Announcements

Total Page:16

File Type:pdf, Size:1020Kb

Announcements Announcements • No office hours tomorrow (Wed. March 30) • Homework 5 extra credit: – Find and plot additional tracks of Hurricane Ivan (after reaching its northeastmost point in U.S) Lightning and Tornadoes North Dakota Outline • Finish lightning/thunderstorms • Tornado Facts • Formation and Conditions Needed • Damage Levels • U.S. Occurrences • Examples Electrification of Clouds • Generally upper level of clouds - + charge • Mid level - negative charge • Lower level - mix of charge • Why? Transfer of positive ions from warm to cold objects in collisions between ice droplets, water droplets Upper level + Mid level - Lower level mix Note positive charge on high objects near cloud negative charges Lightning Strike • Unlike charges attract each other – Negative charges in cloud lead to positive charges on ground – Dense on high objects (trees, poles) • Set up electric potential between cloud and ground • When large enough, current flows - lightning Lightning Facts • Several strokes occur over ~1/2 second • Travels over 6,000 miles/second • Can produce very high temperatures (55,000 F) briefly – High temps cause air to expand, produce sound wave (thunder) Deaths • ~143 deaths per year in U.S. • Ways to avoid – Stay inside house, car, truck – Outside, move to low place Winds • Can be straight-line or rotating (tornadoes) • Straight-line winds can be 80-100 mph – Damage structures, trees – Duration can be hours What are tornadoes? • Rapidly rotating winds usually descending from thunderstorm • Most violent storms with highest windspeeds • Average U.S. fatalities ~100/year • Common in Great Plains Tornado Facts • Typically ~100-600 m wide – Some up to 1 mile wide • Speeds – Travel up to 62 mph (100 km/hr) – Wind speeds up to 300 mph (rare, but most deadly) Formation • Some details still unknown • Tend to form with severe thunderstorms • Appear to require additional component to cause shearing of thunderstorm cloud Conditions • Some same as needed for hailstorms – Northward flow of warm, moist air (Gulf of Mexico) – Cold dry air from Canada or Western U.S. • Jet stream - key component for spinning the cloud – High enough that it starts top of cloud spinning, rest of cloud pushed by mid-level air motion Key Components: Warm moist air Cold dry air Jet stream Differences between Systems • Single cell – Updrafts of warm air, downdrafts (rain) from condensing, cooling air Differences between Systems • Supercell thunderstorm – Updrafts on leading side: rain – Downdrafts on trailing side: rotating air packets that can form funnel clouds (tornadoes after hit ground) – Many have centers with rapidly upflowing air (sucks up material) Importance of Rotation • Not Coriolis force issue (feature too small to be affected) • Once rotation starts, pulls into tight spiral – Speed increase – Smaller diameter, faster it spins Structure of tornado • Can be horizontal or vertical • Winds vary within cloud – Highest a few 100 ft above ground • Objects (trees, buildings, etc) cause friction, slows wind speed close to surface Destruction from Tornadoes • High speed winds – Damage to trees, buildings, etc • Lifting force into funnel – Vehicles, people, other loosely attached objects • Explosions due to extreme changes in air pressure – Very low pressures inside funnel, higher pressures outside the funnel Measuring Damage • Fujita Scale – Developed in 1060s – Based on wind speed damage Fujita Scale Category F0: Light Damage (<73 mph); Some damage to chimneys; branches broken off trees; shallow- rooted trees pushed over; sign boards damaged. Category F1: Moderate Damage (73-112 mph); Peels surface off roofs; mobile homes pushed off foundations or overturned; moving autos blown off road. Category F2: Considerable Damage (113-157 mph); Roofs torn off frame houses; mobile homes demolished; boxcars overturned; large trees snapped or uprooted; light-object missiles generated; cars lifted off ground. Category F3: Severe Damage (158- 206 mph); Roofs and some walls torn off well-constructed houses, trains overturned; most trees in forest uprooted; heavy cars lifted off ground and thrown. Category F4: Devastating Damage (207- 260 mph); Well-constructed houses leveled; structure with weak foundations blown off some distance; cars thrown and large missiles generated. Category F5: Incredible Damage (261- 318 mph); Strong frame houses lifted off foundations and swept away; automobile sized missiles fly through the air in excess of 100 meters (109 yards); trees debarked; incredible phenomena will occur. U.S. Occurrences • For given year (1992) there were – 696 F-0 – 411 F-1 – 129 F-2 – 43 F-3 – 13 F-4 – 1 F-5 ** Note that these are very rare events Where and When are Tornadoes Common in the U.S.? • Where: interior of U.S. is tornado capital of the world – Why? Conditions there are great for formation Thunderstorms Tornado map doesn’t quite match the thunderstorm occurrence map, but is close to the hailstorm map. Why? hailstorms Need cold dry air! Deaths per state, 1950-1994 Where and When are Tornadoes Common in the U.S.? • When: late spring, early summer – Varies, peak moves north during summer – Why? Conditions right during those months (key jet stream positioning) Fatalities • Common locations – Mobile homes • No interior rooms for protection • Weaker coupling to ground – Exterior rooms with windows • Not as much protection as solid walls Best Places to Ride out a Tornado • Basement • Interior closet, bathroom, hallway on lowest floor of a building • If outside, find low point (ditch, streambed) Predictions and Warnings • # of deaths/decade is decreasing Why? Prediction and Warning • Less fatalities partially from building design • Partially from development of warning systems – Tornado watch: conditions are right for events – Spotters, weather radar look for tornadoes – Warning issued after touchdown spotted • Sirens • Radio/TV broadcasts • Can provide minutes of warning Tri-State Tornado • March 1925 • Largest known single tornado (F-5) • Lasted over 3.5 hours • Traveled 219 miles through MO, IL, IN • Swath of ~1 mile wide (widest recorded) • 689 fatalities Murphysboro: most fatalities Why so many fatalities? No warning system 1974 Super-Outbreak • Weather conditions collide – Cold front from Rockies – Low pressure moving east – Humid air over Gulf of Mexico – Polar jet stream down into TX – Dry air mass from SW moving towards low pressure • Form inversion layer: dry air above moist air 1974 Super-Outbreak • Moist air breaks through to form huge thunderclouds • Set spinning by jet stream, converging air masses • 16 hours, 147 tornadoes in 13 states – 6 were F-5 tornadoes – 24 were F-4 F-5 Ohio F-4 Indiana Ohio subdivision after 1974 Outbreak Recent • Tornado Activity in 2005 (from National Weather Service) • Jan 13, 2005 The 2005 tornado season got off to an early start. A destructive F3 tornado moved across 20 miles of Union County, Arkansas from Junction City to Lawson. Two people were killed, both 83 years old, in separate mobile homes about a mile apart. About 30 homes were destroyed. • January 13, 2005 In a different storm, a married couple died at Arlington, Early County, Georgia, when their mobile home was destroyed. Only in rural areas? • NO! • Can form in cities – Although they are small targets • Recent (late 1990’s-2000) events include – F-5 in Oklahoma City (42 fatalities), F-4 in Wichita, KS; Cincinnati, OH (6-7 fatalities each) Outbreak in Oklahoma had ~59 tornadoes Remote sensing satellite data shows swath hit by tornado near OK City Waterspout • Rotating column of air over large body of water – Can be a tornado that formed over land and then traveled over water – Some form over water: “fair weather” waterspouts • Generally smaller diameter than average tornado, move more slowly, shorter duration Next Time • Hurricanes Part 1.
Recommended publications
  • Article a Climatological Perspective on the 2011 Alabama Tornado
    Chaney, P. L., J. Herbert, and A. Curtis, 2013: A climatological perspective on the 2011 Alabama tornado outbreak. J. Operational Meteor., 1 (3), 1925, doi: http://dx.doi.org/10.15191/nwajom.2013.0103. Journal of Operational Meteorology Article A Climatological Perspective on the 2011 Alabama Tornado Outbreak PHILIP L. CHANEY Auburn University, Auburn, Alabama JONATHAN HERBERT and AMY CURTIS Jacksonville State University, Jacksonville, Alabama (Manuscript received 23 January 2012; in final form 17 September 2012) ABSTRACT This paper presents a comparison of the recent 27 April 2011 tornado outbreak with a tornado climatology for the state of Alabama. The climatology for Alabama is based on tornadoes that affected the state during the 19812010 period. A county-level risk index is produced from this climatology. Tornado tracks from the 2011 outbreak are mapped and compared with the climatology and risk index. There were 62 tornadoes in Alabama on 27 April 2011, including many long-track and intense tornadoes. The event resulted in 248 deaths in the state. The 2011 outbreak is also compared with the April 1974 tornado outbreak in Alabama. 1. Introduction population density (Gagan et al. 2010; Dixon et al. 2011). Tornadoes have been documented in every state in Alabama is affected in the spring and fall by the United States and on every continent except midlatitude cyclones, often associated with severe Antarctica. The United States has by far the most weather and tornadoes. During summer and fall tornado reports annually of any country, averaging tornadoes also can be produced by tropical cyclones. A about 1,300 yr-1.
    [Show full text]
  • Another Look at the 11 April 1965 Palm Sunday Outbreak
    Central Region Technical Attachment Number 15-02 December 2015 Another Look at the 11 April 1965 Palm Sunday Outbreak JON CHAMBERLAIN National Weather Service, Rapid City, South Dakota ABSTRACT The 11 April 1965 tornado outbreak was one of the most devastating tornado outbreaks in recorded history, affecting six Midwestern states with significant loss of life and property. This storm system was particularly interesting for the number of discrete tornadic supercells in the southern Great Lakes, especially given the number of F3+ tornadoes. In addition, many supercells were observed to contain multiple funnels and multiple tornado cyclones (some occurring simultaneously). Dr. Theodore Fujita performed a comprehensive analysis of this event in the late 1960s, featuring a detailed analysis of both the meteorology and tornado damage paths. However, technology and science have progressed much between 1970 and 2015, with new forecast parameters and techniques available to forecasters. The Palm Sunday Outbreak of 1965 was re-examined using modern-day severe weather forecast parameters derived from observational data to help understand why this storm system produced such violent thunderstorms, particularly across extreme northern Indiana. In order to do this, approximately 200 handwritten surface observations were obtained from the National Climatic Data Center’s Electronic Digital Archive Data System web interface. Once these observations were put into a database, several surface weather maps, synthetic soundings, hodographs, and upper-level analyses were constructed. These data, along with archived upper-air data, were used to calculate several severe weather forecast parameters, which truly revealed the magnitude of the event. 1. Introduction The 11 April 1965 tornado outbreak was one of the most devastating tornado outbreaks in recorded history.
    [Show full text]
  • U.S. Violent Tornadoes Relative to the Position of the 850-Mb
    U.S. VIOLENT TORNADOES RELATIVE TO THE POSITION OF THE 850 MB JET Chris Broyles1, Corey K. Potvin 2, Casey Crosbie3, Robert M. Rabin4, Patrick Skinner5 1 NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma 2 Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma 3 NOAA/NWS/CWSU, Indianapolis, Indiana 4 National Severe Storms Laboratory, Norman, Oklahoma 5 Cooperative Institute for Mesoscale Meteorological Studies, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma Abstract The Violent Tornado Webpage from the Storm Prediction Center has been used to obtain data for 182 events (404 violent tornadoes) in which an F4-F5 or EF4-EF5 tornado occurred in the United States from 1950 to 2014. The position of each violent tornado was recorded on a gridded plot compared to the 850 mb jet center within 90 minutes of the violent tornado. The position of each 850 mb jet was determined using the North American Regional Reanalysis (NARR) from 1979 to 2014 and NCEP/NCAR Reanalysis from 1950 to 1978. Plots are shown of the position of each violent tornado relative to the center of the 850 mb low-level jet. The United States was divided into four parts and the plots are available for the southern Plains, northern Plains, northeastern U.S. and southeastern U.S with a division between east and west at the Mississippi River. Great Plains violent tornadoes clustered around a center about 130 statute miles to the left and slightly ahead of the low-level jet center while eastern U.S.
    [Show full text]
  • 1974 Tornado Super Outbreak Report
    Analysis and Reconstruction of the 1974 Tornado Super Outbreak RMS Special Report TM Risk Management Solutions I NTRODUCTION The Super Outbreak of tornadoes that occurred on April 3-4, 1974 was the most intense and widespread tornado outbreak in recorded history. In total, 148 tornadoes spanned 13 states producing about 900 square miles (2331 square km) of tornado damage in less than 18 hours. This report reviews the event’s meteorological and damage characteristics, describes the impact subsequent research had on tornado risk models, and examines the property losses possible if the outbreak were to occur today. 1 1974 Super Tornado Outbreak Copyright 2004 Risk Management Solutions, Inc. All Rights Reserved. April 2, 2004 M ETEOROLOGICAL C HARACTERISTICS Looking back, the atmospheric characteristics preceding the super outbreak provided clear evidence of the high potential for widespread tornado development. On the evening of April 2, 1974 a deep area of low pressure (983 millibars) over the Colorado-Kansas border created strong winds blowing from the south over the lower Mississippi River Valley. This forced high-humidity air northward from the Gulf of Mexico to the lower Midwest and Ohio Valley states. This moist layer of air was “capped” by warm, dry air, which limited thunderstorm development and created highly unstable atmospheric conditions. Recognizing this, the National Oceanic and Atmospheric Administration (NOAA) issued preliminary severe weather alerts on the morning of April 2 for much of the central and southern plains states. During the morning of April 3, the center of low pressure moved northeastward to the Iowa- Illinois border. As the air warmed up during the day and winds converged near the ground, an explosive and sudden outbreak of thunderstorms developed around 2:00 pm Central Daylight Time (CDT).
    [Show full text]
  • Observational Analysis of the Interaction Between a Baroclinic Boundary and Supercell Storms on 27 April 2011
    OBSERVATIONAL ANALYSIS OF THE INTERACTION BETWEEN A BAROCLINIC BOUNDARY AND SUPERCELL STORMS ON 27 APRIL 2011 by ADAM THOMAS SHERRER A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in The Department of Atmospheric Science to The School of Graduate Studies of The University of Alabama in Huntsville HUNTSVILLE, ALABAMA 2014 ABSTRACT The School of Graduate Studies The University of Alabama in Huntsville Degree Master of Science College/Dept. Science/Atmospheric Science Name of Candidate Adam Sherrer Title Observational Analysis of the Interaction Between a Baroclinic Boundary and Supercell Storms on 27 April 2011 A thermal boundary developed during the morning to early afternoon hours on 27 April as a result of rainfall evaporation and shading from reoccurring deep convection. This boundary propagated to the north during the late afternoon to evening hours. The presence of the boundary produced an area more conducive for the formation of strong violent tornadoes through several processes. These processes included the production of horizontally generated baroclinic vorticity, increased values in storm- relative helicity, and decreasing lifting condensation level heights. Five supercell storms formed near and/or propagated alongside this boundary. Supercells that interacted with this boundary typically produced significant tornadic damage over long distances. Two of these supercells formed to the south (warm) side of the boundary and produced a tornado prior to crossing to the north (cool) side of the boundary. These two storms exhibited changes in appearance, intensity, and structure. Two other supercells formed well south of the boundary. These two storms remained relatively weak until they interacted with the boundary.
    [Show full text]
  • AC Rebuttals Tornadoes 042621
    Claim: Global warming is causing more and stronger tornadoes REBUTTAL Tornadoes are failing to follow “global warming” based predictions. Strong tornadoes have seen a drop in frequency since the 1950s. The years 2012, 2013, 2014, 2015, and 2016 all saw below average to near record low tornado counts in the U.S. since records began in 1954. 2017 rebounded only to the long-term mean while 2018 activity has returned to well below the 25th percentile. This lull followed a very active and deadly strong La Nina of 2010/11, which like the strong La Nina of 1973/74 produced record setting and very deadly outbreaks of tornadoes. When an amplified La Nina like jet stream pattern developed in the spring of 2019, a very active period raised the seasonal total to above the 50th percentile for the first time in years. A similar transient pattern in April 2019 produced a major outbreak centered on Easter Sunday. Population growth and expansion outside urban areas have exposed more people to the tornadoes that once roared through open fields. Tornado detection improved with the addition of Doppler radar (NEXRAD), the growth of the trained spotter networks, storm chasers armed with cellular data and imagery as well as the proliferation of cell phone cameras and social media. This shows up most in the weak EF0 tornado count but for storms from moderate EF1 to strong EF 3+ intensity, the trend has been down despite improved detection. Tornadoes like most all weather extremes are driven by natural factors with active seasons strongly correlated with stronger La Nina events and the cold phase of the Pacific Decadal Oscillation, which favors more frequent and stronger La Ninas.
    [Show full text]
  • Louisville, Kentucky
    National Weather Service Photo: Wade Bell, Leavenworth, Indiana Louisville, Kentucky Welcome Welcome to the eleventh edition of National Weather Service (NWS) Louisville’s Shareholders Report. You are a shareholder in the NWS! This report details the activities of NWS Louisville in our area of responsibility across southern Indiana and central Kentucky during 2015. From our perspective, 2015 will be remembered for three weeks toward the end of the winter season with plenty of cold and snow. The worst storm struck March 4-5, which is summarized at weather.gov/lmk/march_2015_flood_and_snowstorm. One month later, on April 3-10, during a lengthy period of severe weather and flash flooding, we provided onsite weather support for a six-alarm fire at the General Electric (GE) plant in Louisville (weather.gov/lmk/April_3_10_2015_SevereEvents). Our top four highlights of 2015 were: • Instituting a new online storm spotter class, weather.gov/lmk/onlineskywarn • Two new educational videos about winter weather, posted on our YouTube channel • A major upgrade to the computer system we use for forecasts and warnings • When the Doppler radar at Fort Knox had mechanical troubles during a severe weather outbreak on December 23, Electronics Technician Todd Adkins stayed with the radar and kept it operating until the severe weather threat was over. Todd then fixed the radar on Christmas Day when the needed parts arrived. The NWS was appropriated $1.06 billion for Fiscal Year 2015, which was an investment of $3.30 per American. As the leader of NWS Louisville, I feel it is my duty to report to you how your holdings have fared.
    [Show full text]
  • Virginia Has Seen More Tornadoes in April Than Any Other Month
    Virginia has seen more tornadoes in April than any other month By JOHN BOYER - Richmond Times-Dispatch Apr 4, 2019 Tornadoes can strike Virginia in any month of the year, but there’s something ominous about April in particular. We've experienced many of our worst tornado outbreaks in this early-to-middle part of spring. An outbreak is a group of tornadoes organized by the same weather system. Tornadoes in outbreaks are often more violent, long-lived, and widespread than ones made by a lone thunderstorm. That heightens the risk for damage and loss of life. April can bring about a potent combination of tornado outbreak ingredients in our region: air that’s finally warm and humid enough to fuel violent thunderstorms, and strong winds aloft that can shape those storms into rotating supercells. Because of that, Virginia has seen more tornadoes in April than any other month of the year. Summer tornadoes are common, but they’re usually more isolated events. By the time we get to late summer and early fall, we see more large outbreaks spawned by hurricanes and tropical storms. Though tropical tornadoes are usually smaller and weaker than their springtime counterparts, they are still dangerous. Here’s a list of the outbreaks that produced ten or more tornadoes in Virginia. Together, these events account for nearly 20 percent of all the state’s tornado reports since 1950, but 30 percent of the tornado-related fatalities and 60 percent of the injuries. Note that central Virginia was affected by all of the major outbreaks shown here, with the exception of the April 3-4, 1974 “Super Outbreak.” 38 Tornadoes – Sept.
    [Show full text]
  • A Study of Fetal Exposure to the 1974 Super Tornado Outbreak Sok Chul
    The Long-Term Human Toll of Natural Disasters: A Study of Fetal Exposure to the 1974 Super Tornado Outbreak Sok Chul Hong* Dongyoung Kim† Eutteum Lee‡ Abstract This study investigates the long-term effect of fetal exposure to the 1974 Super Tornado Outbreak on health and socioeconomic outcomes in adulthood. Using the 2008-2014 American Community Survey and a difference-in-differences framework, we estimate that, in the 30s, this stressful in-utero shock increases the probability of vision/hearing difficulty by 17 percent and cognitive difficulty by 8 percent, and lowers the socioeconomic status by 1 percent compared with unaffected cohorts. An estimate implies that the annual income loss from disaster- driven health problems was $136 million in 2014. Keywords: natural disaster; fetal exposure; the 1974 Super Tornado Outbreak; sensory difficulty; cognitive difficulty; socioeconomic status; long-term cost of natural disaster JEL codes: I15, O10, Q5 * Corresponding Author, Associate Professor, Department of Economics, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea (e-mail: [email protected]) † Department of Economics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea (e-mail: [email protected]) ‡ Department of Economics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea (e-mail: [email protected]). Research reported in this article was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2016S1A3A2924944) and the Institute of Economic Research (Center for Distributive Justice) at Seoul National University. 1 Although forecasting technologies have improved substantially, the occurrence of natural disasters is still unpredictable in many cases, and the tremendous damage is difficult to avoid despite forethought.
    [Show full text]
  • Newsletter Communication, and Service
    The NWA: Connecting operational meteorologists in pursuit of excellence in weather forecasting, Newsletter communication, and service. JANUARY No. 14 – 1 2014 The January 2014 Arctic Outbreak Just how cold was the Jan. 6, 2014, cold air outbreak compared with past events? To find out, Greg Carbin (NWA Rapid Response Team member) reviewed past daily records from the National Climatic Data Center for all December- January-February (DJF) days back to 1979. To determine the magnitude of a cold event during this period, he multiplied the total number of daily minimum temperature records by the average departure from the previous record on each day. The analysis showed that Christmas Day of 1983 was the coldest DJF day since 1979 with over 1,900 daily minimum temperature records and an average -8.66 F departure from the prior daily record (see Figs. 1 and 2). On Monday morning, Jan. 6, 2014, the temperature difference between Minnesota and Florida was more than 100 F. Greg scoured the Storm Prediction Center (SPC) surface data archive back to 1973, looking at the 1200 UTC simple Figure 1. Map of the 1200 UTC Dec. 25, 1983, CONUS 2 m (~6 ft) surface temperature differences between Minneapolis (MSP) temperature analysis from the NARR. and Miami (MIA). He used every day available in the archive when both stations reported at 1200 UTC. There were 12,292 days that met this criterion, out of a possible 14,981 days, or 82% of the total 1200 UTC observation days since 1973. The morning of Jan. 6, 2014, ranked 10th in terms of strongest MSP-MIA temperature gradient back to 1973.
    [Show full text]
  • Rose, Hon. Thomas M
    Judicial Profile Hon. Thomas M. Rose U.S. District Judge for the Southern District of Ohio by Jade K. Smarda ll Rosy for Rose.” It would be easy to as- sume that a headline like this, featured in a Southwestern Ohio newspaper, would be an article from the glory days of the Cincinnati AReds’ “Big Red Machine.” Back-to-back world cham- pions in 1975 and 1976, stars like Johnny Bench, Joe Morgan, Tony Pérez, and Pete Rose were exceedingly popular in Cincinnati and the surrounding areas. Jade K. Smarda is an as- sociate at Faruki Ireland (They still are, although one of them is the subject of & Cox P.L.L. in Dayton, just a tad more controversy than the others.) Ohio. While the headline, from May 2002, was not about the Big Red Machine, it was about one of the Reds’ most enthusiastic season ticketholders, Judge Thomas M. Rose. Rose, while not a baseball star, had been a star in his legal community for years when the front page of his hometown newspaper, the Xenia Gazette, reported on the U.S. Senate’s approval (95-0) of his appointment to the U.S. District Court for the South- ern District of Ohio. A veteran trial court judge when eral election levels. A former assistant Greene County he was nominated by President George W. Bush, Rose prosecutor who served as chief of the civil division had already served his community from the Greene for over 13 years—representing townships, county County Court of Common Pleas for nearly 12 years officers, non-city school districts, and various county before joining the federal bench.
    [Show full text]
  • Rebuttals Tornadoes
    Claim: Global warming is causing more and stronger tornadoes REBUTTAL Tornadoes are failing to follow “global warming” based predictions. Strong tornadoes have seen a drop in frequency since the 1950s. The years 2012, 2013, 2014, 2015, and 2016 all saw below average to near record low tornado counts in the U.S. since records began in 1954. 2017 rebounded only to the long-term mean while 2018 activity has returned to well below the 25th percentile. This lull followed a very active and deadly strong La Nina of 2010/11, which like the strong La Nina of 1973/74 produced record setting and very deadly outbreaks of tornadoes. When an amplified La Nina like jet stream pattern developed in the spring of 2019, a very active period raised the seasonal total to above the 50th percentile for the first time in years. Population growth and expansion outside urban areas have exposed more people to the tornadoes that once roamed through open fields. Tornado detection has improved with the addition of NEXRAD, the growth of the trained spotter networks, storm chasers armed with cellular data and imagery as well as the proliferation of cell phone cameras and social media. This shows up most in the weak EF0 tornado count but for storms from moderate EF1 to strong EF 3+ intensity, the trend has been down despite improved detection. Tornadoes like most all weather extremes are driven by natural factors with active seasons strongly correlated with stronger La Nina events and the cold phase of the Pacific Decadal Oscillation, which favors more frequent and stronger La Ninas.
    [Show full text]