A Comparative Genomics Multitool for Scientific Discovery and Conservation

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Genomics Multitool for Scientific Discovery and Conservation A comparative genomics multitool for scientific discovery and conservation Type Article Author Genereux, Diane P.; Serres, Aitor; Armstrong, Joel; Johnson, Jeremy; Marinescu, Voichita D.; Murén, Eva; Juan, David; Bejerano, Gill; Casewell, Nicholas R.; Chemnick, Leona G.; Damas, Joana; Di Palma, Federica; Diekhans, Mark; Fiddes, Ian T.; Garber, Manuel; Gladyshev, Vadim N.; Goodman, Linda; Haerty, Wilfried; Houck, Marlys L.; Hubley, Robert; Kivioja, Teemu; Koepfli, Klaus-Peter; Kuderna, Lukas F. K.; Lander, Eric S.; Meadows, Jennifer R. S.; Murphy, William J.; Nash, Will; Noh, Hyun Ji; Nweeia, Martin; Pfenning, Andreas R.; Pollard, Katherine S.; Ray, David A.; Shapiro, Beth; Smit, Arian F. A.; Springer, Mark S.; Steiner, Cynthia C.; Swofford, Ross; Taipale, Jussi; Teeling, Emma C.; Turner-Maier, Jason; Alfoldi, Jessica; Birren, Bruce; Ryder, Oliver A.; Lewin, Harris A.; Paten, Benedict; Marques-Bonet, Tomas; Lindblad-Toh, Kerstin; Karlsson, Elinor K.; Zoonomia Consortium Title A comparative genomics multitool for scientific discovery and conservation Journal title Nature URI http://hdl.handle.net/20.500.12634/808 Rights Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/. Rights link http://creativecommons.org/licenses/by/4.0/ Download date 05/10/2021 16:23:03 Analysis A comparative genomics multitool for scientific discovery and conservation https://doi.org/10.1038/s41586-020-2876-6 Zoonomia Consortium* Received: 17 April 2019 Accepted: 27 July 2020 The Zoonomia Project is investigating the genomics of shared and specialized traits Published online: 11 November 2020 in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome Open access alignment of 240 species of considerable phylogenetic diversity, comprising Check for updates representatives from more than 80% of mammalian families. We fnd that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity. The genomics revolution is enabling advances not only in medical We collaborated with 28 institutions to collect samples, nearly half research1, but also in basic biology2 and in the conservation of bio- (47%) of which were provided by The Frozen Zoo of San Diego Zoo Global diversity, where genomic tools have helped to apprehend poachers3 (Supplementary Table 1). Since 1975, The Frozen Zoo has stored renew- and to protect endangered populations4. However, we have only a able cell cultures for about 10,000 vertebrate animals that represent limited ability to predict which genomic variants lead to changes in over 1,100 taxa, including more than 200 species that are classified as organism-level phenotypes, such as increased disease risk—a task that, vulnerable, endangered, critically endangered or extinct by the Inter- in humans, is complicated by the sheer size of the genome (about three national Union for Conservation of Nature (IUCN)10. For 36 target spe- billion nucleotides)5. cies we were unable to acquire a DNA sample of sufficient quality, even Comparative genomics can address this challenge by identifying though our requirements were modest (Methods), which highlights a nucleotide positions that have remained unchanged across millions major impediment to expanding the phylogenetic diversity of genomics. of years of evolution6 (suggesting that changes at these positions will We used two complementary approaches to generate genome assem- negatively affect fitness), focusing the search for disease-causing blies (Extended Data Table 1). First, for 131 genomes we generated assem- variants. In 2011, the 29 Mammals Project7 identified 12-base-pair blies by performing a single lane of sequencing (2× 250-bp reads) on (bp) regions of evolutionary constraint that in total comprise 4.2% PCR-free libraries and assembling with DISCOVAR de novo11 (referred of the genome, by measuring sequence conservation in humans plus to here as ‘DISCOVAR assemblies’). This method does not require intact 28 other mammals. These regions proved to be more enriched for cells and uses less than two micrograms of medium-quality DNA (most the heritability of complex diseases than any other functional mark, fragments are over 5 kilobases (kb) in size), which allowed us to include including coding status8. By expanding the number of species and species that are difficult to access (Extended Data Figs. 1, 2) while achiev- making an alignment that is independent of any single reference ing ‘contiguous sequences constructed from overlapping short reads’ genome, the Zoonomia Project was designed to detect evolutionary (contig) lengths comparable to those of existing assemblies (median con- constraint in the eutherian lineage at increased resolution, and to tig N50 of 46.8 kb, compared to 47.9 kb for Refseq genome assemblies). provide genomic resources for over 130 previously uncharacterized For nine DISCOVAR assemblies and one pre-existing assembly (the species. lesser hedgehog tenrec (Echinops telfairi)), we increased contigu- ity 200-fold (the median scaffold length increased from 90.5 kb to 18.5 megabases (Mb)) through proximity ligation, which uses chromatin Designing a comparative-genomics multitool interaction data to capture the physical relationships among genomic When selecting species, we sought to maximize evolutionary branch regions12. Unlike short-contiguity genomes, these assemblies capture length, to include at least one species from each eutherian family, and structural changes such as chromosomal rearrangements13. The upgraded to prioritize species of medical, biological or biodiversity conservation assemblies increase the number of eutherian orders that are represented interest. Our assemblies increase the percentage of eutherian families by a long-range assembly (contig N50 > 20 kb and scaffold N50 > 10 Mb) with a representative genome from 49% to 82%, and include 9 species from 12 to 18 (out of 19). We are working on upgrading the assembly of that are the sole extant member of their family and 7 species that are the large treeshrew (Tupaia tana) for the remaining order (Scandentia). critically endangered9 (Fig. 1): the Mexican howler monkey (Alouatta palliata mexicana), hirola (Beatragus hunteri), Russian saiga (Saiga tatarica tatarica), social tuco-tuco (Ctenomys sociabilis), indri (Indri Comparative power of 240 species indri), northern white rhinoceros (Ceratotherium simum cottoni) and The Zoonomia alignment includes 120 newly generated assemblies black rhinoceros (Diceros bicornis). and 121 existing assemblies, representing a total of 240 species (the *A list of authors and their affiliations appears at the end of the paper. 240 | Nature | Vol 587 | 12 November 2020 Solenodontidae (1) Erinaceidae (1) Ctenodactylidae (1) Soricidae (2) Rodentia Thryonomyidae (1) Eulipotyphla Talpidae (3) Petromuridae (1) (shrews, moles Manidae (3) (rodents) Bathyergidae (2) and hedgehogs) Nandiniidae (0) Cuniculidae (1) Eupleridae (1) Caviidae (5) Herpestidae (3) Dasyproctidae (1) Hyaenidae (1) Primates Erethizontidae (0) Viverridae (1) Abrocomidae (0) Felidae (7) Octodontidae (1) Canidae (3) Fossa Ctenomyidae (1) Dermoptera Aye-aye Pholidota Procyonidae (0) Echimyidae (0) Mustelidae (5) (arboreal Myocastoridae (1) (pangolins) Ailuridae (1) gliding Capromyidae (1) Mephitidae (1) mammals) Chinchillidae (1) Otariidae (1) Dinomyidae (1) Odobenidae (1) Hystricidae (1) Phocidae (3) Scandentia Platacanthomyidae (0) Ursidae (2) (tree shrews) Calomyscidae (0) Equidae (3) Muridae (8) Tapiridae (2) Cricetidae (8) Carnivora Rhinocerotidae (4) Nesomyidae (2) (carnivores) Camelidae (4) Spalacidae (2) Arctic fox Cingulata Dipodidae (3) Hippopotamidae (1) (armadillos) Geoffroy’s Balaenidae (1) Anomaluridae (0) spider monkey Balaenopteridae (2) Pedetidae (1) Eschrichtiidae (1) Castoridae (1) Neobalaenidae (0) Pilosa Heteromyidae (3) Physeteridae (1) (anteaters Geomyidae (0) Perissodactyla Platanistidae (1) and sloths) Sciuridae (4) (odd-toed Ziphiidae (2) Aplodontiidae (1) ungulates) Iniidae (3) Gliridae (3) Phocoenidae (2) Sirenia Lorisidae (1) Monodontidae (2) (sea cows and Galagidae (1) Delphinidae (2) Daubentoniidae (1) Tragulidae (1) Hirola manatees) Indridae (2) Moschidae (1) Lepilemuridae (0) Southern three- Bovidae (14) Cheirogaleidae (3) banded armadillo Cetartiodactyla Girafdae (2) Hyracoidea Lemuridae (3) (whales and even- Antilocapridae (1) (hyraxes) Pitheciidae (2) Cervidae
Recommended publications
  • Investigating Evolutionary Processes Using Ancient and Historical DNA of Rodent Species
    Investigating evolutionary processes using ancient and historical DNA of rodent species Thesis submitted for the degree of Doctor of Philosophy (PhD) University of London Royal Holloway University of London Egham, Surrey TW20 OEX Selina Brace November 2010 1 Declaration I, Selina Brace, declare that this thesis and the work presented in it is entirely my own. Where I have consulted the work of others, it is always clearly stated. Selina Brace Ian Barnes 2 “Why should we look to the past? ……Because there is nowhere else to look.” James Burke 3 Abstract The Late Quaternary has been a period of significant change for terrestrial mammals, including episodes of extinction, population sub-division and colonisation. Studying this period provides a means to improve understanding of evolutionary mechanisms, and to determine processes that have led to current distributions. For large mammals, recent work has demonstrated the utility of ancient DNA in understanding demographic change and phylogenetic relationships, largely through well-preserved specimens from permafrost and deep cave deposits. In contrast, much less ancient DNA work has been conducted on small mammals. This project focuses on the development of ancient mitochondrial DNA datasets to explore the utility of rodent ancient DNA analysis. Two studies in Europe investigate population change over millennial timescales. Arctic collared lemming (Dicrostonyx torquatus) specimens are chronologically sampled from a single cave locality, Trou Al’Wesse (Belgian Ardennes). Two end Pleistocene population extinction-recolonisation events are identified and correspond temporally with - localised disappearance of the woolly mammoth (Mammuthus primigenius). A second study examines postglacial histories of European water voles (Arvicola), revealing two temporally distinct colonisation events in the UK.
    [Show full text]
  • Solenodon Genome Reveals Convergent Evolution of Venom in Eulipotyphlan Mammals
    Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals Nicholas R. Casewella,1, Daniel Petrasb,c, Daren C. Cardd,e,f, Vivek Suranseg, Alexis M. Mychajliwh,i,j, David Richardsk,l, Ivan Koludarovm, Laura-Oana Albulescua, Julien Slagboomn, Benjamin-Florian Hempelb, Neville M. Ngumk, Rosalind J. Kennerleyo, Jorge L. Broccap, Gareth Whiteleya, Robert A. Harrisona, Fiona M. S. Boltona, Jordan Debonoq, Freek J. Vonkr, Jessica Alföldis, Jeremy Johnsons, Elinor K. Karlssons,t, Kerstin Lindblad-Tohs,u, Ian R. Mellork, Roderich D. Süssmuthb, Bryan G. Fryq, Sanjaya Kuruppuv,w, Wayne C. Hodgsonv, Jeroen Kooln, Todd A. Castoed, Ian Barnesx, Kartik Sunagarg, Eivind A. B. Undheimy,z,aa, and Samuel T. Turveybb aCentre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom; bInstitut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany; cCollaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA 92093; dDepartment of Biology, University of Texas at Arlington, Arlington, TX 76010; eDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; fMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138; gEvolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India; hDepartment of Biology, Stanford University, Stanford, CA 94305; iDepartment of Rancho La Brea, Natural History Museum of Los Angeles County, Los Angeles,
    [Show full text]
  • Deciduous Forest
    Biomes and Species List: Deciduous Forest, Desert and Grassland DECIDUOUS FOREST Aardvark DECIDUOUS FOREST African civet DECIDUOUS FOREST American bison DECIDUOUS FOREST American black bear DECIDUOUS FOREST American least shrew DECIDUOUS FOREST American pika DECIDUOUS FOREST American water shrew DECIDUOUS FOREST Ashy chinchilla rat DECIDUOUS FOREST Asian elephant DECIDUOUS FOREST Aye-aye DECIDUOUS FOREST Bobcat DECIDUOUS FOREST Bornean orangutan DECIDUOUS FOREST Bridled nail-tailed wallaby DECIDUOUS FOREST Brush-tailed phascogale DECIDUOUS FOREST Brush-tailed rock wallaby DECIDUOUS FOREST Capybara DECIDUOUS FOREST Central American agouti DECIDUOUS FOREST Chimpanzee DECIDUOUS FOREST Collared peccary DECIDUOUS FOREST Common bentwing bat DECIDUOUS FOREST Common brush-tailed possum DECIDUOUS FOREST Common genet DECIDUOUS FOREST Common ringtail DECIDUOUS FOREST Common tenrec DECIDUOUS FOREST Common wombat DECIDUOUS FOREST Cotton-top tamarin DECIDUOUS FOREST Coypu DECIDUOUS FOREST Crowned lemur DECIDUOUS FOREST Degu DECIDUOUS FOREST Working Together to Live Together Activity—Biomes and Species List 1 Desert cottontail DECIDUOUS FOREST Eastern chipmunk DECIDUOUS FOREST Eastern gray kangaroo DECIDUOUS FOREST Eastern mole DECIDUOUS FOREST Eastern pygmy possum DECIDUOUS FOREST Edible dormouse DECIDUOUS FOREST Ermine DECIDUOUS FOREST Eurasian wild pig DECIDUOUS FOREST European badger DECIDUOUS FOREST Forest elephant DECIDUOUS FOREST Forest hog DECIDUOUS FOREST Funnel-eared bat DECIDUOUS FOREST Gambian rat DECIDUOUS FOREST Geoffroy's spider monkey
    [Show full text]
  • Mitogenomic Sequences Support a North–South Subspecies Subdivision Within Solenodon Paradoxus
    St. Norbert College Digital Commons @ St. Norbert College Faculty Creative and Scholarly Works 4-20-2016 Mitogenomic sequences support a north–south subspecies subdivision within Solenodon paradoxus Adam L. Brandt Kirill Grigorev Yashira M. Afanador-Hernández Liz A. Paullino William J. Murphy See next page for additional authors Follow this and additional works at: https://digitalcommons.snc.edu/faculty_staff_works Authors Adam L. Brandt, Kirill Grigorev, Yashira M. Afanador-Hernández, Liz A. Paullino, William J. Murphy, Adrell Núñez, Aleksey Komissarov, Jessica R. Brandt, Pavel Dobrynin, David Hernández-Martich, Roberto María, Stephen J. O'Brien, Luis E. Rodríguez, Juan C. Martínez-Cruzado, Taras K. Oleksyk, and Alfred L. Roca This is an Accepted Manuscript of an article published by Taylor & Francis Group in Mitochondrial DNA Part A on 15/03/2016, available online: http://dx.doi.org/10.3109/24701394.2016.1167891. 1 Mitochondrial DNA, Original Article 2 3 4 Title: Mitogenomic sequences support a north-south subspecies subdivision within 5 Solenodon paradoxus 6 7 8 Authors: Adam L. Brandt1,2+, Kirill Grigorev4+, Yashira M. Afanador-Hernández4, Liz A. 9 Paulino5, William J. Murphy6, Adrell Núñez7, Aleksey Komissarov8, Jessica R. Brandt1, 10 Pavel Dobrynin8, J. David Hernández-Martich9, Roberto María7, Stephen J. O’Brien8,10, 11 Luis E. Rodríguez5, Juan C. Martínez-Cruzado4, Taras K. Oleksyk4* and Alfred L. 12 Roca1,2,3* 13 14 +Equal contributors 15 *Corresponding authors: [email protected]; [email protected] 16 17 18 Affiliations: 1Department
    [Show full text]
  • Solenodon Genome Reveals Convergent Evolution of Venom in Eulipotyphlan Mammals
    Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals Nicholas R. Casewella,1, Daniel Petrasb,c, Daren C. Cardd,e,f, Vivek Suranseg, Alexis M. Mychajliwh,i,j, David Richardsk,l, Ivan Koludarovm, Laura-Oana Albulescua, Julien Slagboomn, Benjamin-Florian Hempelb, Neville M. Ngumk, Rosalind J. Kennerleyo, Jorge L. Broccap, Gareth Whiteleya, Robert A. Harrisona, Fiona M. S. Boltona, Jordan Debonoq, Freek J. Vonkr, Jessica Alföldis, Jeremy Johnsons, Elinor K. Karlssons,t, Kerstin Lindblad-Tohs,u, Ian R. Mellork, Roderich D. Süssmuthb, Bryan G. Fryq, Sanjaya Kuruppuv,w, Wayne C. Hodgsonv, Jeroen Kooln, Todd A. Castoed, Ian Barnesx, Kartik Sunagarg, Eivind A. B. Undheimy,z,aa, and Samuel T. Turveybb aCentre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA Liverpool, United Kingdom; bInstitut für Chemie, Technische Universität Berlin, 10623 Berlin, Germany; cCollaborative Mass Spectrometry Innovation Center, University of California, San Diego, La Jolla, CA 92093; dDepartment of Biology, University of Texas at Arlington, Arlington, TX 76010; eDepartment of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; fMuseum of Comparative Zoology, Harvard University, Cambridge, MA 02138; gEvolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, 560012 Bangalore, India; hDepartment of Biology, Stanford University, Stanford, CA 94305; iDepartment of Rancho La Brea, Natural History Museum of Los Angeles County, Los Angeles,
    [Show full text]
  • World Wildlife Fund Mint Sets BEAUTIFUL POSTAGE STAMPS from AROUND the WORLD F-VF, NH OR BETTER
    World Wildlife Fund Mint Sets BEAUTIFUL POSTAGE STAMPS FROM AROUND THE WORLD F-VF, NH OR BETTER Stamps are all Fine to Very Fine or Better, Never Hinged Please order by country name and Scott #. Where there isn’t a Scott #, please give description AFGHANISTAN Scott # Year & Description Retail Price 1172-75 1985 Leopard (4) ........................................................... 10.75 .. 1998 Steppe Sheep Se-tenant Strip of 4 .......................... 11.00 .. same, Se-tenant Sheet of 16 .......................................... 44.00 .. 2004 Himalayan Musk Deer (4)........................................ 13.00 .. same, Se-tenant Vertical Strip of 4 .................................. 13.50 .. same, Se-tenant Sheet of 16 .......................................... 53.50 AITUTAKI 533-36 2002 Tahitian Blue Lorikeet (4) ........................................ 7.25 533-36 same, 4 Mini-Sheets of 4................................................ 28.75 ALBANIA 2332-35 1990 Chamois Se-tenant Block of 4.................................. 8.50 ALGERIA 872-75 1988 Barbary Macaque (4).............................................. 8.00 ANGOLA 781-84 1990 Sable Antelope Se-tenant Block of 4 ....................... 10.00 1058 1999 Lesser Flamingo Se-tenant Strip of 4........................ 7.00 1058 same, Se-tenant Sheet of 16 .......................................... 27.50 1279 2004 Black & White Colobus, Se-tenant Block of 4............. 6.00 1279 same, Se-tenant Horizontal Strip of 4............................... 6.00 1279 same, Se-tenant Sheet
    [Show full text]
  • Myoglobin Primary Structure Reveals Multiple Convergent Transitions To
    RESEARCH ARTICLE Myoglobin primary structure reveals multiple convergent transitions to semi- aquatic life in the world’s smallest mammalian divers Kai He1,2,3,4*, Triston G Eastman1, Hannah Czolacz5, Shuhao Li1, Akio Shinohara6, Shin-ichiro Kawada7, Mark S Springer8, Michael Berenbrink5*, Kevin L Campbell1* 1Department of Biological Sciences, University of Manitoba, Winnipeg, Canada; 2Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; 3State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; 4Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China; 5Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, United Kingdom; 6Department of Bio-resources, Division of Biotechnology, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan; 7Department of Zoology, Division of Vertebrates, National Museum of Nature and Science, Tokyo, Japan; 8Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, Riverside, United States *For correspondence: Abstract The speciose mammalian order Eulipotyphla (moles, shrews, hedgehogs, solenodons) [email protected] (KH); combines an unusual diversity of semi-aquatic, semi-fossorial, and fossorial forms that arose from [email protected]. terrestrial forbearers. However, our understanding of
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • Venom Use in Eulipotyphlans: an Evolutionary and Ecological Approach
    toxins Review Venom Use in Eulipotyphlans: An Evolutionary and Ecological Approach Krzysztof Kowalski 1 and Leszek Rychlik 2,* 1 Department of Vertebrate Zoology and Ecology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toru´n,87-100 Toru´n,Poland; [email protected] 2 Department of Systematic Zoology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Pozna´n,61-614 Pozna´n,Poland * Correspondence: [email protected] Abstract: Venomousness is a complex functional trait that has evolved independently many times in the animal kingdom, although it is rare among mammals. Intriguingly, most venomous mammal species belong to Eulipotyphla (solenodons, shrews). This fact may be linked to their high metabolic rate and a nearly continuous demand of nutritious food, and thus it relates the venom functions to facilitation of their efficient foraging. While mammalian venoms have been investigated using biochemical and molecular assays, studies of their ecological functions have been neglected for a long time. Therefore, we provide here an overview of what is currently known about eulipotyphlan venoms, followed by a discussion of how these venoms might have evolved under ecological pressures related to food acquisition, ecological interactions, and defense and protection. We delineate six mutually nonexclusive functions of venom (prey hunting, food hoarding, food digestion, reducing intra- and interspecific conflicts, avoidance of predation risk, weapons in intraspecific competition) and a number of different subfunctions for eulipotyphlans, among which some are so far only hypothetical while others have some empirical confirmation. The functions resulting from the need Citation: Kowalski, K.; Rychlik, L.
    [Show full text]
  • Jaw Shape and Mechanical Advantage Are Indicative of Diet in Mesozoic Mammals ✉ Nuria Melisa Morales-García 1 , Pamela G
    ARTICLE https://doi.org/10.1038/s42003-021-01757-3 OPEN Jaw shape and mechanical advantage are indicative of diet in Mesozoic mammals ✉ Nuria Melisa Morales-García 1 , Pamela G. Gill1,2, Christine M. Janis 1,3 & Emily J. Rayfield 1 Jaw morphology is closely linked to both diet and biomechanical performance, and jaws are one of the most common Mesozoic mammal fossil elements. Knowledge of the dietary and functional diversity of early mammals informs on the ecological structure of palaeo- communities throughout the longest era of mammalian evolution: the Mesozoic. Here, we analyse how jaw shape and mechanical advantage of the masseter (MAM) and temporalis (MAT) muscles relate to diet in 70 extant and 45 extinct mammals spanning the Late 1234567890():,; Triassic-Late Cretaceous. In extant mammals, jaw shape discriminates well between dietary groups: insectivores have long jaws, carnivores intermediate to short jaws, and herbivores have short jaws. Insectivores have low MAM and MAT, carnivores have low MAM and high MAT, and herbivores have high MAM and MAT. These traits are also informative of diet among Mesozoic mammals (based on previous independent determinations of diet) and set the basis for future ecomorphological studies. 1 School of Earth Sciences, Wills Memorial Building, University of Bristol, Bristol, UK. 2 Department of Earth Sciences, Natural History Museum, London, UK. ✉ 3 Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:242 | https://doi.org/10.1038/s42003-021-01757-3 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01757-3 ur understanding of Mesozoic mammals has dramatically metric) has been used as a proxy for prey choice and feeding improved in the past three decades.
    [Show full text]
  • A Comparative Genomics Multitool for Scientific Discovery and Conservation
    Analysis https://doi.org/10.1038/s41586-020-2876-6 Supplementary information A comparative genomics multitool for scientific discovery and conservation In the format provided by the authors and unedited Nature | www.nature.com/nature Supplementary Table 1 Supplementary Table 1. Genome assembly statistics for all attemped and successful Zoonomia Project genomes. Of 173 species and subspecies initially planned for inclusion in the Zoonomia Project, genome assemblies have been generated and released for 132. For the remainder, acquisition of high quality samples was a major impediment. Set A: Discovar only genomes; Set B: Genomes upgraded to longer contiguity; Set C: Assembly failed; Set D: Sample failed QC; Set E: Sample not found; ** Genome assembly statistics output by DISCOVAR de novo. All samples were collected and shipped in compliance with the applicable regulations for sample collection, transfer, export and import. Contig Size (Gb; Mean Busco BUSCO Provider Provider Sequencing N50 (bp) Scaffold contigs base Complete Single BUSCO BUSCO BUSCO Set Species Common Name Order Family IUCN Biosample Institution contact location Genbank accession ** N50 (bp)** >1kb)** quality** Coverage** (n=4104) Copy Duplicated Fragmented Missing Liverpool Solenodon Hispaniolan School of Nicholas Uppsala A Eulipotyphla Solenodontidae Endangered SAMN07678062 GCA_004363575.1 244,273 422,311 2.05 35.8 29.3 90.4% 90.1% 0.3% 6.9% 2.7% paradoxus solenodon Tropical Casewell University Medicine Crocidura Indochinese University of Kevin Uppsala A Eulipotyphla
    [Show full text]
  • Innovative Assembly Strategy Contributes to Understanding The
    GigaScience Innovative assembly strategy contributes to understanding the evolution and conservation genetics of the endangered Solenodon paradoxus from the island of Hispaniola --Manuscript Draft-- Manuscript Number: GIGA-D-17-00182R2 Full Title: Innovative assembly strategy contributes to understanding the evolution and conservation genetics of the endangered Solenodon paradoxus from the island of Hispaniola Article Type: Research Funding Information: National Science Foundation Dr. Taras K Oleksyk (1432092) Ministry of Education and Science of the Dr. Stephen J O'Brien Russian Federation (Mega-grant 11.G34.31.0068) Saint Petersburg State University Dr. Stephen J O'Brien (1.50.1623.2013) Abstract: Solenodons are insectivores living in Hispaniola and Cuba that form an isolated branch in the tree of placental mammals highly divergent from other eulipothyplan insectivores The history, unique biology and adaptations of these enigmatic venomous species could be illuminated by the availability of genome data, but a whole genome assembly for solenodons has not been previously performed, partially due to the difficulty in obtaining samples from the field. Island isolation and reduced numbers have likely resulted in high homozygosity within the Hispaniolan solenodon (Solenodon paradoxus), thus we tested the performance of several assembly strategies on the genome of this genetically impoverished species. The string-graph based assembly strategy seemed a better choice compared to the conventional de Bruijn graph approach, due to the high levels of homozygosity, which is often a hallmark of endemic or endangered species. A consensus reference genome was assembled from sequences of five individuals from the southern subspecies (S. p. woodi). In addition, we obtained additional sequence from one sample of the northern subspecies (S.
    [Show full text]