New Stem-Phasmatodea from the Middle Jurassic of China

Total Page:16

File Type:pdf, Size:1020Kb

New Stem-Phasmatodea from the Middle Jurassic of China Eur. J. Entomol. 108: 677–685, 2011 http://www.eje.cz/scripts/viewabstract.php?abstract=1667 ISSN 1210-5759 (print), 1802-8829 (online) New stem-Phasmatodea from the Middle Jurassic of China LIANGJIE SHANG1, OLIVIER BÉTHOUX2 and DONG REN1* 1College of Life Science, Capital Normal University, 105 Xisanhuanbeilu, Haidian District, Beijing 100048, China; e-mail: [email protected] 240 rue d’Aveillans, 38770 La Motte d’Aveillans, France; e-mail: [email protected] Key words. Adjacivena rasnitsyni gen. n., sp. n., Phasmatodea, Susumaniidae, Heteropteryx dilatata, China, Daohugou, intra-specific variability, sexual dimorphism, fossil, Middle Jurassic Abstract. Adjacivena rasnitsyni gen. n., sp. n., from the Middle Jurassic Jiulongshan Formation (Daohugou Village, Inner Mongolia, China), is described based on a set of well-preserved specimens, interpreted as two females and a male of the same species. The new taxon is assigned to the family Susumaniidae, i.e. is a candidate stem-Phasmatodea. This ordinal assignment is supported by genital elements, chiefly a putative operculum concealing the ovipositor observed in one female specimen and a putative extension of the 10th tergum with a thorn pad in the male specimen. Variation in the venation of the forewing is appreciated based on more or less complete pairs of wings and a comparison with that in the forewings of male Heteropteryx dilatata (Parkinson, 1798). This material offers new perspectives on the primary homologies of the hind wing venation of stick-insects. INTRODUCTION “Cu” is concave). This situation has two interrelated con- Stick-insects (also known as Cheleutoptera, Phasmato- sequences: conjectures about the primary homologies of dea, Phasmida and Phasmatoptera, among others) com- stick-insect wing venation and the identification of sev- pose a rather small order of insects, which currently eral Mesozoic representatives of the order are both uncer- includes over 3,000 extant species (Bragg, 2001; Brock & tain. Hasenpusch, 2009). The comparatively low extant diver- Thus, specimens of Mesozoic fossils on which the sity in this order is mirrored by its rarity in the fossil details of the hind wings and body are clearly visible are record: a few tens of species are to varying extents con- particularly valuable. Herein we describe three new and vincingly assigned to this order (Birket-Smith, 1981; comparatively complete Jurassic specimens from China Gorochov, 1988, 1992, 1993, 1994, 2000; Martynov, that we tentatively assign to Phasmatodea. 1928; Nel et al., 2004, 2010; Ren, 1997; Sharov, 1968, MATERIAL AND METHODS 1971; Tillyard, 1918; Wedmann et al., 2007; among All the fossil material described is housed in the Key Labora- others). However actual affinities of many fossil taxa tory of Insect Evolution & Environmental Changes, Capital remain uncertain (Grimaldi & Engel, 2005; Tilgner, 2000; Normal University, Beijing, China. The material was collected and see discussion by Gorochov, 2000; Bradler & Buck- near Daohugou Village, Jiulongshan Formation, Ningcheng ley, 2011, with respect to Nel et al., 2010; and Delclòs et County, Inner Mongolia, China. The age of the Formation is al., 2008). still controversial, but most published biostratigraphic correla- This situation is primarily due to the incompleteness of tions and radiometric dates indicate a Middle Jurassic age the fossil material, but also to a lack of a clear-cut (Bathonian – Callovian boundary; Ren et al., 1995, 2002, 2010; forewing venation apomorphy for this order. According Cui et al., 2010; Zhao et al., 2010). to Gorochov & Rasnitsyn (2002), “fore wing with veins Fossil specimens were examined under a Leica MZ12.5 dis- secting microscope and illustrations made with the aid of a subparallel” is the only available character for identifying drawing tube attached to the microscope. Line drawings were a stick-insect wing. However, this character is shared by a prepared using CorelDraw 12 graphic software. Photographs large number of narrow-winged polyneopteran insects, were taken using a Nikon D100 coupled to a 105 mm Nikon including, for example, some mantids. In addition the fact macro lens and processed using Adobe Photoshop. that many stick-insects have vestigial forewings reduces Material of Heteropteryx dilatata (Parkinson, 1798) was the value of this character. Finally, although relevant at obtained from an insect dealer. According to the data provided the level of the order, the comparative analysis of fore- the specimens were collected from wild populations at Tapah, and hind wing venation provided by Ragge (1955), based Cameron Highlands (Malaysia) in February 2006. Wings were on extant material, needs to be reinterpreted in a broader cut off and mounted on slides in Euparal medium. Photographs context, chiefly because the CuA vein in the hind wings, were taken using a Canon EOS 400D coupled to a 50 mm Canon macro lens and processed using Adobe Photoshop. which is strongly convex in nearly all polyneopteran The systematic arrangement tentatively follows Gorochov insects (possibly nearly all winged insects), is not (1988, 2000; but see below). Except “Sc” and “RS” are replaced included in this interpretation (the vein interpreted as * Corresponding author. 677 by “ScP” and “RP”, respectively, wing venation nomenclature Gorochov (2000) is the location of the first fork of RP in and conjectures of primary homology follow Sharov (1968, forewings, which he states is located “in proximal wing 1971; followed by Carpenter, 1992). This does not imply sup- part” in Susumaniinae and “in middle wing part” in Phas- port for this primary homology by the second author. Wing momimoidinae. However, according to data published by venation abbreviations are as follows: ScP – posterior Subcosta; Birket-Smith (1981: Fig. 1D) and Gorochov (2000: Fig. R – Radius; RA – anterior Radius; RP – posterior Radius; MA – anterior Media; MA1 – anterior branch of MA; MA2 – posterior 3c) this fork is located about 40.6% along the length of branch of MA; MP – posterior Media; CuA – anterior Cubitus; the wing in Coniphasma rosenkrantzi Birket-Smith, 1981 CuA1 – anterior branch of CuA; CuA2 – posterior branch of [a Susumaniinae according to Gorochov (2000)] and CuA; CuP – posterior Cubitus; 1A – first anal vein. Other abbre- 41.5% along the length of the wing in Phasmomimoides viations and indications are as follows: LFW – left forewing; lineatus Sharov, 1968 (type-species of the type-genus of RFW – right forewing; LHW – left hind wing; RHW – right the Phasmomimoidinae). The difference is therefore neg- hind wing; on Fig. 3, * indicate the claval fold on each ligible. Because of this and our limited knowledge of the forewing. Abbreviations for genital structure follow Bradler intra-specific variation in wing venation in Susumaniidae, (2009). In detail: Gon – gonobasis; Op – operculum; Gap8 – we propose to compare the material of Adjacivena rasnit- gonapophysis 8; Cer – cercus. syni gen. n., sp. n. with all taxa assigned to the Susu- SYSTEMATICS maniidae by Gorochov (2000). Palaeopteron complexus Rice, 1969 is documented Order Phasmatodea Brunner von Wattenwyl, 1893 based on a single specimen, several wings of which over- Superfamily Susumanioidea Gorochov, 1988 lap. Only a part of the hind wing venation is deciphered Family Susumaniidae Gorochov, 1988 by Rice (1969). According to the available data the stem Genus Adjacivena gen. n. of RP + MA1 [“R2+3” & “R4+5” according to Rice Type species. Adjacivena rasnitsyni sp. n. by present descrip- (1969)] is comparatively long and MA2 (“M1+2”) and tion (monotypic genus). MP + CuA1 (“M3+4”) reach CuA2, which is similar to what occurs in Orephasma eumorpha Ren, 1997, and Composition. Type species and Adjacivenia reticulata make Adjacivena rasnitsyni gen. n., sp. n. distinct from (Kuzmina, 1985) comb. n. (but see discussion; originally these species. assigned to the genus Phasmomimoides Sharov, 1968, In Adjacivena rasnitsyni gen. n., sp. n. MA2 and MP + and then to the genus Eosusumania Gorochov, 1988 by CuA1 are very narrowly separated over some distance. Gorochov, 1988). This trait is very probably derived and is absent in Coni- Diagnosis. Forewing: MA2 approaching MP + CuA1 a phasma rosenkrantzi (Birket-Smith, 1981). short distance before the middle of the wing (main diag- The interpretation of the forewing venation of Promas- nostic character); MP + CuA1 forked (known only for tacoides albertae Kevan & Wighton, 1981 is not evident type species). Hind wing (known only for type species): from the available data (Kevan & Wighton, 1981: Fig. 6): MA1 fused over a moderate distance with RP; MA2 fused the posterior branch of the vein interpreted by Kevan & with MA1 distal to its divergence from RP + MA1. Legs Wighton (1981) as “MA” together with “MP” probably slender, moderately long and apparently not armed. form MP + CuA1; the anterior branch of the vein inter- Etymology. Generic name derived from the combination of preted as “MA” is probably MA2; and the posterior “adjac-” (adjacent in Latin) and “vena” (vein in Latin) referring branch of that interpreted as “Rs”, the origin of which is to the main character of this genus, namely that the vein MA2 unclear, is probably “MA1”. It is plausible that there are approaches MP + CuA1 in the forewings. Gender: feminine. secondary intercalary veins in the area between the two Discussion. The occurrence of a RP vein in the branches of RP and in that between the posterior branch forewing that forks near its origin is an uncommon trait in of RP and MA1. These are absent in our material, in winged insects. This trait is present in the forewing of which the cross-veins are reticulated. In addition the col- male Heteropteryx dilatata (extant Phasmatodea; Will- oration pattern differs significantly. mann, 2003: Fig. 12; Fig. 4) and in several genera Phasmomimella paskapoensis Kevan & Wighton, 1981 assigned to the family Susumaniidae (see composition in is only known from a hind wing. In the light of recent dis- Gorochov, 2000). Affinities of the new material with coveries (Ren, 1997; and herein) the posterior branch of Blattinopsidae Bolton, 1925, which also have a RP with “Rs”, as indicated by Kevan & Wighton (1981: Fig.
Recommended publications
  • Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2018-07-01 Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Pacheco, Yelena Marlese, "Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea" (2018). Theses and Dissertations. 7444. https://scholarsarchive.byu.edu/etd/7444 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Michael F. Whiting, Chair Sven Bradler Seth M. Bybee Steven D. Leavitt Department of Biology Brigham Young University Copyright © 2018 Yelena Marlese Pacheco All Rights Reserved ABSTRACT Ecomorph Convergence in Stick Insects (Phasmatodea) with Emphasis on the Lonchodinae of Papua New Guinea Yelena Marlese Pacheco Department of Biology, BYU Master of Science Phasmatodea exhibit a variety of cryptic ecomorphs associated with various microhabitats. Multiple ecomorphs are present in the stick insect fauna from Papua New Guinea, including the tree lobster, spiny, and long slender forms. While ecomorphs have long been recognized in phasmids, there has yet to be an attempt to objectively define and study the evolution of these ecomorphs.
    [Show full text]
  • Insecta: Phasmatodea) and Their Phylogeny
    insects Article Three Complete Mitochondrial Genomes of Orestes guangxiensis, Peruphasma schultei, and Phryganistria guangxiensis (Insecta: Phasmatodea) and Their Phylogeny Ke-Ke Xu 1, Qing-Ping Chen 1, Sam Pedro Galilee Ayivi 1 , Jia-Yin Guan 1, Kenneth B. Storey 2, Dan-Na Yu 1,3 and Jia-Yong Zhang 1,3,* 1 College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China; [email protected] (K.-K.X.); [email protected] (Q.-P.C.); [email protected] (S.P.G.A.); [email protected] (J.-Y.G.); [email protected] (D.-N.Y.) 2 Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; [email protected] 3 Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China * Correspondence: [email protected] or [email protected] Simple Summary: Twenty-seven complete mitochondrial genomes of Phasmatodea have been published in the NCBI. To shed light on the intra-ordinal and inter-ordinal relationships among Phas- matodea, more mitochondrial genomes of stick insects are used to explore mitogenome structures and clarify the disputes regarding the phylogenetic relationships among Phasmatodea. We sequence and annotate the first acquired complete mitochondrial genome from the family Pseudophasmati- dae (Peruphasma schultei), the first reported mitochondrial genome from the genus Phryganistria Citation: Xu, K.-K.; Chen, Q.-P.; Ayivi, of Phasmatidae (P. guangxiensis), and the complete mitochondrial genome of Orestes guangxiensis S.P.G.; Guan, J.-Y.; Storey, K.B.; Yu, belonging to the family Heteropterygidae. We analyze the gene composition and the structure D.-N.; Zhang, J.-Y.
    [Show full text]
  • Insects for Human Consumption
    Chapter 18 Insects for Human Consumption Marianne Shockley1 and Aaron T. Dossey2 1Department of Entomology, University of Georgia, Athens, GA, USA, 2All Things Bugs, Gainesville, FL, USA 18.1. INTRODUCTION The utilization of insects as a sustainable and secure source of animal-based food for the human diet has continued to increase in popularity in recent years (Ash et al., 2010; Crabbe, 2012; Dossey, 2013; Dzamba, 2010; FAO, 2008; Gahukar, 2011; Katayama et al., 2008; Nonaka, 2009; Premalatha et al., 2011; Ramos- Elorduy, 2009; Smith, 2012; Srivastava et al., 2009; van Huis, 2013; van Huis et al., 2013; Vantomme et al., 2012; Vogel, 2010; Yen, 2009a, b). Throughout the world, a large portion of the human population consumes insects as a regular part of their diet (Fig. 18.1). Thousands of edible species have been identified (Bukkens, 1997; Bukkens and Paoletti, 2005; DeFoliart, 1999; Ramos-Elorduy, 2009). However, in regions of the world where Western cultures dominate, such as North America and Europe, and in developing countries heavily influenced by Western culture, mass media have negatively influenced the public’s percep- tion of insects by creating or reinforcing fears and phobias (Kellert, 1993; Looy and Wood, 2006). Nonetheless, the potentially substantial benefits of farming and utilizing insects as a primary dietary component, particularly to supplement or replace foods and food ingredients made from vertebrate livestock, are gain- ing increased attention even in Europe and the United States. Thus, we present this chapter to
    [Show full text]
  • PROCEEDINGS of the WORKSHOP on TRADE and CONSERVATION of PANGOLINS NATIVE to SOUTH and SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S
    PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 June – 2 July 2008, Singapore Zoo Edited by S. Pantel and S.Y. Chin Wildlife Reserves Singapore Group PROCEEDINGS OF THE WORKSHOP ON TRADE AND CONSERVATION OF PANGOLINS NATIVE TO SOUTH AND SOUTHEAST ASIA 30 JUNE –2JULY 2008, SINGAPORE ZOO EDITED BY S. PANTEL AND S. Y. CHIN 1 Published by TRAFFIC Southeast Asia, Petaling Jaya, Selangor, Malaysia © 2009 TRAFFIC Southeast Asia All rights reserved. All material appearing in these proceedings is copyrighted and may be reproduced with permission. Any reproduction, in full or in part, of this publication must credit TRAFFIC Southeast Asia as the copyright owner. The views of the authors expressed in these proceedings do not necessarily reflect those of the TRAFFIC Network, WWF or IUCN. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a joint programme of WWF and IUCN. Layout by Sandrine Pantel, TRAFFIC Southeast Asia Suggested citation: Sandrine Pantel and Chin Sing Yun (ed.). 2009. Proceedings of the Workshop on Trade and Conservation of Pangolins Native to South and Southeast Asia, 30 June-2 July
    [Show full text]
  • Phasmatodea PHASMATODEA
    Phasmatodea PHASMATODEA Walkingsticks / Stick Insects / Leaf Insects / Phasmids The name Phasmatodea, derived from the Greek "phasm" meaning phantom, refers to the cryptic appearance and behavior of these insects. Classification Life History & Ecology Distribution Physical Features Economic Importance Major Families Fact File Hot Links Life History & Ecology: The leaf and stick insects are sometimes grouped as a family or suborder of Orthoptera. All species are herbivores. As the name "walkingstick" implies, most phasmids are slender, cylindrical, and cryptically colored to resemble the twigs and branches on which they live. Members of the family Timemidae (=Phyllidae) bear a strong resemblance to leaves: abdomens are broad and flat, legs have large lateral extensions, and coloration is primarily brown, green, or yellow. Most walkingsticks are slow-moving insects, a behavior pattern that is consistent with their cryptic lifestyle. In a few tropical species, the adults have well-developed wings, but most phasmids are brachypterous (reduced wings) or secondarily wingless. Stick insects are most abundant in the tropics where some http://www.cals.ncsu.edu/course/ent425/compendium/stick.html (1 of 5) [10/24/2007 12:05:29 PM] Phasmatodea species may be up to 30 cm (12 inches) in length. Females do not have a well- developed ovipositor so they cannot insert their eggs into host plant tissue like most other Orthoptera. Instead, the eggs are dropped singly onto the ground, sometimes from great heights. Distribution: Common in tropical and subtropical climates where they are found living on their host plants. North Worldwide America Number of Families 2 3 Number of Species 32 >2500 Classification: Hemimetabola incomplete development (egg, nymph, adult) Orthopteroid closely related to Orthoptera and Dermaptera Physical Features: Adults and Immatures http://www.cals.ncsu.edu/course/ent425/compendium/stick.html (2 of 5) [10/24/2007 12:05:29 PM] Phasmatodea 1.
    [Show full text]
  • Phasmid Study Group Newsletter, 28
    ISSN 0268-3806 Chairman: Mrs Judith Marshall Department of Entomology British Museum (Natural History) Cromwell Road, London SW7 5BD Membership: Paul Brock (Phone 0753-79447) "Papillon", 40 Thorndike Road Slough, Berks SL2 1SR NEWSLETTER NO. 28 September 1986 Once again thanks to Peter Curry (No. 91) for opening up the Centre for Life Studies for the Group's summer meeting. Some 30 members attended (including three from abroad), about half of whom gave away some 20 different species - thanks also to Tim Branney (No. 239) for coping with the surplus. Paul Brock (No. 26) showed his new video, which included shots of some "British" sticks in their natural habitats in this country. Three members showed the very latest species ­ 91, 92 and 93~ The Committee discussed a proposal from Peter Curry to build up, in conjunc­ tion with the British Museum (Natural History), an up-to-date reference collection of all phasmid species within the Group, showing eggs, nymphs and adults and including morphological variations. As part of this, Tony James (No. 1) offered to collect a similar file of photographs, and members are invited to send these (preferably in colour) to him for inclusion. (Peter recommends Kodachrome 64· or 25 for goo d colour rendering.) COMPUTER LIST OF MEMBERS' NAMES AND ADDRESSES - Members are asked to note that their names and addresses are held in a computer by David Robinson (No. 29) for generating address labels (for posting Newsletters, etc), in case anyone wishes to object , This list is registered under the recent Data Protection Act. and its release for other purposes without the consent of the individuals is prohibited.
    [Show full text]
  • Earwigs from Brazilian Caves, with Notes on the Taxonomic and Nomenclatural Problems of the Dermaptera (Insecta)
    A peer-reviewed open-access journal ZooKeys 713: 25–52 (2017) Cave-dwelling earwigs of Brazil 25 doi: 10.3897/zookeys.713.15118 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Earwigs from Brazilian caves, with notes on the taxonomic and nomenclatural problems of the Dermaptera (Insecta) Yoshitaka Kamimura1, Rodrigo L. Ferreira2 1 Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521, Japan 2 Center of Studies in Subterranean Biology, Biology Department, Federal University of Lavras, CEP 37200-000 Lavras (MG), Brazil Corresponding author: Yoshitaka Kamimura ([email protected]) Academic editor: Y. Mutafchiev | Received 17 July 2017 | Accepted 19 September 2017 | Published 2 November 2017 http://zoobank.org/1552B2A9-DC99-4845-92CF-E68920C8427E Citation: Kamimura Y, Ferreira RL (2017) Earwigs from Brazilian caves, with notes on the taxonomic and nomenclatural problems of the Dermaptera (Insecta). ZooKeys 713: 25–52. https://doi.org/10.3897/zookeys.713.15118 Abstract Based on samples collected during surveys of Brazilian cave fauna, seven earwig species are reported: Cy- lindrogaster cavernicola Kamimura, sp. n., Cylindrogaster sp. 1, Cylindrogaster sp. 2, Euborellia janeirensis, Euborellia brasiliensis, Paralabellula dorsalis, and Doru luteipes, as well as four species identified to the (sub) family level. To date, C. cavernicola Kamimura, sp. n. has been recorded only from cave habitats (but near entrances), whereas the other four organisms identified at the species level have also been recorded from non-cave habitats. Wings and female genital structures of Cylindrogaster spp. (Cylindrogastrinae) are examined for the first time. The genital traits, including the gonapophyses of the 8th abdominal segment shorter than those of the 9th segement, and venation of the hind wings of Cylindrogastrinae correspond to those of the members of Diplatyidae and not to Pygidicranidae.
    [Show full text]
  • The Culture of Bornean Phasmids. P.E
    The culture of Bornean phasmids. P.E. Bragg, 51 Longfield Lane, Dkeston, Derbyshire, DE7 4DX, UK. Key words Phasmida, Culture potential, Borneo, Taxonomic assessment, Polyphagy, Monophagy Introduction At the PSG meeting at the Natural History Museum, London, on 22Dd 1995, I gave an illustrated lecture on the species of Bornean phasmids which have been reared in captivity. The talk stressed that the "culture potential" i.e. the likelihood of establishing a culture, of a given species appears to depend upon the flight capability of the species. There is a close correlation between culture potential and taxonomic position; this is not unexpected as flight capability is generally closely linked to the taxonomic position of phasmids. This article summarises the lecture. Since December 1987 I have visited Borneo on 7 occasions, spending a total of about six months on the island. Borneo is the third largest island in the world and is composed of four political units: Brunei (an independent country), Kalimantan (part of Indonesia), Sarawak (a State of Malaysia) and Sabah (also part of Malaysia). Most of my collecting has been done in Sarawak, although I spent five weeks in Kalimantan, three in Brunei, and two in Sabah. My first visit to Borneb was a two week holiday with my wife and Lee Yong Tsui in December 1987 and January 1988, during this time we stayed with Dr Lee's family in Sarawak. Although not a collecting trip, seven species were collected over two nights and five of these were bred in the UK. All subsequent trips have been made specifically to collect phasmids and, whenever possible, to attempt to rear them in the UK.
    [Show full text]
  • SYNAPOMORPHIES ORTHOPTERA, Sensu Stricto Grasshoppers
    The Orthopteridan Orders Orthoptera Phasmatodea Plecoptera PLECOPTERIDA Embioptera Zoraptera Dermaptera POLYORTHOPTERA Grylloblattodea Mantophasmatodea Phasmatodea ORTHOPTERIDA Orthoptera Blattodea Perhaps similar Isoptera development of the gonoplac over 2nd DICTYOPTERA valvulae Mantodea Plecoptera PLECOPTERIDA Embioptera Zoraptera Dermaptera Grylloblattodea Mantophasmatodea Phasmatodea ORTHOPTERIDA Orthoptera • Second valvula reduced, with developmentBlattodea of gonoplac as functional ovipositor • Enlarged precostal field in forewingIsoptera DICTYOPTERA Mantodea ORTHOPTERA, sensu stricto Grasshoppers, Locusts, Katydids, Crickets, Wetas What is a “Weta”? A giant cricket! New Zealand Maori name of wetapunga that was given to the giant weta. Wetapunga translates roughly to "God of ugly things.” Wetas and king crickets occur principally in New Zealand and Australia. Can reach 90 mm (3.5 in) and 70 grams (2.5 oz). Orthoptera Ensifera Stenopelmatoidea Anostostomatidae ORTHOPTERA, sensu stricto Grasshoppers, Locusts, Katydids, Crickets, Wetas SYNAPOMORPHIES • Lateral flange of pronotum largely covering pleuron, which • Hind leg modified for jumping correspondingly becomes by straightening of femoral/tibial desclerotized joint (cryptopleuron) • Femur enlarged to • Hind tibia with 2 dorsal accommodate large tibia rows of teeth extensor muscle ORTHOPTERA, sensu stricto Grasshoppers, Locusts, Katydids, Crickets, Wetas SYNAPOMORPHIES • First thoracic spiracle horizontally divided • Wings inclined over abdomen at rest • Wing pads of late nymphal
    [Show full text]
  • Preliminary Checklist of the Orthopteroid Insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2001 Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas John A. Stidham Garland, TX Thomas A. Stidham University of California, Berkeley, CA Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Stidham, John A. and Stidham, Thomas A., "Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas" (2001). Insecta Mundi. 180. https://digitalcommons.unl.edu/insectamundi/180 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 15, No. 1, March, 2001 35 Preliminary checklist of the orthopteroid insects (Blattodea, Mantodea, Phasmatodea,Orthoptera) of Texas John A. Stidham 301 Pebble Creek Dr., Garland, TX 75040 and Thomas A. Stidham Department of Integrative Biology, Museum of Paleontology, and Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, Abstract: Texas has one of the most diverse orthopteroid assemblages of any state in the United States, reflecting the varied habitats found in the state. Three hundred and eighty-nine species and 78 subspecies of orthopteroid insects (Blattodea, Mantodea, Phasmatodea, and Orthoptera) have published records for the state of Texas. This is the first such comprehensive checklist for Texas and should aid future work on these groups in this area. Introduction (Flook and Rowell, 1997).
    [Show full text]
  • THE EARWIGS of CALIFORNIA (Order Dermaptera)
    BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 20 THE EARWIGS OF CALIFORNIA (Order Dermaptera) BY ROBERT L. LANGSTON and J. A. POWELL UNIVERSITY OF CALIFORNIA PRESS THE EARWIGS OF CALIFORNIA (Order Dermaptera) BULLETIN OF THE CALIFORNIA INSECT SURVEY VOLUME 20 THE EARWIGS OF CALIFORNIA (Order Dermaptera) BY ROBERT L. LANGSTON and J. A. POWELL UNIVERSITY OF CALIFORNIA PRESS BERKELEY LOS ANGELES LONDON 1975 BULLETIN OF THE CALIFORNIA INSECT SURVEY Advisory Editors: H. V. Daly, J. A. Powell; J. N. Belkin, R. M. Bohart, R. L. Doutt, D. P. Furman, J. D. Pinto, E. I. Schlinger, R. W. Thorp VOLUME 20 Approved for publication September 20,1974 Issued August 15, 1975 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES UNIVERSITY OF CALIFORNIA PRESS, LTD. LONDON, ENGLAND ISBN 0-520-09524-3 LIBRARY OF CONGRESS CATALOG CARD NUMBER: 74-22940 0 1975 BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA PRINTED BY OFFSET IN THE UNITED STATES OF AMERICA CONTENTS Introduction .................................................. 1 California fauna ............................................. 1 Biology ................................................... 1 History of establishment and spread of introduced species in California ........ 2 Analysis of data ............................................. 4 Acknowledgments ............................................ 4 Systematic Treatment Classification ............................................... 6 Key to California species ........................................ 6 Anisolabis maritima (Ght5) ...................................
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]