BA Sethuraman California State University Northridge

Total Page:16

File Type:pdf, Size:1020Kb

BA Sethuraman California State University Northridge A GENTLE INTRODUCTION TO ABSTRACT ALGEBRA B.A. Sethuraman California State University Northridge ii Copyright © 2015 B.A. Sethuraman. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sec- tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". Source files for this book are available at http://www.csun.edu/~asethura/GIAAFILES/GIAAV2.0-B/GIAAV2. 0-BSource.zip History 2012 Version 1.0. Created. Author B.A. Sethuraman. 2015 Version 2.0-B. Book Version. Author B.A. Sethuraman Contents To the Student: How to Read a Mathematics Book3 To the Student: Proofs9 1 Divisibility in the Integers 27 1.1 Further Exercises......................... 45 2 Rings and Fields 57 2.1 Rings: Definition and Examples................. 58 2.2 Subrings.............................. 83 2.3 Integral Domains and Fields................... 90 2.4 Ideals............................... 101 2.5 Quotient Rings.......................... 109 2.6 Ring Homomorphisms and Isomorphisms............ 117 2.7 Further Exercises......................... 137 3 Vector Spaces 165 3.1 Vector Spaces: Definition and Examples............ 166 3.2 Linear Independence, Bases, Dimension............. 177 3.3 Subspaces and Quotient Spaces................. 205 3.4 Vector Space Homomorphisms: Linear Transformations.... 216 3.5 Further Exercises......................... 236 iii iv CONTENTS 4 Groups 247 4.1 Groups: Definition and Examples................ 248 4.2 Subgroups, Cosets, Lagrange's Theorem............ 283 4.3 Normal Subgroups, Quotient Groups.............. 300 4.4 Group Homomorphisms and Isomorphisms........... 307 4.5 Further Exercises......................... 316 A Sets, Functions, and Relations 333 B Partially Ordered Sets, Zorn's Lemma 339 C GNU Free Documentation License 349 Index 361 List of Videos To the Student: Proofs: Exercise 0.10................. 23 To the Student: Proofs: Exercise 0.15................. 24 To the Student: Proofs: Exercise 0.19................. 25 To the Student: Proofs: Exercise 0.20................. 25 To the Student: Proofs: Exercise 0.21................. 25 Chapter1: GCD via Division Algorithm............... 46 Chapter1: Number of divisors of an integer............. 49 p Chapter1: 2 is not rational...................... 52 Chapter2: Binary operations on a set with n elements....... 59 Chapter2: Do the integers form a group with respect to multipli- cation?............................... 61 p Chapter2: When is a + b m zero?.................. 69 Chapter2: Does Z(2) contain 2=6?................... 69 Chapter2: Associativity of matrix addition............. 71 Chapter2: Direct product of matrix rings.............. 80 Chapter2: Proofs that some basic properties of rings hold..... 81 Chapter2: Additive identities of a ring and a subring........ 85 p p Chapter2: Are Q[ 2] and Z[ 2] fields?............... 94 Chapter2: Well-definedness of operations in Z=pZ ......... 98 Chapter2: Ideal of Z(2) ........................ 106 v vi LIST OF VIDEOS Chapter2: Ideal generated by a1, ::: , an ............... 107 Chapter2: Evaluation Homomorphism................ 126 p p Chapter2: Linear independence in Q[ 2; 3]............ 138 LIST OF VIDEOS 1 2 LIST OF VIDEOS To the Student: How to Read a Mathematics Book How should you read a mathematics book? The answer, which applies to every book on mathematics, and in particular to this one, can be given in one word|actively. You may have heard this before, but it can never be overstressed|you can only learn mathematics by doing mathematics. This means much more than attempting all the problems assigned to you (although attempting every problem assigned to you is a must). What it means is that you should take time out to think through every sentence and confirm every assertion made. You should accept nothing on trust; instead, not only should you check every statement, you should also attempt to go beyond what is stated, searching for patterns, looking for connections with other material that you may have studied, and probing for possible generalizations. Let us consider an example: Example 0.1 On page 65 in Chapter2, you will find the following sentence: Yet, even in this extremely familiar number system, mul- 3 4 How to Read a Mathematics Book tiplication is not commutative; for instance, ! ! ! ! 1 0 0 1 0 1 1 0 · 6= · : 0 0 0 0 0 0 0 0 (The \number system" referred to is the set of 2×2 matrices whose entries are real numbers.) When you read a sentence such as this, the first thing that you should do is verify the computation yourselves. Mathematical insight comes from mathematical experience, and you cannot expect to gain mathematical experience if you merely accept somebody else's word that the product on the left side of the equation does not equal the product on the right side. The very process of multiplying out these matrices will make the set of 2× 2 matrices a more familiar system of objects, but as you do the calculations, more things can happen if you keep your eyes and ears open. Some or all of the following may occur: 1. You may notice that not only are the two products not the same, but that the product on the right side gives you the zero matrix. This should make you realize that although it may seem impossible that two nonzero \numbers" can multiply out to zero, this is only because you are confining your thinking to the real or complex numbers. Already, the set of 2×2 matrices (with which you have at least some familiarity) contains nonzero elements whose product is zero. 2. Intrigued by this, you may want to discover other pairs of nonzero matrices that multiply out to zero. You will do this by taking arbitrary pairs of matrices and determining their product. It is quite probable that you will not find an appropriate pair. At this point you may be tempted to give up. However, you should not. You should try to be creative, and study how the entries in the various pairs of matrices you How to Read a Mathematics Book 5 have selected affect the product. It may be possible for you to change one or two entries in such a way that the product comes out to be zero. For instance, suppose you consider the product ! ! ! 1 1 4 0 6 0 · = 1 1 2 0 6 0 You should observe that no matter what the entries of the first matrix are, the product will always have zeros in the (1; 2) and the (2; 2) slots. This gives you some freedom to try to adjust the entries of the first matrix so that the (1; 1) and the (2; 1) slots also come out to be zero. After some experimentation, you should be able to do this. 3. You may notice a pattern in the two matrices that appear in our in- equality on page4. Both matrices have only one nonzero entry, and that entry is a 1. Of course, the 1 occurs in different slots in the two matrices. You may wonder what sorts of products occur if you take similar pairs of matrices, but with the nonzero 1 occuring at other lo- cations. To settle your curiosity, you will multiply out pairs of such matrices, such as ! ! 0 0 0 1 · ; 1 0 0 0 or ! ! 0 0 0 0 · : 1 0 1 0 You will try to discern a pattern behind how such matrices multiply. To help you describe this pattern, you will let ei;j stand for the matrix with 1 in the (i; j)-th slot and zeros everywhere else, and you will try to discover a formula for the product of ei;j and ek;l, where i, j, k, and l can each be any element of the set f1; 2g. 6 How to Read a Mathematics Book 4. You may wonder whether the fact that we considered only 2×2 matrices is significant when considering noncommutative multiplication or when considering the phenomenon of two nonzero elements that multiply out to zero. You will ask yourselves whether the same phenomena occur in the set of 3 × 3 matrices or 4 × 4 matrices. You will next ask yourselves whether they occur in the set of n × n matrices, where n is arbitrary. But you will caution yourselves about letting n be too arbitrary. Clearly n needs to be a positive integer, since \n × n matrices" is meaningless otherwise, but you will wonder whether n can be allowed to equal 1 if you want such phenomena to occur. 5. You may combine3 and4 above, and try to define the matrices ei;j analogously in the general context of n × n matrices. You will study the product of such matrices in this general context and try to discover a formula for their product. Notice that a single sentence can lead to an enormous amount of mathemati- cal activity! Every step requires you to be alert and actively involved in what you are doing. You observe patterns for yourselves, you ask yourselves ques- tions, and you try to answer these questions on your own. In the process, you discover most of the mathematics yourselves. This is really the only way to learn mathematics (and in particular, it is the way every professional math- ematician has learned the subject). Mathematical concepts are developed precisely because mathematicians observe patterns in various mathematical objects (such as the 2 × 2 matrices), and to have a good understanding of these concepts you must try to notice these patterns for yourselves. May you spend many many hours happily playing in the rich and beautiful world of mathematics! How to Read a Mathematics Book 7 Exercise 0.2 Carry out the program in steps (1) through (5) 8 How to Read a Mathematics Book To the Student: Proofs Many students confronting mathematics beyond elementary calculus for the first time are stumped at the idea of proofs.
Recommended publications
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • Schaum's Outline of Linear Algebra (4Th Edition)
    SCHAUM’S SCHAUM’S outlines outlines Linear Algebra Fourth Edition Seymour Lipschutz, Ph.D. Temple University Marc Lars Lipson, Ph.D. University of Virginia Schaum’s Outline Series New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2009, 2001, 1991, 1968 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior writ- ten permission of the publisher. ISBN: 978-0-07-154353-8 MHID: 0-07-154353-8 The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-154352-1, MHID: 0-07-154352-X. All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. To contact a representative please e-mail us at [email protected]. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
    [Show full text]
  • Problems in Abstract Algebra
    STUDENT MATHEMATICAL LIBRARY Volume 82 Problems in Abstract Algebra A. R. Wadsworth 10.1090/stml/082 STUDENT MATHEMATICAL LIBRARY Volume 82 Problems in Abstract Algebra A. R. Wadsworth American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell (Chair) Erica Flapan Serge Tabachnikov 2010 Mathematics Subject Classification. Primary 00A07, 12-01, 13-01, 15-01, 20-01. For additional information and updates on this book, visit www.ams.org/bookpages/stml-82 Library of Congress Cataloging-in-Publication Data Names: Wadsworth, Adrian R., 1947– Title: Problems in abstract algebra / A. R. Wadsworth. Description: Providence, Rhode Island: American Mathematical Society, [2017] | Series: Student mathematical library; volume 82 | Includes bibliographical references and index. Identifiers: LCCN 2016057500 | ISBN 9781470435837 (alk. paper) Subjects: LCSH: Algebra, Abstract – Textbooks. | AMS: General – General and miscellaneous specific topics – Problem books. msc | Field theory and polyno- mials – Instructional exposition (textbooks, tutorial papers, etc.). msc | Com- mutative algebra – Instructional exposition (textbooks, tutorial papers, etc.). msc | Linear and multilinear algebra; matrix theory – Instructional exposition (textbooks, tutorial papers, etc.). msc | Group theory and generalizations – Instructional exposition (textbooks, tutorial papers, etc.). msc Classification: LCC QA162 .W33 2017 | DDC 512/.02–dc23 LC record available at https://lccn.loc.gov/2016057500 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Abstract Algebra
    Abstract Algebra Martin Isaacs, University of Wisconsin-Madison (Chair) Patrick Bahls, University of North Carolina, Asheville Thomas Judson, Stephen F. Austin State University Harriet Pollatsek, Mount Holyoke College Diana White, University of Colorado Denver 1 Introduction What follows is a report summarizing the proposals of a group charged with developing recommendations for undergraduate curricula in abstract algebra.1 We begin by articulating the principles that shaped the discussions that led to these recommendations. We then indicate several learning goals; some of these address specific content areas and others address students' general development. Next, we include three sample syllabi, each tailored to meet the needs of specific types of institutions and students. Finally, we present a brief list of references including sample texts. 2 Guiding Principles We lay out here several principles that underlie our recommendations for undergraduate Abstract Algebra courses. Although these principles are very general, we indicate some of their specific implications in the discussions of learning goals and curricula below. Diversity of students We believe that a course in Abstract Algebra is valuable for a wide variety of students, including mathematics majors, mathematics education majors, mathematics minors, and majors in STEM disciplines such as physics, chemistry, and computer science. Such a course is essential preparation for secondary teaching and for many doctoral programs in mathematics. Moreover, algebra can capture the imagination of students whose attraction to mathematics is primarily to structure and abstraction (for example, 1As with any document that is produced by a committee, there were some disagreements and compromises. The committee members had many lively and spirited communications on what undergraduate Abstract Algebra should look like for the next ten years.
    [Show full text]
  • From Arithmetic to Algebra
    From arithmetic to algebra Slightly edited version of a presentation at the University of Oregon, Eugene, OR February 20, 2009 H. Wu Why can’t our students achieve introductory algebra? This presentation specifically addresses only introductory alge- bra, which refers roughly to what is called Algebra I in the usual curriculum. Its main focus is on all students’ access to the truly basic part of algebra that an average citizen needs in the high- tech age. The content of the traditional Algebra II course is on the whole more technical and is designed for future STEM students. In place of Algebra II, future non-STEM would benefit more from a mathematics-culture course devoted, for example, to an understanding of probability and data, recently solved famous problems in mathematics, and history of mathematics. At least three reasons for students’ failure: (A) Arithmetic is about computation of specific numbers. Algebra is about what is true in general for all numbers, all whole numbers, all integers, etc. Going from the specific to the general is a giant conceptual leap. Students are not prepared by our curriculum for this leap. (B) They don’t get the foundational skills needed for algebra. (C) They are taught incorrect mathematics in algebra classes. Garbage in, garbage out. These are not independent statements. They are inter-related. Consider (A) and (B): The K–3 school math curriculum is mainly exploratory, and will be ignored in this presentation for simplicity. Grades 5–7 directly prepare students for algebra. Will focus on these grades. Here, abstract mathematics appears in the form of fractions, geometry, and especially negative fractions.
    [Show full text]
  • Abstract Algebra
    Abstract Algebra Paul Melvin Bryn Mawr College Fall 2011 lecture notes loosely based on Dummit and Foote's text Abstract Algebra (3rd ed) Prerequisite: Linear Algebra (203) 1 Introduction Pure Mathematics Algebra Analysis Foundations (set theory/logic) G eometry & Topology What is Algebra? • Number systems N = f1; 2; 3;::: g \natural numbers" Z = f:::; −1; 0; 1; 2;::: g \integers" Q = ffractionsg \rational numbers" R = fdecimalsg = pts on the line \real numbers" p C = fa + bi j a; b 2 R; i = −1g = pts in the plane \complex nos" k polar form re iθ, where a = r cos θ; b = r sin θ a + bi b r θ a p Note N ⊂ Z ⊂ Q ⊂ R ⊂ C (all proper inclusions, e.g. 2 62 Q; exercise) There are many other important number systems inside C. 2 • Structure \binary operations" + and · associative, commutative, and distributive properties \identity elements" 0 and 1 for + and · resp. 2 solve equations, e.g. 1 ax + bx + c = 0 has two (complex) solutions i p −b ± b2 − 4ac x = 2a 2 2 2 2 x + y = z has infinitely many solutions, even in N (thei \Pythagorian triples": (3,4,5), (5,12,13), . ). n n n 3 x + y = z has no solutions x; y; z 2 N for any fixed n ≥ 3 (Fermat'si Last Theorem, proved in 1995 by Andrew Wiles; we'll give a proof for n = 3 at end of semester). • Abstract systems groups, rings, fields, vector spaces, modules, . A group is a set G with an associative binary operation ∗ which has an identity element e (x ∗ e = x = e ∗ x for all x 2 G) and inverses for each of its elements (8 x 2 G; 9 y 2 G such that x ∗ y = y ∗ x = e).
    [Show full text]
  • 1 Algebra Vs. Abstract Algebra 2 Abstract Number Systems in Linear
    MATH 2135, LINEAR ALGEBRA, Winter 2017 and multiplication is also called the “logical and” operation. For example, we Handout 1: Lecture Notes on Fields can calculate like this: Peter Selinger 1 · ((1 + 0) + 1) + 1 = 1 · (1 + 1) + 1 = 1 · 0 + 1 = 0+1 1 Algebra vs. abstract algebra = 1. Operations such as addition and multiplication can be considered at several dif- 2 Abstract number systems in linear algebra ferent levels: • Arithmetic deals with specific calculation rules, such as 8 + 3 = 11. It is As you already know, Linear Algebra deals with subjects such as matrix multi- usually taught in elementary school. plication, linear combinations, solutions of systems of linear equations, and so on. It makes heavy use of addition, subtraction, multiplication, and division of • Algebra deals with the idea that operations satisfy laws, such as a(b+c)= scalars (think, for example, of the rule for multiplying matrices). ab + ac. Such laws can be used, among other things, to solve equations It turns out that most of what we do in linear algebra does not rely on the spe- such as 3x + 5 = 14. cific laws of arithmetic. Linear algebra works equally well over “alternative” • Abstract algebra is the idea that we can use the laws of algebra, such as arithmetics. a(b + c) = ab + ac, while abandoning the rules of arithmetic, such as Example 2.1. Consider multiplying two matrices, using arithmetic modulo 2 8 + 3 = 11. Thus, in abstract algebra, we are able to speak of entirely instead of the usual arithmetic. different “number” systems, for example, systems in which 1+1=0.
    [Show full text]
  • Algebraic Topology - Wikipedia, the Free Encyclopedia Page 1 of 5
    Algebraic topology - Wikipedia, the free encyclopedia Page 1 of 5 Algebraic topology From Wikipedia, the free encyclopedia Algebraic topology is a branch of mathematics which uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Contents 1 The method of algebraic invariants 2 Setting in category theory 3 Results on homology 4 Applications of algebraic topology 5 Notable algebraic topologists 6 Important theorems in algebraic topology 7 See also 8 Notes 9 References 10 Further reading The method of algebraic invariants An older name for the subject was combinatorial topology , implying an emphasis on how a space X was constructed from simpler ones (the modern standard tool for such construction is the CW-complex ). The basic method now applied in algebraic topology is to investigate spaces via algebraic invariants by mapping them, for example, to groups which have a great deal of manageable structure in a way that respects the relation of homeomorphism (or more general homotopy) of spaces. This allows one to recast statements about topological spaces into statements about groups, which are often easier to prove. Two major ways in which this can be done are through fundamental groups, or more generally homotopy theory, and through homology and cohomology groups.
    [Show full text]
  • Introduction to Abstract Algebra (Math 113)
    Introduction to Abstract Algebra (Math 113) Alexander Paulin, with edits by David Corwin FOR FALL 2019 MATH 113 002 ONLY Contents 1 Introduction 4 1.1 What is Algebra? . 4 1.2 Sets . 6 1.3 Functions . 9 1.4 Equivalence Relations . 12 2 The Structure of + and × on Z 15 2.1 Basic Observations . 15 2.2 Factorization and the Fundamental Theorem of Arithmetic . 17 2.3 Congruences . 20 3 Groups 23 1 3.1 Basic Definitions . 23 3.1.1 Cayley Tables for Binary Operations and Groups . 28 3.2 Subgroups, Cosets and Lagrange's Theorem . 30 3.3 Generating Sets for Groups . 35 3.4 Permutation Groups and Finite Symmetric Groups . 40 3.4.1 Active vs. Passive Notation for Permutations . 40 3.4.2 The Symmetric Group Sym3 . 43 3.4.3 Symmetric Groups in General . 44 3.5 Group Actions . 52 3.5.1 The Orbit-Stabiliser Theorem . 55 3.5.2 Centralizers and Conjugacy Classes . 59 3.5.3 Sylow's Theorem . 66 3.6 Symmetry of Sets with Extra Structure . 68 3.7 Normal Subgroups and Isomorphism Theorems . 73 3.8 Direct Products and Direct Sums . 83 3.9 Finitely Generated Abelian Groups . 85 3.10 Finite Abelian Groups . 90 3.11 The Classification of Finite Groups (Proofs Omitted) . 95 4 Rings, Ideals, and Homomorphisms 100 2 4.1 Basic Definitions . 100 4.2 Ideals, Quotient Rings and the First Isomorphism Theorem for Rings . 105 4.3 Properties of Elements of Rings . 109 4.4 Polynomial Rings . 112 4.5 Ring Extensions . 115 4.6 Field of Fractions .
    [Show full text]
  • Choosing Your Math Course
    CHOOSING YOUR MATH COURSE When choosing your first math class, it’s important to consider your current skills, the topics covered, and course expectations. It’s also helpful to think about how each course aligns with both your interests and your career and transfer goals. If you have questions, talk with your advisor. The courses on page 1 are developmental-level and the courses on page 2 are college-level. • Developmental math courses (Foundations of Math and Math & Algebra for College) offer the chance to develop concepts and skills you may have forgotten or never had the chance to learn. They focus less on lecture and more on practicing concepts individually and in groups. Your homework will emphasize developing and practicing new skills. • College-level math courses build on foundational skills taught in developmental math courses. Homework, quizzes, and exams will often include word problems that require multiple steps and incorporate a variety of math skills. You should expect three to four exams per semester, which cover a variety of concepts, and shorter weekly quizzes which focus on one or two concepts. You may be asked to complete a final project and submit a paper using course concepts, research, and writing skills. Course Your Skills Readiness Topics Covered & Course Expectations Foundations of 1. All multiplication facts (through tens, preferably twelves) should be memorized. In Foundations of Mathematics, you will: Mathematics • learn to use frections, decimals, percentages, whole numbers, & 2. Whole number addition, subtraction, multiplication, division (without a calculator): integers to solve problems • interpret information that is communicated in a graph, chart & table Math & Algebra 1.
    [Show full text]
  • Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students
    EDUCATOR’S PRACTICE GUIDE A set of recommendations to address challenges in classrooms and schools WHAT WORKS CLEARINGHOUSE™ Teaching Strategies for Improving Algebra Knowledge in Middle and High School Students NCEE 2015-4010 U.S. DEPARTMENT OF EDUCATION About this practice guide The Institute of Education Sciences (IES) publishes practice guides in education to provide edu- cators with the best available evidence and expertise on current challenges in education. The What Works Clearinghouse (WWC) develops practice guides in conjunction with an expert panel, combining the panel’s expertise with the findings of existing rigorous research to produce spe- cific recommendations for addressing these challenges. The WWC and the panel rate the strength of the research evidence supporting each of their recommendations. See Appendix A for a full description of practice guides. The goal of this practice guide is to offer educators specific, evidence-based recommendations that address the challenges of teaching algebra to students in grades 6 through 12. This guide synthesizes the best available research and shares practices that are supported by evidence. It is intended to be practical and easy for teachers to use. The guide includes many examples in each recommendation to demonstrate the concepts discussed. Practice guides published by IES are available on the What Works Clearinghouse website at http://whatworks.ed.gov. How to use this guide This guide provides educators with instructional recommendations that can be implemented in conjunction with existing standards or curricula and does not recommend a particular curriculum. Teachers can use the guide when planning instruction to prepare students for future mathemat- ics and post-secondary success.
    [Show full text]
  • Taming the Unknown. a History of Algebra from Antiquity to the Early Twentieth Century, by Victor J
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 4, October 2015, Pages 725–731 S 0273-0979(2015)01491-6 Article electronically published on March 23, 2015 Taming the unknown. A history of algebra from antiquity to the early twentieth century, by Victor J. Katz and Karen Hunger Parshall, Princeton University Press, Princeton and Oxford, 2014, xvi+485 pp., ISBN 978-0-691-14905-9, US $49.50 1. Algebra now Algebra has been a part of mathematics since ancient times, but only in the 20th century did it come to play a crucial role in other areas of mathematics. Algebraic number theory, algebraic geometry, and algebraic topology now cast a big shadow on their parent disciplines of number theory, geometry, and topology. And algebraic topology gave birth to category theory, the algebraic view of mathematics that is now a dominant way of thinking in almost all areas. Even analysis, in some ways the antithesis of algebra, has been affected. As long ago as 1882, algebra captured some important territory from analysis when Dedekind and Weber absorbed the Abel and Riemann–Roch theorems into their theory of algebraic function fields, now part of the foundations of algebraic geometry. Not all mathematicians are happy with these developments. In a speech in 2000, entitled Mathematics in the 20th Century, Michael Atiyah said: Algebra is the offer made by the devil to the mathematician. The devil says “I will give you this powerful machine, and it will answer any question you like. All you need to do is give me your soul; give up geometry and you will have this marvellous machine.” Atiyah (2001), p.
    [Show full text]