Ti, the Faculty of The

Total Page:16

File Type:pdf, Size:1020Kb

Ti, the Faculty of The The Geology of the Bajo El Durazno Porphyry Copper- Gold Prospect, Catamarca Province, Argentina Item Type text; Thesis-Reproduction (electronic) Authors Allison, Antonia E. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the Antevs Library, Department of Geosciences, and the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author or the department. Download date 08/10/2021 22:01:36 Link to Item http://hdl.handle.net/10150/249234 THE GEOLOGY OF THE BAJO EL DURAZNO PORPHYRY COPPER-GOLD PROSPECT, r:ATAMARCA PROVINCE, ARGENTINA by A. E. ALLIEON A Prepublication Manuscript Submitted Ti, the Faculty of the DEPARTMENT OF GER=;`; :IENi_:ES In F'ertiA.l Fulfillment of the Requirements For the Degree of MASTER F Ss_IENCE In the Graduate College THE UNIVERSITY OF ARIZONA 1986 STATEMENT BY AUTHOR This manuscript, prepared for publication in Economic Geology, has been submitted in partial fulfillment f requirements for an advanced degree at the University of Arizona and is deposited in the Antevs Reading Rool-ri to be made available to borrowers as are rnpiP=jf regular theses d dissertations. Brief quotations trorri this manuscript are allowablewithoutspecial permission, provided that accurate acknowledgementwledge'tiient of source is made. Requests -for permission for extended quotation from or reproductionif this manuscript in whole or in part may be granted by the head of the department, or the graduate student coordinator, when in their judgement the proposed use of the material is in the interests of scholarship. In all other instances, -r wever, permission must e obtained from the author. SIGNED: APPROVAL BY RESEARCH ADVISORY COMt%-°1ITTEE This manu =_ ias been approved for submission on the date shown below; CIL -s-fr 199g , )5V Gra e Student Dn rtator,or Date I Hea Department AB:=;Tr*'A!_T The Bajo El Durazno prospect is a small, gold -rich porphyry copper- type prospect located in Catamarca Province, northwest Argentina. It is one of a cluster of at least fourteen porphyry copper -type occurrences and numerous younger polymetallic epithermal veins, all of which are genetically related to the waning stages of magmatism that produced the Farallon Negro volcanic complex, an isolated Upper Miocene =hoshonit ii_ andesitic volcanic center. Porphyry copper -type hydrothermal activity at the Bajo Ei Durazno prospect is associated with a small east -northeasterly elongated andesite porphyry stock. The stock: was emplaced at 8.7 m.y. into comagmatic and petrologically similar andesitic volcanic breccias that form the highly dissected basal remnants of the main eruptive center of the volcanic complex. Intramineral, crudely radial ande-site porphyry dii : :es accompanied the development of concentric zones of hydrothermal alteration centered on the stock. These alteration Zones of potassium-silicate alteration in the stock and adjacent wallrocl : :s surrounded by an essentially coeval, weakly developed propylitic alteration zone. The propylitic alteration assemblage, which occurs as both pervasive replacement and as veinlets, consists mainly of chlorite, epidote, calcite, and magnetite, with lesser clays and zeolites. The potassium -silicate alteration zone is character iced by the replacement of primary minerals by secondary biotite, rtiagnetite, anhydrite, quartz, sericite, and calcite. Roughly coeval and coextensive with the earliest stages of potassium- silicate and propylitic alteration was a brief period of magnetite alteration conisisting mainly of well-banded magnetite + quart+ biotite veins. This volume also includes the development of irregular magnetite-rich masses in the stoci :: of probable late-magmatic origin. Major copper -gold mineralisation with rí inorsilver and molybdenum developed during later stages of potassium- silicate alteration after the magnetite alteration ev ent, although highest grade mineralization is commonly localized in areas of most intense magnetite alteration. The bull:: of the mineralization occurs as veins within the stock and its (.4 ;lirocl::s near their mutual contact; these vPins cc nt Ain quartz, calcite, magnetite, pyrite, chaicopyrite, and lesser sericite, chlorite, orthoclase,=13sF, bic ititC, siderite, molybdenite, b rnite, sphelerite, galena, tFtrahedrite-tennentit _, and native gold. Some i f the gold and silver occur in solid id solution in sulfide minerals, arad supergene enrichrilent of copper is not economically ¡' jlgnificant. Copper and gold grades are generally less than 0.4% and 1 ppm, respectively. The three early alteration assemblages were later overprinted by patchy arem of phyllie alteration consisting mainly of the assemblage sericite, quartz, pyrite, and anl-lydritelgypsum in an irregular northeasterly elongated halo. Phy llic alteration is developed to its greatest extent in an irregular annular zone straddling the boundary between the potassium- silicate and propylitic alteration zones and i= generally coincident with the most highly fractured rocks in the prospect. Irregular patches of U+aeal:: to intense silicification are superimposed on all other alteration types, and a number of distinctive, poorly mineralized, phyllically altered and silicified fracture zones are distributed in a somewhat radial pAttPrn Around thP stock. Low grade disseminated(?) gold mineralization is found over one square kilometer in phyllically and propylitically altered rocks surrounding the central mineralized zone. A fluid inclusion study has revealed the presence of two hypersaline liquid-rich fluid inclusion types having salinities of 73.0-87.0 and 50.0-79.5 weight percent NaC1 + KCl equivalent, respectively, a single low salinity liquid-rich inclusion type (6.6-8.0 weight percent NaCl equivalent), and abundant vapor-rich inclusions. Hematite, anhydrite, and a variety of unidentified opaque and nonopaque minerals occur in many inclusions. Magnetite, pota=jiull'I-=,1l1c3tP, and phyllic-silicic alteration in s1lir1iiPc zc nP_ formed at temperatures between 71! °iw and CCL' + C and !,,PrP t;-,P product of the less ;aline f the two hypersaline fluids; this fluid episodically boiled. Copper-gold mineralization in potassium-silicate rocks probably peai :ed at about _7.q5Ì C. Fluid salinities .and temperatures gradually decreased with time, and during later stages of alteration they also da; rEa=ad with greater distance fr-om the hot center of the system, perhaps as a result of dilution. Although proof is lacking, the two high salinity fluids and the low salinity vapor may be magmatic in origin, and the low salinity fluid may represent a late-stage influx nf meteoric dater that encroached on the waning magmatic hydrothermal system. A depth of formation of 1.6 kilometers is estimated for the presently exposed portion fi the Bajo El Durazno prospect based i É the fluid inclusion data. Table! i Contents r=` = q 1:' Ii !t f O dU i - t i _in 1 0 o n v s o c a a s n a o an s s r a v r v a o v r r e r r e o r o v a o a ar o a r o o a s e e n v o e n e a a v a G C D O ra r a o a r v a G s r o v a v n o n n r c o a c t r. 1 r r . 1 t;-i L- ;= r- k== ,r i r iu>-v li. F,L:r-posP aiilrl Method of Iniies1 ig._1i_'fiaavlaQOaCCII:aa:ECateaaaceeaDa20OnaEaC¢eaaeaascasaaDeaa e Regional GeFi gf` E o a oe s s a a RfIir'_l Structure And., T aasalalraIIOlQaCaaIIaataaatatl 5 Petrochemistry of Ïg'_i u= R:[t <= Tr! fthH+ Fal j I Ir_!n }eqr"i_;/k-iiran i_C iTÍiPEeXcaneanonnsenaseesaeoaanlanananaavsaacsnnnaQa¢es¢aa Geology i_if the BA. jo 1 C lLi_tt a.`ni_i Prospecti1pect 33 1aGeasQ¢aeesteeseaefeeaaoeaeeeaEeaaseeonicsaaaetaeoe¢escasassasaaaocoal 34 Volcanic Host r,lii-i:_eetaaaaQaae2la:IIas¢saelaaacsevIIaaso02traia:asaQSeelss 4 1 ... S( : r- . I¡ÿ{i ri`ri.j ~ . k '- 7 . 1 a G e C e a G n e e C C e a C C a Q CC e a G 1 C e C a e L C n a a C C C G e e C C e La a e a C C C e G C a C 1 G a C Sediments and ri PdimL (i L R +J Rocks 42 Hy 3 rct - C iAl QQDQQEQQDDCDEciao II DEQ45 Alte-ration S i- l-1 e l Ì Ìe 45 riT.='=ijiii-_i i ii- ^ ILNr a.L 1_ I nQaCaaCaoaal301223002eaIIQaCCESaCaaa2:taarII2L 1 Fi' ripy'liL ii- oaeasvaaasc:: :sa r+lagnlF1-i1-P;lfPr =! iifrieaavseesaaxaevaae:axsaesveveavsvcevveaveveaveveavaxaetaea2a r11 Phyllie-- l T P r ái i r n --. A.L_r a t i_nsossoanssanvavaassosaeeaeaasa aa:oae :eoeoa ea el: aoacna enc 2nna r-IirtkLilP aeasslaQaeaa77 iti-1 i -1 ^s -t {' }- -i 4iSet iii=li_ifi ii.i i1Ìii-iiii=ir¡rvaneesvvavcvCCSVavaataav:sevaeaaaasevevaavvavaveavv _ Pn± r ; 7_i rhP;'ra i Anomaly / 8 il ring fg P. i7-1L: it and t-iFP '_J= ana¢ascaa2ascaasaaceevaaneoeEaasaESevsaa i_lPrT r 1 ii1 Ml1-r t ipr 1 Iris_+ Study of1 Vein1 in - t l the1Centra-il i7Ñi ir rji_i-ii ii- 1 r?F1-iiii=! f VuasDaaev2sssvesaoQOaevnessaeavsec2aec 86 IPr i'iÑr =i l Li Ihi-6r AAF if i liJ ri(li.¡ ¡¡ i iii7-i l Ì¡ i_-r 1- 1 f P =I!_'.t _ILI L-! IL ,...! x e a c a s a P a a a: s a a e a a J.. ij- 1'1 ¡i.RL1r` ! _3_I.i ° r.ILr'.Sj aL.i pus.: ` IIL'L.IL! r .'_,/ -s r, !! 3! fÉlr_!G i(iI s-- i anaasaanaaCasaeeaaaeaea Ile: 1112eaasasCCSCacasaa = _1 J¡i ¢ a a n o sl a s s n a 0 e a e a o m a a a a a a a e a a a s a i r a C a x a a 0 s a a C 11 a a C a 4,= i:1Ì E, :awe s x a a E C a a a n a e t a o c 0 e as C 0 : a : t an : 8í i l .
Recommended publications
  • Biofilm Adhesion on the Sulfide Mineral Bornite & Implications for Astrobiology
    University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2019 BIOFILM ADHESION ON THE SULFIDE MINERAL BORNITE & IMPLICATIONS FOR ASTROBIOLOGY Margaret M. Wilson University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Wilson, Margaret M., "BIOFILM ADHESION ON THE SULFIDE MINERAL BORNITE & IMPLICATIONS FOR ASTROBIOLOGY" (2019). Open Access Master's Theses. Paper 1517. https://digitalcommons.uri.edu/theses/1517 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. BIOFILM ADHESION ON THE SULFIDE MINERAL BORNITE & IMPLICATIONS FOR ASTROBIOLOGY BY MARGARET M. WILSON A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGICAL & ENVIRONMENTAL SCIENCE UNIVERSITY OF RHODE ISLAND 2019 MASTER OF SCIENCE IN BIOLOGICAL & ENVIRONMENTAL SCIENCE THESIS OF MARGARET M. WILSON APPROVED: Thesis Committee: Major Professor Dawn Cardace José Amador Roxanne Beinart Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2019 ABSTRACT We present research observing and documenting the model organism, Pseudomonas fluorescens (P. fluorescens), building biofilm on a natural mineral substrate composed largely of bornite (Cu5FeS4), a copper-iron sulfide mineral, with closely intergrown regions of covellite (CuS) and chalcopyrite (CuFeS2). In examining biofilm establishment on sulfide minerals, we investigate a potential habitable niche for microorganisms in extraterrestrial sites. Geochemical microenvironments on Earth and in the lab can also serve as analogs for important extraterrestrial sites, such as sheltered, subsurface microenvironments on Mars.
    [Show full text]
  • Muntean/Einaudi
    Economic Geology Vol. 95, 2000, pp. 1445–1472 Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile JOHN L. MUNTEAN†,* AND MARCO T. EINAUDI Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 Abstract The porphyry gold deposits of the Refugio district and similar deposits in the Maricunga belt contain the lowest known copper to gold ratios (% Cu/ppm Au = ~0.03) of any porphyry-type deposit. The gold deposits are associated with subvolcanic andesitic to dacitic intrusions emplaced into coeval volcanic rocks. Both the Verde and Pancho deposits are zoned in space from a deeper zone of banded quartz veinlets associated with chlorite-magnetite-albite and/or pyrite-albite-clay alteration to a shallow zone of pyrite-albite-clay and local quartz-alunite ledges. Pancho contains an additional, deepest, porphyry copperlike zone, with quartz veinlets (A-veinlets) and potassic alteration. Relative to Verde, Pancho is telescoped, with all three zones present within a 400-m-vertical interval. The porphyry copperlike zone at Pancho is characterized by A-veinlets and pervasive potassic alteration, both restricted to intrusive rocks. A-veinlets range from hairline streaks of magnetite ± biotite with minor quartz and chalcopyrite, and K feldspar alteration envelopes to sugary quartz veinlets <1 cm in width with mag- netite and chalcopyrite and no alteration envelopes. Hypersaline liquid inclusions coexisting with vapor-rich in- clusions indicate temperatures above 600°C and salinities as high as 84 wt percent NaCl equiv. A pressure es- timate of 250 bars indicates a depth of 1,000 m, assuming lithostatic pressure.
    [Show full text]
  • Geology, Petrology and Geochemical Characteristics of Alteration Zones Within the Seridune Prospect, Kerman, Iran
    Geology, petrology and geochemical characteristics of alteration zones within the Seridune prospect, Kerman, Iran Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von M.Sc. Hassan Barzegar aus Shiraz, Iran Berichter: Univ.-Prof. Dr.rer.nat. Franz Michael Meyer Univ.-Prof. Dr.rer.nat. Ulrich Kramm Tag der mündlichen Prüfung: 27. August 2007 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar For Melika and Mojan FOREWORD This research project was fully facilitated by the Institute of Mineralogy and Economic Geology, Rheinisch Westfälischen Technischen Hochschule (RWTH) Aachen University and supported by the Research Department of National Iranian Copper Industries Company (NICICO). The Institute of Mineralogy and Economic Geology, RWTH Aachen University sponsored sample preparations and geochemical analyses. First, I would like to thank my supervisor, Prof. Dr. F. Michael Meyer, Head of the Department of Mineralogy and Economic Geology, RWTH Aachen University, for his worthy support, guidance, continued interest, encouragement during this work, and for many hours of his time spent in discussions; Dr. Jochen Kolb who gave me guidance and encouragement through each stage of the work, for his interest, time spent in discussions and proof-reading this thesis; Annika Dziggel, Ph.D for her assistance and discussion and Dr. Sven Sindern for his support and assistance in XRF analyses. This thesis is also benefited by the suggestions and guidance of Prof. Dr. Ulrich Kramm and Prof. Dr. Helge Stanjek. Their interests are highly appreciated. My sincere thanks go to manager of Exploration Office, Dr.
    [Show full text]
  • Raman Spectroscopic Identification of Surface Species in the Leaching Of
    Raman spectroscopic identification of surface species in group. The strongest Raman band at »293 cm-1 (Fig. 1) has the leaching of chalcopyrite been assigned to the symmetric anion A1 mode [4]. It is Gretel Parker, Gregory A. Hope and Ronald Woods clear from this figure that the other phases presented can School of Science Griffith University be distinguished from chalcopyrite using Raman Nathan, Queensland 4111, Australia spectroscopy. Figure 2 shows selected spectra from a surface of It is well established that the rate of metal leaching chalcopyrite from Mt Isa that contained negligible from chalcopyrite [CuFeS2] under ambient conditions is inclusions of other mineral phases. Also presented is a limited due to the formation of a metal-deficient spectrum after the mineral has been immersed for one week passivating layer, the composition and formation of which in a solution containing 0.03 mol dm-3 iron(III) sulfate and -3 is poorly understood. Cyclic voltammograms in acid 0.1 mol dm H2SO4 (Eh = 0.865V vs SHE). It can be seen solution display an anodic pre-wave during which the that a covellite-like phase has developed on the mineral passivating film is formed [1]. Raman spectroscopy surface. Elemental sulfur was also detected in experiments provides an in situ method of identifying surface species, with chalcopyrite samples that contained inclusions of and spatial variations in composition, provided the layer is other minerals. Mapping showed that surface product >5 nm, the detection limit of this technique. The formation was heterogeneous and could be related to integration of Raman spectroscopy with potentiodynamic initial surface structure and composition of the sample.
    [Show full text]
  • Bianchi, M., Heit, B., Jakovlev, A., Yuan, X., Kay, SM
    Originally published as: Bianchi, M., Heit, B., Jakovlev, A., Yuan, X., Kay, S.M., Sandvol, E., Alonso, R.N., Coira, B., Brown, L., Kind, R., Comte, D. (2013): Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions. ‐ Tectonophysics, 586, 65‐83 DOI: 10.1016/j.tecto.2012.11.016 *Manuscript Click here to download Manuscript: Bianchi-etal.doc Click here to view linked References Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions 1 2 3 M. Bianchi 1, B. Heit 1,*, A. Jakovlev 2, X. Yuan 1, S. M. Kay 3, E. Sandvol 4, R. N. Alonso 5, B. 4 5 6 Coira 6, R. Kind 1,7 7 8 9 1 Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany 10 11 12 13 2 Institute of Geology, SB RAS, Novosibirsk, Russia 14 15 16 3 Cornell University, EAS, Snee Hall, Ithaca, NY, 14850. 17 18 19 4 Department of Geological Sciences, University of Missouri, Columbia MO 65211 20 21 22 23 5 Universidad Nacional de Salta, Buenos Aires 177, 4400-Salta, Argentina 24 25 26 6 CONICET, Instituto de Geología y Minería, Universidad Nacional de Jujuy, Avda. Bolivia 1661, 27 28 29 4600-San Salvador de Jujuy, Argentina 30 31 32 7 Freie Universität Berlin, Maltesserstr. 74-100, 12227 Berlin, Germany 33 34 35 36 * Corresponding author, [email protected]. 37 38 39 40 41 42 43 ABSTRACT 44 45 46 An array of 74 seismological stations was deployed in the Argentine Puna and adjacent regions for 47 48 a period of two years.
    [Show full text]
  • Indium-Bearing Paragenesis from the Nueva Esperanza and Restauradora Veins, Capillitas Mine, Argentina
    Journal of Geosciences, 65 (2020), 97–109 DOI: 10.3190/jgeosci.304 Original paper Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina María Florencia MÁRQUEZ-ZAVALÍA1,2*, Anna VYMAZALOVÁ3, Miguel Ángel GALLISKI1, Yasushi WATANABE4, Hiroyasu MURAKAMI5 1 IANIGLA, CCT-Mendoza (CONICET), Avda. A. Ruiz Leal s/n, Parque San Martin, CC330, (5500) Mendoza, Argentina; [email protected] 2 Mineralogía y Petrología, FAD, Universidad Nacional de Cuyo, Centro Universitario (5502) Mendoza, Argentina 3 Department of Rock Geochemistry, Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic 4 Faculty of International Resource Sciences, Mining Museum of Akita University, 28-2 Osawa, Tegata, Akita, 010-8502 Japan 5 Coal Business Planning Group, Coal Business Office, Resources & Power Company, JXTG Nippon Oil & Energy Corporation, 1-2, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-8162 Japan * Corresponding author The Nueva Esperanza and Restauradora are two of the twenty-three veins described at Capillitas mine, an epithermal precious- and base-metal vein deposit located in northern Argentina. Capillitas is genetically linked to other minera- lizations of the Farallón Negro Volcanic Complex, which hosts several deposits. These include two world-class (La Alumbrera and Agua Rica) and some smaller (e.g., Bajo El Durazno) porphyry deposits, and a few epithermal deposits (Farallón Negro, Alto de la Blenda, Cerro Atajo and Capillitas). The main hypogene minerals found at these two ve- ins include pyrite, sphalerite, galena, chalcopyrite, tennantite-(Zn) and tennantite-(Fe). Accessory minerals comprise hübnerite, gold, silver, stannite, stannoidite and mawsonite, and also diverse indium- and tellurium-bearing minerals.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • AN OCCURRENCE of the ASSEMBLAOE, NATIVE SULFTIR- COVELLITE-"Cu5 6,Fe,S6.S"", AUCANQUILCHA, CHILE Aran H. Cr-Etr&L
    THE AMERICAN MINERALOGIST, VOL. 55, MAY_JUNE, 1970 AN OCCURRENCE OF THE ASSEMBLAOE, NATIVE SULFTIR- COVELLITE-"Cu5 6,Fe,S6.s"",AUCANQUILCHA, CHILE AraN H. Cr-etr<, Deportmentof GeologicalSciences, Queen's U niaersity, Kingston, Ontario. AssrnA.cr A mineral with composition near to CusFeSo has been found associated with nzrtive sulfur and covellite in the volcanic sulfur deposit at Aucanquilcha. Microprobe, optical and X-ray powder diffraction data match closell'a previously reported occurrence at Nu- kundamu, Fiji. Comparison with equilibrium synthesis by Kullerud and others indir:ates formation in the temperature range 434-482"C. INrnonucrroN Electron probe microanalysis(L6vy, 1967; Sillitoe and Clark, lt69) of naturally-occurring,supergene idaite has cast considerabledoub1. on the equation (Frenzel, 1959) of this not uncommon sulfi.de with the phaseof generalformula Cur r,Fe,Se.s,1 (Yund, 1963), which has h,een synthesizedby Merwin and Lombard (1937), Roseboomand Kullerud (1958),and Yund and Kullerud (1966).Idaite has been shown to have the compositionCurFeSa, or Cu3FeS4-,1orrd there is as yet no evidence of solid solution in nature between this and more copper-rich comF,osi- tions.The well-establishedX-ray powder data"(a:3.772 A; c:11.1U A; Yund, 1963) for hexagonal Cus.s,Fe"Se.r, are only with difficulty recon- ciled with thoseof natural idaite (Frenzel,1959, 1963), and L6vy (I\167) has suggestedthat Frenzel'soriginal powder data may be adequately fitted to a stannite-type,tetragonal cell. A differencein crystal struclure between thesephases is supported by the dissimilar reflectivity disper- sion profi.lesof natural idaite (L6vy, 1967; Sillitoe and Clark, 1969) and the synthetic "Cu5FeS6"of Merwin and l-ombard (1937; inLlvy, 1967).
    [Show full text]
  • Schists of the Central Alaska Range
    Schists of the Central Alaska Range By CLYDE WAHRHAFTIG CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1254-E Distribution of schists within Fairbanks A-2, A-3, and A-4 quadrangles and Healy 0-2, 0-3, and 0-4 quadrangles UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTEKIOK STEWART I,. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington. D.C. 20402 - Price 15 cents (paper cover) CONTENTS Page Abstract-..---------------------..-----..-----.----------------------- E 1 Introduction---------..-------------------------------------------- General structural and areal relations- - _ _------ ----..-- ------------ --- Birch Creek Schist----___--_-_------------------------------------- Keevy Peak Formation ............................................. Totatlanika Schist-----__--_-_------------------------------------- Moose Creek Member ----_--------------- ...................... California Creek Member ..................... --- ---------- -- -- - Chute Creek, Mystic Creek, and Sheep Creek Members ------------ Age and origin of the Totatlanika Schist -------- ----__-------- -- --- Metavolcanio schists and associated rocks south of the Birch Creek Schist- References cited-___--_-_-__--------------------------------------- ILLUSTRATIONS Page FIGURE1. Index map of Alaska _----_____---------------------------E3 2. Generalized geologic map of part of the central Alaska Range- Fairbanks A-2, A-3, and
    [Show full text]
  • Lithospheric Delamination Beneath the Southern Puna Plateau Resolved by Local Earthquake Tomography
    Confidential manuscript submitted to replace this text with name of AGU journal Lithospheric delamination beneath the southern Puna plateau resolved by local earthquake tomography Jing Chen1,2, Sofia-Katerina Kufner2,3, Xiaohui Yuan2, Benjamin Heit2, Hao Wu1, Dinghui Yang1, Bernd Schurr2, and Suzanne Kay4 1Tsinghua University, Beijing, China. 2Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany. 3British Antarctica Survey, Cambridge, UK. 4Cornell University, Ithaca, USA Corresponding author: Jing Chen ([email protected]) Key Points: • A local earthquake tomography is performed in the southern Puna plateau and adjacent region • A high mantle Vp anomaly beneath Cerro Galan provides evidence for lithospheric delamination • A low Vp zone is observed beneath Ojos del Salado, reflecting the melt supplied by slab dehydration reaction at two depths This paper has been submitted for publication in Journal of Geophysical Research: Solid Earth. Confidential manuscript submitted to replace this text with name of AGU journal Abstract We present a local earthquake tomography to illuminate the crustal and uppermost mantle structure beneath the southern Puna plateau and to test the delamination hypothesis. Vp and Vp/Vs ratios were obtained using travel time variations recorded by 75 temporary seismic stations between 2007 and 2009. In the upper crust, prominent low Vp anomalies are found beneath the main volcanic centers, indicating the presence of magma and melt beneath the southern Puna plateau. In the lowlands to the southeast of the Puna plateau, below the Sierras Pampeanas, a high Vp body is observed in the crust. Beneath the Moho at around 90 km depth, a strong high Vp anomaly is detected just west of the giant backarc Cerro Galan Ignimbrite caldera with the robustness of this feature being confirmed by multiple synthetic tests.
    [Show full text]
  • Covellite) Probed by NQR
    Phase transition and anomalous electronic behavior in layered dichalcogenide CuS (covellite) probed by NQR R.R. Gainov 1*, A.V. Dooglav 1, I.N. Pen’kov 2, I.R. Mukhamedshin 1,3, N.N. Mozgova 4, A.V. Evlampiev 1, and I.A. Bryzgalov 5 1 Department of Physics, Magnetic RadioSpectroscopy Laboratory, Kazan State University, Kazan, Kremlevskaya str. 18, 420008, Russian Federation 2 Department of Geology, Kazan State University, Kazan, Kremlevskaya str. 4/5, 420111, Russian Federation 3 Laboratoire de Physique des Solides, UMR 8502, Universite Paris-Sud, 91405 Orsay, France 4 Institute of geology of ore deposits, petrography, mineralogy and geochemistry (Russian Academy of Science), Staromonetny per. 35, Moscow 109017, Russian Federation 5 Department of Geology, Moscow State University, Moscow, Vorob’evy gory, 119991, Russian Federation * Corresponding author: tel.: 7-843-2315175; fax.: 7-843-2387201. Electronic address: [email protected] (R.R. Gainov). Nuclear quadrupole resonance (NQR) on copper nuclei has been applied for studies of the electronic properties of quasi-two-dimensional low-temperature superconductor CuS (covellite) in the temperature region between 1.47 and 290 K. Two NQR signals corresponding to two non- equivalent sites of copper in the structure, Cu(1) and Cu(2), has been found. The temperature dependences of copper quadrupole frequencies, line-widths and spin-lattice relaxation rates, which so far had never been investigated so precisely for this material, altogether demonstrate the structural phase transition near 55 K, which accompanies transformations of electronic spectrum not typical for simple metals. The analysis of NQR results and their comparison with literature data show that the valence of copper ions at both sites is intermediate in character between monovalent and divalent states with the dominant of the former.
    [Show full text]
  • 149. Crystal Structure of Enargite (Cu3ass4)
    524 [Vol. 9, 149. Crystal Structure of Enargite (Cu3AsS4). By Katsutoshi TAKANE. Institute of Mineralogy, Petrology and Economic Geology, Tohoku Imperial University, Sendai. (Rec. Nov. 11, 1933. Comm. by S. Kozu, M.I.A., Nov. 13, 1933.) Recently, the crystal structures of copper sulphides such as covellite (CuS), wolfsbergite (CuSbS2), emplectite (CuBiS2), chalcopyrite (CuFeS2) and sulvanite (Cu3VS4), have been worked out by different authors. Among these minerals, sulvanite has been grouped in the mineral family to which enargite belongs, because of the similarity in their chemical compositions. However they are different in crystallographic nature, as sulvanite belongs the cubic system of the space group T1d, determined by Pauling and Hultgren, and enargite belongs to the orthor hombic system of the space group V12h,determined by the present author. Symmetry:-According to the morphological studies already made, enargite belongs to the orthorhombic holodedral class, the axial ratio being given as a : b : c=0.8694 : 1 : 0.8308 by Groth and Mieleitner. The Laue photograph taken from (001) shows no objection to taking the crystal as possessing the symmetry of the orthorhombic holodedral class. It is noteworthy that the photograph indicates a pseudohexagonal symmetry, of which a brief discussion has already been written in Japanese. Unit cell:-From three reflection photographs taken by rotation of three mineral rods parallel to [001], [010] and [100] respectively, immersing in the beam of the CuK ray, the distances of the layer lines were measured, and the results are The axial ratio obtained from the above figures is a : b : c=1.7341.7 1.674, which are double the values of a and c given by the goniometric method.
    [Show full text]