probably includes about 30% as yet unidentified synonyms (repeated descrip- Physical characteristics tions). Numerous species still await formal description. Stick insects range in length from Timema cristinae at 0.46 in (11.6 mm) to Phobaeticus kirbyi at 12.9 in (328 mm), or 21.5 Extant species usually are divided into eight families, in (546 mm) with legs outstretched. Numerous phasmid “gi- though some researchers cite just two, based on a reluctance ants” easily rank as the world’s longest insects. -
Goliath Stick Insect
Husbandry Manual for Eurycnema goliath Tara Bearman Husbandry Manual for Goliath Stick Insect Eurycnema goliath (Gray, 1834) (Insecta: Phasmatidae) Compiled by: Tara Bearman Date of Preparation: 2007 Western Sydney Institute of TAFE, Richmond Course Name and Number: 1068 Certificate III –Captive Animals Lecturer: Graeme Phipps 1 Husbandry Manual for Eurycnema goliath Tara Bearman TABLE OF CONTENTS 1 INTRODUCTION .............................................................................................................................. 6 2 TAXONOMY ....................................................................................................................................... 7 2.1 NOMENCLATURE............................................................................................................................. 7 2.2 SUBSPECIES................................................................................................................................... 7 2.3 RECENT SYNONYMS ....................................................................................................................... 7 2.4 OTHER COMMON NAMES ................................................................................................................ 7 3 NATURAL HISTORY........................................................................................................................ 8 3.1 MORPHOMETRICS........................................................................................................................... 9 3.1.1 Mass and -
About the Book the Format Acknowledgments
About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization. -
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Looking Beyond Glacial Refugia ⇑ Katharine A
Molecular Phylogenetics and Evolution 59 (2011) 89–102 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Reconciling phylogeography and ecological niche models for New Zealand beetles: Looking beyond glacial refugia ⇑ Katharine A. Marske a,b, , Richard A.B. Leschen a, Thomas R. Buckley a a Landcare Research, Private Bag 92170, Auckland 1142, New Zealand b Center for Macroecology, Evolution and Climate, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark article info abstract Article history: Mitochondrial DNA (cox1) sequence data and recently developed coalescent phylogeography models Received 19 July 2010 were used to construct geo-spatial histories for the New Zealand fungus beetles Epistranus lawsoni and Revised 12 November 2010 Pristoderus bakewelli (Zopheridae). These methods utilize continuous-time Markov chains and Bayesian Accepted 13 January 2011 stochastic search variable selection incorporated in BEAST to identify historical dispersal patterns via Available online 22 January 2011 ancestral state reconstruction. Ecological niche models (ENMs) were incorporated to reconstruct the potential geographic distribution of each species during the Last Glacial Maximum (LGM). Coalescent Keywords: analyses suggest a North Island origin for E. lawsoni, with gene flow predominately north–south between Colydiinae adjacent regions. ENMs for E. lawsoni indicated glacial refugia in coastal regions of both main islands, con- Epistranus lawsoni Pristoderus bakewelli sistent with phylogenetic patterns but at odds with the coalescent dates, which implicate much older Maxent topographic events. Dispersal matrices revealed patterns of gene flow consistent with projected refugia, Coalescent phylogeography suggesting long-term South Island survival with population vicariance around the Southern Alps. -
Analysis of the Stick Insect (Clitarchus Hookeri) Genome Reveals a High Repeat Content and Sex- Biased Genes Associated with Reproduction Chen Wu1,2,3* , Victoria G
Wu et al. BMC Genomics (2017) 18:884 DOI 10.1186/s12864-017-4245-x RESEARCH ARTICLE Open Access Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex- biased genes associated with reproduction Chen Wu1,2,3* , Victoria G. Twort1,2,4, Ross N. Crowhurst3, Richard D. Newcomb1,3 and Thomas R. Buckley1,2 Abstract Background: Stick insects (Phasmatodea) have a high incidence of parthenogenesis and other alternative reproductive strategies, yet the genetic basis of reproduction is poorly understood. Phasmatodea includes nearly 3000 species, yet only thegenomeofTimema cristinae has been published to date. Clitarchus hookeri is a geographical parthenogenetic stick insect distributed across New Zealand. Sexual reproduction dominates in northern habitats but is replaced by parthenogenesis in the south. Here, we present a de novo genome assembly of a female C. hookeri and use it to detect candidate genes associated with gamete production and development in females and males. We also explore the factors underlying large genome size in stick insects. Results: The C. hookeri genome assembly was 4.2 Gb, similar to the flow cytometry estimate, making it the second largest insect genome sequenced and assembled to date. Like the large genome of Locusta migratoria,the genome of C. hookeri is also highly repetitive and the predicted gene models are much longer than those from most other sequenced insect genomes, largely due to longer introns. Miniature inverted repeat transposable elements (MITEs), absent in the much smaller T. cristinae genome, is the most abundant repeat type in the C. hookeri genome assembly.