U.S. Violent Tornadoes Relative to the Position of the 850-Mb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Improving Tornado Warnings: from Observation to Forecast
Improving Tornado Warnings: from Observation to Forecast John T. Snow Regents’ Professor of Meteorology Dean Emeritus, College of Atmospheric and Geographic Sciences, The University of Oklahoma Major contributions from: Dr. Russel Schneider –NOAA Storm Prediction Center Dr. David Stensrud – NOAA National Severe Storms Laboratory Dr. Ming Xue –Center for Analysis and Prediction of Storms, University of Oklahoma Dr. Lou Wicker –NOAA National Severe Storms Laboratory Hazards Caucus Alliance Briefing Tornadoes: Understanding how they develop and providing early warning 10:30 am – 11:30 am, Wednesday, 21 July 2010 Senate Capitol Visitors Center 212 Each Year: ~1,500 tornadoes touch down in the United States, causing over 80 deaths, 100s of injuries, and an estimated $1.1 billion in damages Statistics from NOAA Storm Prediction Center Supercell –A long‐lived rotating thunderstorm the primary type of thunderstorm producing strong and violent tornadoes Present Warning System: Warn on Detection • A Warning is the culmination of information developed and distributed over the preceding days sequence of day‐by‐day forecasts identifies an area of high threat •On the day, storm spotters deployed; radars monitor formation, growth of thunderstorms • Appearance of distinct cloud or radar echo features tornado has formed or is about to do so Warning is generated, distributed Present Warning System: Warn on Detection Radar at 2100 CST Radar at 2130 CST with Warning Thunderstorms are monitored using radar A warning is issued based on the detected and -
14B.6 ESTIMATED CONVECTIVE WINDS: RELIABILITY and EFFECTS on SEVERE-STORM CLIMATOLOGY
14B.6 ESTIMATED CONVECTIVE WINDS: RELIABILITY and EFFECTS on SEVERE-STORM CLIMATOLOGY Roger Edwards1 NWS Storm Prediction Center, Norman, OK Gregory W. Carbin NWS Weather Prediction Center, College Park, MD 1. BACKGROUND In 2006, NCDC (now NCEI) Storm Data, from By definition, convectively produced surface winds which the SPC database is directly derived, began to ≥50 kt (58 mph, 26m s–1) in the U.S. are classified as record whether gust reports were measured by an severe, whether measured or estimated. Other wind instrument or estimated. Formats before and after reports that can verify warnings and appear in the this change are exemplified in Fig. 1. Storm Data Storm Prediction Center (SPC) severe-weather contains default entries of “Thunderstorm Wind” database (Schaefer and Edwards 1999) include followed by values in parentheses with an acronym assorted forms of convective wind damage to specifying whether a gust was measured (MG) or structures and trees. Though the “wind” portion of the estimated (EG), along with the measured and SPC dataset includes both damage reports and estimated “sustained” convective wind categories (MS specific gust values, this study only encompasses the and ES respectively). MGs from standard ASOS and latter (whether or not damage was documented to AWOS observation sites are available independently accompany any given gust). For clarity, “convective prior to 2006 and have been analyzed in previous gusts” refer to all gusts in the database, regardless of studies [e.g., the Smith et al. (2013) climatology and whether thunder specifically was associated with any mapping]; however specific categorization of EGs and given report. -
5-Day Weather Outlook 04.23.21
Friday, April 23, 2021 5-Day Statewide Weather Outlook No Threat Low Threat Moderate Threat High Threat Damaging Flash Coastal Day Lightning Tornado Wildfire Fog Rip Currents Wind/Hail Flooding Flooding Panhandle Western Far NW FL Far NW West Coast Fri South FL (overnight) Panhandle W Panhandle Florida Elsewhere North FL Panhandle & Sat Central FL North Florida North Florida South FL Statewide Big Bend South FL Northeast FL Sun South FL Statewide & Peninsula Panhandle Mon South FL Elsewhere Southeast Tue South FL Statewide Florida Severe Weather Hazard Breakdown for Saturday: Tornadoes (left), Damaging Winds (center), Large Hail (right) Maximum Wind Gusts through Saturday Afternoon Forecast Rainfall Totals Through Tuesday Night FDEM Statewide 5-Day Weather Outlook 04.23.21 …Potentially Significant Severe Weather Event for North Florida on Saturday…Two Rounds of Severe Weather Possible Across North Florida…Windy Outside of Storms in North Florida…Hot with Isolated Showers and Storms in the Peninsula this Weekend…Minor Coastal Flooding Possible in Southeast Florida Next Week… Friday - Saturday: A warm front over the Gulf of Mexico tonight will lift northward through the Panhandle and Big Bend Saturday morning. This brings the first round of thunderstorms into the Panhandle late tonight. The Storm Prediction Center has outlined the western Panhandle in a Marginal to Slight Risk of severe weather tonight (level 1-2 of 5). Damaging winds up to 60 mph and isolated tornadoes will be the main threat, mainly after 2 AM CT. On Saturday, the first complex of storms will be rolling across southern Alabama and southern Georgia in the morning and afternoon hours, clipping areas north of I-10 in Florida. -
Article a Climatological Perspective on the 2011 Alabama Tornado
Chaney, P. L., J. Herbert, and A. Curtis, 2013: A climatological perspective on the 2011 Alabama tornado outbreak. J. Operational Meteor., 1 (3), 1925, doi: http://dx.doi.org/10.15191/nwajom.2013.0103. Journal of Operational Meteorology Article A Climatological Perspective on the 2011 Alabama Tornado Outbreak PHILIP L. CHANEY Auburn University, Auburn, Alabama JONATHAN HERBERT and AMY CURTIS Jacksonville State University, Jacksonville, Alabama (Manuscript received 23 January 2012; in final form 17 September 2012) ABSTRACT This paper presents a comparison of the recent 27 April 2011 tornado outbreak with a tornado climatology for the state of Alabama. The climatology for Alabama is based on tornadoes that affected the state during the 19812010 period. A county-level risk index is produced from this climatology. Tornado tracks from the 2011 outbreak are mapped and compared with the climatology and risk index. There were 62 tornadoes in Alabama on 27 April 2011, including many long-track and intense tornadoes. The event resulted in 248 deaths in the state. The 2011 outbreak is also compared with the April 1974 tornado outbreak in Alabama. 1. Introduction population density (Gagan et al. 2010; Dixon et al. 2011). Tornadoes have been documented in every state in Alabama is affected in the spring and fall by the United States and on every continent except midlatitude cyclones, often associated with severe Antarctica. The United States has by far the most weather and tornadoes. During summer and fall tornado reports annually of any country, averaging tornadoes also can be produced by tropical cyclones. A about 1,300 yr-1. -
Extratropical Cyclones and Anticyclones
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Courtesy of Jeff Schmaltz, the MODIS Rapid Response Team at NASA GSFC/NASA Extratropical Cyclones 10 and Anticyclones CHAPTER OUTLINE INTRODUCTION A TIME AND PLACE OF TRAGEDY A LiFE CYCLE OF GROWTH AND DEATH DAY 1: BIRTH OF AN EXTRATROPICAL CYCLONE ■■ Typical Extratropical Cyclone Paths DaY 2: WiTH THE FI TZ ■■ Portrait of the Cyclone as a Young Adult ■■ Cyclones and Fronts: On the Ground ■■ Cyclones and Fronts: In the Sky ■■ Back with the Fitz: A Fateful Course Correction ■■ Cyclones and Jet Streams 298 9781284027372_CH10_0298.indd 298 8/10/13 5:00 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Introduction 299 DaY 3: THE MaTURE CYCLONE ■■ Bittersweet Badge of Adulthood: The Occlusion Process ■■ Hurricane West Wind ■■ One of the Worst . ■■ “Nosedive” DaY 4 (AND BEYOND): DEATH ■■ The Cyclone ■■ The Fitzgerald ■■ The Sailors THE EXTRATROPICAL ANTICYCLONE HIGH PRESSURE, HiGH HEAT: THE DEADLY EUROPEAN HEAT WaVE OF 2003 PUTTING IT ALL TOGETHER ■■ Summary ■■ Key Terms ■■ Review Questions ■■ Observation Activities AFTER COMPLETING THIS CHAPTER, YOU SHOULD BE ABLE TO: • Describe the different life-cycle stages in the Norwegian model of the extratropical cyclone, identifying the stages when the cyclone possesses cold, warm, and occluded fronts and life-threatening conditions • Explain the relationship between a surface cyclone and winds at the jet-stream level and how the two interact to intensify the cyclone • Differentiate between extratropical cyclones and anticyclones in terms of their birthplaces, life cycles, relationships to air masses and jet-stream winds, threats to life and property, and their appearance on satellite images INTRODUCTION What do you see in the diagram to the right: a vase or two faces? This classic psychology experiment exploits our amazing ability to recognize visual patterns. -
NWS Storm Prediction Center SPC 24X7 Operations
3/6/2019 NWS Storm Prediction Center FACETs will enable ... • Robust quantification of the weather hazard risk Initial realizations of the FACETs Vision: Real- • Better individual and group decision making • Based on individual needs …through both NWS & the private sector time tools and information for severe weather • Consistent communication and DSS, commensurate to decision making risk • Rigorous quantification of potential impacts Dr. Russell S. Schneider Director, NOAA-NWS Storm Prediction Center 3 March 2019 National Tornado Summit – Public Sheltering Workshop NOAA NWS Storm Prediction Center www.spc.noaa.gov • Forecast tornadoes, thunderstorms, and wildfires nationwide • Forecast information from 8 days to a few minutes in advance • World class team engaged with the research community • Partner with over 120 local National Weather Service offices Current: Forecast & Warning Continuum SPC 24x7 Operations Information Void(s) Outlooks Watches Warnings Event Time Days Hours Minutes Space Regional State Local Uncertainty FACETs: Toward a true continuum optimal for the pace of emergency decision making 1 3/6/2019 Tornado Watch SPC Severe Weather Outlooks Alerting messages issued to the public through media partners SPC Forecaster collaborating on watch characteristics with local NWS offices to communicate the forecast tornado threat to the Public Issued since the early 1950’s SPC Lead Forecaster SPC Lead Forecaster National Experience Average National Experience: 10 years as Lead; almost 20 overall NWS Local Forecast Office Partners -
John Hart Storm Prediction Center, Norman, OK
John Hart Storm Prediction Center, Norman, OK 7th European Conference on Severe Storms, Helsinki, Finland – Friday June 7th, 2013 SPC Overview: US Naonal Weather Service 122 Local Weather Forecast Offices Ususally about 12 meteoroloGists who work rotating shifts. Very busy with daily forecast tasks (public/aviation forecasts, etc). Limited severe weather experience, even if they work in an active office. Image source: Steve M., Minnesota ClimatoloGy Working Group SPC Overview: US Storm Predic/on Center • Focus on severe storms. • Second set of eyes for the local offices. • Consistent overview of severe storm threat. • HIGH EXPERIENCE LEVELS Forecasts for entire US • Very competitive to join staff (except Alaska and Hawaii) • Stable staff • Few people leave before retirement • No competition with local offices • SPC does not issue warnings • Easy collaboration with local offices Our job is to help the local offices, not compete or overshadow. Image source: Steve M., Minnesota ClimatoloGy Working Group SPC Overview: US Storm Predic/on Center • Usually four forecasters on shift • Lead Forecaster • 2 mesoscale forecasters • 1 outlook forecaster • Lead Forecaster • Shift supervisor • Makes final call on all products • Issues watches • Promoted from mesoscale/outlook forecaster ranks • Mesoscale Forecaster • Focuses on 0-6 hour forecasts • Writes mesoscale discussions • Outlook Forecaster • Focuses on longer ranges and larger scales • Days 1-8 • Write convective outlooks Image source: Steve M., Minnesota ClimatoloGy Working Group My Background -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
The Birth and Early Years of the Storm Prediction Center
AUGUST 1999 CORFIDI 507 The Birth and Early Years of the Storm Prediction Center STEPHEN F. C ORFIDI NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma (Manuscript received 12 August 1998, in ®nal form 15 January 1999) ABSTRACT An overview of the birth and development of the National Weather Service's Storm Prediction Center, formerly known as the National Severe Storms Forecast Center, is presented. While the center's immediate history dates to the middle of the twentieth century, the nation's ®rst centralized severe weather forecast effort actually appeared much earlier with the pioneering work of Army Signal Corps of®cer J. P. Finley in the 1870s. Little progress was made in the understanding or forecasting of severe convective weather after Finley until the nascent aviation industry fostered an interest in meteorology in the 1920s. Despite the increased attention, forecasts for tornadoes remained a rarity until Air Force forecasters E. J. Fawbush and R. C. Miller gained notoriety by correctly forecasting the second tornado to strike Tinker Air Force Base in one week on 25 March 1948. The success of this and later Fawbush and Miller efforts led the Weather Bureau (predecessor to the National Weather Service) to establish its own severe weather unit on a temporary basis in the Weather Bureau± Army±Navy (WBAN) Analysis Center Washington, D.C., in March 1952. The WBAN severe weather unit became a permanent, ®ve-man operation under the direction of K. M. Barnett on 21 May 1952. The group was responsible for the issuance of ``bulletins'' (watches) for tornadoes, high winds, and/or damaging hail; outlooks for severe convective weather were inaugurated in January 1953. -
Migration and Climate Change
Migration and Climate Change No. 31 The opinions expressed in the report are those of the authors and do not necessarily reflect the views of the International Organization for Migration (IOM). The designations employed and the presentation of material throughout the report do not imply the expression of any opinion whatsoever on the part of IOM concerning the legal status of any country, territory, city or area, or of its authorities, or concerning its frontiers or boundaries. _______________ IOM is committed to the principle that humane and orderly migration benefits migrants and society. As an intergovernmental organization, IOM acts with its partners in the international community to: assist in meeting the operational challenges of migration; advance understanding of migration issues; encourage social and economic development through migration; and uphold the human dignity and well-being of migrants. _______________ Publisher: International Organization for Migration 17 route des Morillons 1211 Geneva 19 Switzerland Tel: +41.22.717 91 11 Fax: +41.22.798 61 50 E-mail: [email protected] Internet: http://www.iom.int Copy Editor: Ilse Pinto-Dobernig _______________ ISSN 1607-338X © 2008 International Organization for Migration (IOM) _______________ All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the publisher. 11_08 Migration and Climate Change1 Prepared for IOM by Oli Brown2 International Organization for Migration Geneva CONTENTS Abbreviations 5 Acknowledgements 7 Executive Summary 9 1. Introduction 11 A growing crisis 11 200 million climate migrants by 2050? 11 A complex, unpredictable relationship 12 Refugee or migrant? 1 2. -
Thunderstorm Analysis in the Northern Rocky Mountains
This file was created by scanning the printed publication. ^1 / Errors identified by the software have been corrected; ^n/' however, some errors may remain. 4* * THUNDERSTORM ANALYSTS c' Tn the NORTHERN ROCKY MOUNTATNS DeVerColson ENTERMOUNTAEN FOREST AND RANGE EXPEREMENT STATEON FOREST SERVECE UNETED STATES DEPARTMENT OF AGRECULTURE Ogden, Utah Reed W. Bailey, Director RESEARCH PAPER NO. 49 1957 Research Paper No. 49 l957 THUNDERSTORM ANALYSIS IN THE NORTHERN ROCKY MOUNTAINS By DeVer Colson Meteorologist INTERMOUNTAIN FOREST AND RANGE EXPERIMENT STATION Forest Service U.S. Department of Agriculture Ogden, Utah Reed W. Bailey, Director THUNDERSTORM ANALYSIS IN THE NORTHERN ROCKY MOUNTAINS DeVer Col son!' U.S. Weather Bureau Washington, D.C. INTRODUCTION Lightning-caused fires are a continuing serious threat to forests in the northern Rocky Mountain area. More than 70 percent of all forest fires in this area are caused by lightning. In one l0-day period in July l940 the all-time record of l,488 lightning fires started on the national forests in Region l of the U.S. Forest Service.—' Project Skyfire was planned and organized to study the causes and char acteristics of lightning storms and to see what steps could be taken to decrease the great losses caused by lightning fires. One important phase of Project Skyfire is the study and analysis of the weather phenomena associated with the formation and growth of lightning storms. A better understanding of these factors is valuable to both the forester and the meteorologist. In the Project Skyfire research program,analyses are being made of the specific characteristics of individual lightning storms and the general characteristics of storms during an entire fire season. -
Another Look at the 11 April 1965 Palm Sunday Outbreak
Central Region Technical Attachment Number 15-02 December 2015 Another Look at the 11 April 1965 Palm Sunday Outbreak JON CHAMBERLAIN National Weather Service, Rapid City, South Dakota ABSTRACT The 11 April 1965 tornado outbreak was one of the most devastating tornado outbreaks in recorded history, affecting six Midwestern states with significant loss of life and property. This storm system was particularly interesting for the number of discrete tornadic supercells in the southern Great Lakes, especially given the number of F3+ tornadoes. In addition, many supercells were observed to contain multiple funnels and multiple tornado cyclones (some occurring simultaneously). Dr. Theodore Fujita performed a comprehensive analysis of this event in the late 1960s, featuring a detailed analysis of both the meteorology and tornado damage paths. However, technology and science have progressed much between 1970 and 2015, with new forecast parameters and techniques available to forecasters. The Palm Sunday Outbreak of 1965 was re-examined using modern-day severe weather forecast parameters derived from observational data to help understand why this storm system produced such violent thunderstorms, particularly across extreme northern Indiana. In order to do this, approximately 200 handwritten surface observations were obtained from the National Climatic Data Center’s Electronic Digital Archive Data System web interface. Once these observations were put into a database, several surface weather maps, synthetic soundings, hodographs, and upper-level analyses were constructed. These data, along with archived upper-air data, were used to calculate several severe weather forecast parameters, which truly revealed the magnitude of the event. 1. Introduction The 11 April 1965 tornado outbreak was one of the most devastating tornado outbreaks in recorded history.