Chalcocite Several Centimeters Wide Were Found (Butler and Burbank, 1929)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Podiform Chromite Deposits—Database and Grade and Tonnage Models
Podiform Chromite Deposits—Database and Grade and Tonnage Models Scientific Investigations Report 2012–5157 U.S. Department of the Interior U.S. Geological Survey COVER View of the abandoned Chrome Concentrating Company mill, opened in 1917, near the No. 5 chromite mine in Del Puerto Canyon, Stanislaus County, California (USGS photograph by Dan Mosier, 1972). Insets show (upper right) specimen of massive chromite ore from the Pillikin mine, El Dorado County, California, and (lower left) specimen showing disseminated layers of chromite in dunite from the No. 5 mine, Stanislaus County, California (USGS photographs by Dan Mosier, 2012). Podiform Chromite Deposits—Database and Grade and Tonnage Models By Dan L. Mosier, Donald A. Singer, Barry C. Moring, and John P. Galloway Scientific Investigations Report 2012-5157 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 This report and any updates to it are available online at: http://pubs.usgs.gov/sir/2012/5157/ For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Mosier, D.L., Singer, D.A., Moring, B.C., and Galloway, J.P., 2012, Podiform chromite deposits—database and grade and tonnage models: U.S. -
Discovery & Geology of the Guinness World Record Lake Copper, Lake
DISCOVERY AND GEOLOGY OF THE GUINNESS WORLD RECORD LAKE COPPER, LAKE SUPERIOR, MICHIGAN by Theodore J. Bornhorst and Robert J. Barron 2017 This document may be cited as: Bornhorst, T. J. and Barron, R. J., 2017, Discovery and geology of the Guinness world record Lake Copper, Lake Superior, Michigan: A. E. Seaman Mineral Museum, Web Publication 2, 8 p. This document was only internally reviewed for technical accuracy. This is version 2 of A. E. Seaman Mineral Museum Web Publication 2 first published online in 2016. The Copper Pavilion at the A. E. Seaman Mineral Museum exhibits a 19-ton mass of native copper recovered on the bottomland of Lake Superior on permanent loan from the State of Michigan, Department of Natural Resources. Discovery This Guinness World Record holding tabular mass of native copper, weighing approximately 19 tons, was recovered from the bottomlands of Lake Superior and is now on exhibit in the Copper Pavilion at the A. E. Seaman Mineral Museum of Michigan Tech referred to here as the "Lake Copper." Figure 1: Location of the Lake Copper shown in context with the generalized bedrock geology along the flank of the Midcontinent rift system (after Bornhorst and Lankton, 2009). 1 It was discovered in July of 1991 by local divers Bob Barron and Don Kauppi on the bottomlands of Lake Superior in about 30 feet of water northwest of Jacob’s Creek, Great Sand Bay between Eagle River and Eagle Harbor (Figure 1 and 2). The tabular Lake Copper was horizontal when discovered rather than vertical in the vein as it had fallen over. -
Abstract in PDF Format
PGM Associations in Copper-Rich Sulphide Ore of the Oktyabr Deposit, Talnakh Deposit Group, Russia Olga A. Yakovleva1, Sergey M. Kozyrev1 and Oleg I. Oleshkevich2 1Institute Gipronickel JS, St. Petersburg, Russia 2Mining and Metallurgical Company “Noril’sk Nickel” JS, Noril’sk, Russia e-mail: [email protected] The PGM assemblages of the Cu-rich 6%; the Ni content ranges 0.8 to 1.3%, and the ratio sulphide ores occurring in the western exocontact Cu/S = 0.1-0.2. zone of the Talnakh intrusion and the Kharaelakh Pyrrhotite-chalcopyrite ore occurs at the massive orebody have been studied. Eleven ore top of ore horizons. The ore-mineral content ranges samples, weighing 20 to 200 kg, were processed 50 to 60%, and pyrrhotite amount is <15%. The ore using gravity and flotation-gravity techniques. As a grades 1.1 to 1.3% Ni, and the ratio Cu/S = 0.35- result, the gravity concentrates were obtained from 0.7. the ores and flotation products. In the gravity Chalcopyrite ore occurs at the top and on concentrates, more than 20,000 PGM grains were the flanks of the orebodies. The concentration of found and identified, using light microscopy and sulphides ranges 50 to 60%, and pyrrhotite amount EPMA. The textural and chemical characteristics of is <1%; the Ni content ranges 1.3 to 3.4%, and the PGM were documented, as well as the PGM ratio Cu/S = 0.8-0.9. distribution in different size fractions. Also, the The ore types are distinctly distinguished balance of Pt, Pd and Au distribution in ores and by the PGE content which directly depends on the process products and the PGM mass portions in chalcopyrite quantity, but not on the total sulphide various ore types were calculated. -
Biofilm Adhesion on the Sulfide Mineral Bornite & Implications for Astrobiology
University of Rhode Island DigitalCommons@URI Open Access Master's Theses 2019 BIOFILM ADHESION ON THE SULFIDE MINERAL BORNITE & IMPLICATIONS FOR ASTROBIOLOGY Margaret M. Wilson University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/theses Recommended Citation Wilson, Margaret M., "BIOFILM ADHESION ON THE SULFIDE MINERAL BORNITE & IMPLICATIONS FOR ASTROBIOLOGY" (2019). Open Access Master's Theses. Paper 1517. https://digitalcommons.uri.edu/theses/1517 This Thesis is brought to you for free and open access by DigitalCommons@URI. It has been accepted for inclusion in Open Access Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. BIOFILM ADHESION ON THE SULFIDE MINERAL BORNITE & IMPLICATIONS FOR ASTROBIOLOGY BY MARGARET M. WILSON A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGICAL & ENVIRONMENTAL SCIENCE UNIVERSITY OF RHODE ISLAND 2019 MASTER OF SCIENCE IN BIOLOGICAL & ENVIRONMENTAL SCIENCE THESIS OF MARGARET M. WILSON APPROVED: Thesis Committee: Major Professor Dawn Cardace José Amador Roxanne Beinart Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL UNIVERSITY OF RHODE ISLAND 2019 ABSTRACT We present research observing and documenting the model organism, Pseudomonas fluorescens (P. fluorescens), building biofilm on a natural mineral substrate composed largely of bornite (Cu5FeS4), a copper-iron sulfide mineral, with closely intergrown regions of covellite (CuS) and chalcopyrite (CuFeS2). In examining biofilm establishment on sulfide minerals, we investigate a potential habitable niche for microorganisms in extraterrestrial sites. Geochemical microenvironments on Earth and in the lab can also serve as analogs for important extraterrestrial sites, such as sheltered, subsurface microenvironments on Mars. -
LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges. -
Key to Rocks & Minerals Collections
STATE OF MICHIGAN MINERALS DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION A mineral is a rock substance occurring in nature that has a definite chemical composition, crystal form, and KEY TO ROCKS & MINERALS COLLECTIONS other distinct physical properties. A few of the minerals, such as gold and silver, occur as "free" elements, but by most minerals are chemical combinations of two or Harry O. Sorensen several elements just as plants and animals are Reprinted 1968 chemical combinations. Nearly all of the 90 or more Lansing, Michigan known elements are found in the earth's crust, but only 8 are present in proportions greater than one percent. In order of abundance the 8 most important elements Contents are: INTRODUCTION............................................................... 1 Percent composition Element Symbol MINERALS........................................................................ 1 of the earth’s crust ROCKS ............................................................................. 1 Oxygen O 46.46 IGNEOUS ROCKS ........................................................ 2 Silicon Si 27.61 SEDIMENTARY ROCKS............................................... 2 Aluminum Al 8.07 METAMORPHIC ROCKS.............................................. 2 Iron Fe 5.06 IDENTIFICATION ............................................................. 2 Calcium Ca 3.64 COLOR AND STREAK.................................................. 2 Sodium Na 2.75 LUSTER......................................................................... 2 Potassium -
Uranium in Situ Leaching
IAEA-TECDOC-720 Uranium in situ leaching Proceedings Technicala of Committee Meeting held in Vienna, 5-8 October 1992 INTERNATIONAL ATOMIC ENERGY AGENC\ /A Y The IAEA doe t normallsno y maintain stock f reportso thin si s series. However, microfiche copies of these reports can be obtained from IIMIS Clearinghouse International Atomic Energy Agency Wagramerstrasse5 P.O. Box 100 A-1400 Vienna, Austria Orders shoul accompaniee db prepaymeny db f Austriao t n Schillings 100,- in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. Copies of this IAEA-TECDOC may be obtained from: Nuclear Material Fued san l Cycle Technology Section International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria URANIU SITMN I U LEACHING IAEA, VIENNA, 1993 IAEA-TECDOC-720 ISSN 1011-4289 Printe IAEe th AustriAn y i d b a September 1993 FOREWORD The IAEA's latest published estimates show that nuclear power production worldwide will maintain modest growth well into the next century. These estimates indicate that nuclear energy production will gro averagn wo 1.5y eb % 2.5o t year %pe r worldwide ove nex e decadeso rth tw t s i t I . for this reason that despite the continuing depressed uranium market, the question of uranium supply demand an d remain issun sa e that needaddressee b o st monitoredd dan developmentsw Ne . e du , to the recent entry of the Commonwealth of Independent States and China into the uranium market, increase such a need. -
Contrasting Styles of Lead-Zinc-Barium Mineralization in the Lower Benue Trough, Southeastern Nigeria
EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 21, No. 1 (March, 2017): 7 - 16 ORE DEPOSITS Contrasting styles of lead-zinc-barium mineralization in the Lower Benue Trough, Southeastern Nigeria Ifeanyi Andrew Oha*,1, Kalu Mosto Onuoha1, Silas Sunday Dada2 1Department of Geology, University of Nigeria, Nsukka. 2Kwara State University Malete *[email protected] ABSTRACT Keywords: Lead-Zinc-Barium mineralization, In the Lower Benue Trough of Southeastern Nigeria, lead-zinc-barium mineralization occurs as widely distributed Benue Trough, epigenetic, vein deposits. epigenetic fracture-controlled vein deposits which are restricted to Albian – Turonian sediments. Detailed field studies carried out in Ishiagu, Enyigba-Ameki-Ameri, Wanikande-Wanakom, and Gabu-Oshina which together constitute the four main areas of mineralization in the Lower Benue Trough, show that mineralization appears restricted to NW-SE and N-S fractures while the more common NE-SW fractures are barren. Apart from the Enyigba area, igneous bodies are found in the vicinity of the ore deposits while in the Wanikande area, barite veins and veinlets were observed to be closely interwoven with intrusive bodies. The host lithologies are highly varied, ranging from shales to siltstones, sandstones and occasionally igneous bodies. The ore assemblage also varies remarkably, with lead:zinc:barium ratios ranging from approximately 3:1:0 at Ishiagu, to 2:1:0 at Enyigba, 1:0:2 at Wanikande and nearly 100% barite at Gabu-Oshina. Thus, there is a remarkable increase in barite content from the southwest (Ishiagu) to the northeast (Gabu). The characteristics of the ore deposits roughly fit the base metal type mineralization known as clastic dominated lead-zinc-barium deposits. -
Ore Geology Reviews 112 (2019) 103037
Ore Geology Reviews 112 (2019) 103037 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev Framboidal chalcopyrite and bornite constrain redox conditions during formation of their host rocks in the copper stratabound mineralization of T Picachos, north-central Chile ⁎ R. Merineroa, , L. Ortegaa, R. Lunara, R. Piñaa, V. Cárdenesb a Mineralogy and Petrology Department, Complutense University of Madrid, Avda. Complutense s/n, 28040 Madrid, Spain b Geology Department, Oviedo University, C/Jesús Arias de Velasco s/n, 33005 Oviedo, Asturias, Spain ARTICLE INFO ABSTRACT Keywords: The Picachos Project is a copper deposit that occurs in manto-type orebodies in north-central Chile and it ex- Framboidal pyrite hibits common features of Chilean stratabound or manto-type copper deposits: (1) an increase of copper contents Framboidal chalcopyrite from the margins to the centre of the orebodies; (2) sodic and potassic hydrothermal alteration of host rocks with Framboidal bornite subsequent chloritization and sericite alteration; and (3) its occurrence in sequences of limestones that are Representative size distributions intercalated with volcanic rocks. The most salient characteristic of the Picachos Project is the presence of per- vasive framboidal pyrite in both the non-mineralized limestones and the host rocks of the copper mineralization. These framboidal pyrites are well preserved, probably due to their close relationship with organic matter, and have no evident textures of overgrowth, recrystallization or dissolution. Moreover, framboidal chalcopyrite and bornite are formed in the external and internal areas, respectively, of the orebodies, sharing common mor- phological characteristics with framboidal pyrite, and are formed by the replacement of the original pyrite framboids, without changing their shape and size distribution. -
Gomposition and Occurrence of Electrum Atthe
L37 The Canadian M inerala g i st Vol.33,pp. 137-151(1995) GOMPOSITIONAND OCCURRENCEOF ELECTRUM ATTHE MORNINGSTAR DEPOSIT, SAN BERNARDINOCOUNTY, GALIFORNIA: EVIDENCEFOR REMOBILIZATION OF GOLD AND SILVER RONALD WYNN SIIEETS*, JAMES R. CRAIG em ROBERT J. BODNAR Depanmen of Geolngical Sciences, Virginin Polytechnic h stitate and Stale (Jniversity, 4A44 Dening Hall, Blacl<sburg, Virginin 24060, U.S-A,. Arsrnacr Elecfum, acanthiteand uytenbogaardtite have been examined from six depthswithin the tabular quartzt calcite sockwork and breccia-filled veins in the fault-zone-hostedMorning Star depositof the northeasternMojave Desert, Califomia. Six distinct types of electrum have been identified on the basis of minerat association,grain moryhology and composition. Two types, (1) p1'rite-hostedand (2) quartz-hostedelectrum, occur with acanthite after argentite and base-metalsulfide minerals in unoxidized portions of the orebody; the remaining forr types, (3) goethite-hostedelectrum, (4) electnrm cores, (5) electrumrims and (6) wire electrum,are associatedwith assemblagesof supergeneminerals in its oxidizedportions. Pyrite- hosted quartz-hostedand goethite-hostedelectrum range in compositionfrom 6l ta 75 utt.7oAu and have uniform textures and no zoning. In lower portions ofthe oxidized ore zone, electrum seemsto replacegoethite and occursas small grains on surfacesof the goethite.Textural evidencefavors supergeneremobilization of Au and Ag, which were depositedas electrum on or replacinggoethite. This type of electrumis identical in appearanceand compositionto prinary electrum,In the upper portions of the oxidized zone,secondary electum occursas a gold-rich rim on a core of elechum and as wire-like grains,both with acanthiteand uytenbogaardtite.Such secondaryelectrum contains from 78 to 93 wt./o Au. Textural relations and asso- ciated minerals suggestthat the primary electrum was hydrothermally depositedand partially remobilized by supergene processes. -
Raman Spectroscopic Identification of Surface Species in the Leaching Of
Raman spectroscopic identification of surface species in group. The strongest Raman band at »293 cm-1 (Fig. 1) has the leaching of chalcopyrite been assigned to the symmetric anion A1 mode [4]. It is Gretel Parker, Gregory A. Hope and Ronald Woods clear from this figure that the other phases presented can School of Science Griffith University be distinguished from chalcopyrite using Raman Nathan, Queensland 4111, Australia spectroscopy. Figure 2 shows selected spectra from a surface of It is well established that the rate of metal leaching chalcopyrite from Mt Isa that contained negligible from chalcopyrite [CuFeS2] under ambient conditions is inclusions of other mineral phases. Also presented is a limited due to the formation of a metal-deficient spectrum after the mineral has been immersed for one week passivating layer, the composition and formation of which in a solution containing 0.03 mol dm-3 iron(III) sulfate and -3 is poorly understood. Cyclic voltammograms in acid 0.1 mol dm H2SO4 (Eh = 0.865V vs SHE). It can be seen solution display an anodic pre-wave during which the that a covellite-like phase has developed on the mineral passivating film is formed [1]. Raman spectroscopy surface. Elemental sulfur was also detected in experiments provides an in situ method of identifying surface species, with chalcopyrite samples that contained inclusions of and spatial variations in composition, provided the layer is other minerals. Mapping showed that surface product >5 nm, the detection limit of this technique. The formation was heterogeneous and could be related to integration of Raman spectroscopy with potentiodynamic initial surface structure and composition of the sample. -
Petrography and Geochemistry of the Banded Iron Formation of the Gangfelum Area, Northeastern Nigeria
Earth Science Research; Vol. 7, No. 1; 2018 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Petrography and Geochemistry of the Banded Iron Formation of the Gangfelum Area, Northeastern Nigeria Anthony Temidayo Bolarinwa1 1 Department of Geology, University of Ibadan, Ibadan, Nigeria Correspondence: Anthony Temidayo Bolarinwa, Department of Geology, University of Ibadan, Ibadan, Nigeria. E-mail: [email protected] Received: September 15, 2016 Accepted: October 3, 2016 Online Published: October 3, 2017 doi:10.5539/esr.v7n1p25 URL: https://doi.org/10.5539/esr.v7n1p25 Abstract The Gangfelum Banded Iron Formation (BIF) is located within the basement complex of northeastern Nigeria. It is characterized by alternate bands of iron oxide and quartz. Petrographic studies show that the BIF consist mainly of hematite, goethite subordinate magnetite and accessory minerals including rutile, apatite, tourmaline and zircon. Chemical data from inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma mass spectrometer (ICP-MS) show that average Fe2O3(t) is 53.91 wt.%. The average values of Al2O3 and CaO are 1.41 and 0.05 wt.% respectively, TiO2 and MnO are less than 0.5 wt. % each. The data suggested that the BIF is the oxide facies type. Trace element concentrations of Ba (67-332 ppm), Ni (28-35 ppm), Sr (13-55 ppm) and Zr (16-25 ppm) in the Gangfelum BIF are low and similar to the Maru and Muro BIF in northern Nigeria and also the Algoma iron formation from North America, the Orissa iron oxide facies of India and the Itabirite from Minas Gerais in Brazil.