A Gentle Introduction to Abstract Algebra

Total Page:16

File Type:pdf, Size:1020Kb

A Gentle Introduction to Abstract Algebra A GENTLE INTRODUCTION TO ABSTRACT ALGEBRA B.A. Sethuraman California State University Northridge ii Copyright © 2015 B.A. Sethuraman. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sec- tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". Source files for this book are available at http://www.csun.edu/~asethura/GIAAFILES/GIAAV2.0-T/GIAAV2. 0-TSource.zip History 2012 Version 1.0. Created. Author B.A. Sethuraman. 2015 Version 2.0-T. Tablet Version. Author B.A. Sethuraman Contents To the Student: How to Read a Mathematics Book2 To the Student: Proofs 10 1 Divisibility in the Integers 35 1.1 Further Exercises........................ 63 2 Rings and Fields 79 2.1 Rings: Definition and Examples................ 80 2.2 Subrings............................ 120 2.3 Integral Domains and Fields.................. 131 2.4 Ideals.............................. 149 iii CONTENTS iv 2.5 Quotient Rings......................... 161 2.6 Ring Homomorphisms and Isomorphisms........... 173 2.7 Further Exercises........................ 203 3 Vector Spaces 246 3.1 Vector Spaces: Definition and Examples........... 247 3.2 Linear Independence, Bases, Dimension............ 264 3.3 Subspaces and Quotient Spaces................ 307 3.4 Vector Space Homomorphisms: Linear Transformations... 324 3.5 Further Exercises........................ 355 4 Groups 370 4.1 Groups: Definition and Examples............... 371 4.2 Subgroups, Cosets, Lagrange's Theorem........... 423 4.3 Normal Subgroups, Quotient Groups............. 450 4.4 Group Homomorphisms and Isomorphisms.......... 460 4.5 Further Exercises........................ 473 A Sets, Functions, and Relations 496 CONTENTS v B Partially Ordered Sets, Zorn's Lemma 504 Index 517 C GNU Free Documentation License 523 List of Videos To the Student: Proofs: Exercise 0.10............... 29 To the Student: Proofs: Exercise 0.15............... 31 To the Student: Proofs: Exercise 0.19............... 32 To the Student: Proofs: Exercise 0.20............... 32 To the Student: Proofs: Exercise 0.21............... 32 Chapter1: GCD via Division Algorithm.............. 65 Chapter1: Number of divisors of an integer............ 69 p Chapter1: 2 is not rational.................... 73 Chapter2: Binary operations on a set with n elements...... 82 vi LIST OF VIDEOS vii Chapter2: Do the integers form a group with respect to multipli- cation?............................. 86 p Chapter2: When is a + b m zero?................ 98 Chapter2: Does Z(2) contain 2=6?................. 99 Chapter2: Associativity of matrix addition............ 101 Chapter2: Direct product of matrix rings............. 115 Chapter2: Proofs that some basic properties of rings hold.... 117 Chapter2: Additive identities of a ring and a subring....... 123 p p Chapter2: Are Q[ 2] and Z[ 2] fields?.............. 138 Chapter2: Well-definedness of operations in Z=pZ ........ 145 Chapter2: Ideal of Z(2) ....................... 157 Chapter2: Ideal generated by a1, ::: , an ............. 159 Chapter2: Evaluation Homomorphism............... 186 p p Chapter2: Linear independence in Q[ 2; 3]........... 204 LIST OF VIDEOS 1 To the Student: How to Read a Mathematics Book How should you read a mathematics book? The answer, which applies to every book on mathematics, and in particular to this one, can be given in one word|actively. You may have heard this before, but it can never be overstressed|you can only learn mathematics by doing mathematics. This means much more than attempting all the problems assigned to you (although attempting every problem assigned to you is a must). What it means is that you should take time out to think through every sentence and confirm every assertion made. You should accept nothing on trust; 2 How to Read a Mathematics Book 3 instead, not only should you check every statement, you should also attempt to go beyond what is stated, searching for patterns, looking for connections with other material that you may have studied, and probing for possible generalizations. Let us consider an example: Example 0.1 On page 91 in Chapter2, you will find the following sentence: Yet, even in this extremely familiar number system, mul- tiplication is not commutative; for instance, 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 @ A · @ A =6 @ A · @ A : 0 0 0 0 0 0 0 0 (The \number system" referred to is the set of 2 × 2 matrices whose entries are real numbers.) When you read a sentence such as this, the first thing that you should do is verify the computation yourselves. Mathematical insight comes from mathematical experience, and you cannot expect to gain How to Read a Mathematics Book 4 mathematical experience if you merely accept somebody else's word that the product on the left side of the equation does not equal the product on the right side. The very process of multiplying out these matrices will make the set of 2 × 2 matrices a more familiar system of objects, but as you do the calculations, more things can happen if you keep your eyes and ears open. Some or all of the following may occur: 1. You may notice that not only are the two products not the same, but that the product on the right side gives you the zero matrix. This should make you realize that although it may seem impossible that two nonzero \numbers" can multiply out to zero, this is only because you are confining your thinking to the real or complex numbers. Already, the set of 2×2 matrices (with which you have at least some familiarity) contains nonzero elements whose product is zero. 2. Intrigued by this, you may want to discover other pairs of nonzero matrices that multiply out to zero. You will do this by taking arbitrary pairs of matrices and determining their product. It is quite probable How to Read a Mathematics Book 5 that you will not find an appropriate pair. At this point you may be tempted to give up. However, you should not. You should try to be creative, and study how the entries in the various pairs of matrices you have selected affect the product. It may be possible for you to change one or two entries in such a way that the product comes out to be zero. For instance, suppose you consider the product 0 1 0 1 0 1 1 1 4 0 6 0 @ A · @ A = @ A 1 1 2 0 6 0 You should observe that no matter what the entries of the first matrix are, the product will always have zeros in the (1; 2) and the (2; 2) slots. This gives you some freedom to try to adjust the entries of the first matrix so that the (1; 1) and the (2; 1) slots also come out to be zero. After some experimentation, you should be able to do this. 3. You may notice a pattern in the two matrices that appear in our in- equality on page3. Both matrices have only one nonzero entry, and that entry is a 1. Of course, the 1 occurs in different slots in the two matrices. You may wonder what sorts of products occur if you take How to Read a Mathematics Book 6 similar pairs of matrices, but with the nonzero 1 occuring at other lo- cations. To settle your curiosity, you will multiply out pairs of such matrices, such as 0 1 0 1 0 0 0 1 @ A · @ A ; 1 0 0 0 or 0 1 0 1 0 0 0 0 @ A · @ A : 1 0 1 0 You will try to discern a pattern behind how such matrices multiply. To help you describe this pattern, you will let ei;j stand for the matrix with 1 in the (i; j)-th slot and zeros everywhere else, and you will try to discover a formula for the product of ei;j and ek;l, where i, j, k, and l can each be any element of the set f1; 2g. 4. You may wonder whether the fact that we considered only 2×2 matrices is significant when considering noncommutative multiplication or when considering the phenomenon of two nonzero elements that multiply out to zero. You will ask yourselves whether the same phenomena occur in the set of 3 × 3 matrices or 4 × 4 matrices. You will next ask How to Read a Mathematics Book 7 yourselves whether they occur in the set of n × n matrices, where n is arbitrary. But you will caution yourselves about letting n be too arbitrary. Clearly n needs to be a positive integer, since \n × n matrices" is meaningless otherwise, but you will wonder whether n can be allowed to equal 1 if you want such phenomena to occur. 5. You may combine3 and4 above, and try to define the matrices ei;j analogously in the general context of n × n matrices. You will study the product of such matrices in this general context and try to discover a formula for their product. Notice that a single sentence can lead to an enormous amount of mathemati- cal activity! Every step requires you to be alert and actively involved in what you are doing. You observe patterns for yourselves, you ask yourselves ques- tions, and you try to answer these questions on your own. In the process, you discover most of the mathematics yourselves. This is really the only way to learn mathematics (and in particular, it is the way every professional math- ematician has learned the subject). Mathematical concepts are developed precisely because mathematicians observe patterns in various mathematical How to Read a Mathematics Book 8 objects (such as the 2 × 2 matrices), and to have a good understanding of these concepts you must try to notice these patterns for yourselves.
Recommended publications
  • Algebra I (Math 200)
    Algebra I (Math 200) UCSC, Fall 2009 Robert Boltje Contents 1 Semigroups and Monoids 1 2 Groups 4 3 Normal Subgroups and Factor Groups 11 4 Normal and Subnormal Series 17 5 Group Actions 22 6 Symmetric and Alternating Groups 29 7 Direct and Semidirect Products 33 8 Free Groups and Presentations 35 9 Rings, Basic Definitions and Properties 40 10 Homomorphisms, Ideals and Factor Rings 45 11 Divisibility in Integral Domains 55 12 Unique Factorization Domains (UFD), Principal Ideal Do- mains (PID) and Euclidean Domains 60 13 Localization 65 14 Polynomial Rings 69 Chapter I: Groups 1 Semigroups and Monoids 1.1 Definition Let S be a set. (a) A binary operation on S is a map b : S × S ! S. Usually, b(x; y) is abbreviated by xy, x · y, x ∗ y, x • y, x ◦ y, x + y, etc. (b) Let (x; y) 7! x ∗ y be a binary operation on S. (i) ∗ is called associative, if (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x; y; z 2 S. (ii) ∗ is called commutative, if x ∗ y = y ∗ x for all x; y 2 S. (iii) An element e 2 S is called a left (resp. right) identity, if e ∗ x = x (resp. x ∗ e = x) for all x 2 S. It is called an identity element if it is a left and right identity. (c) S together with a binary operation ∗ is called a semigroup, if ∗ is as- sociative. A semigroup (S; ∗) is called a monoid if it has an identity element. 1.2 Examples (a) Addition (resp.
    [Show full text]
  • Boolean and Abstract Algebra Winter 2019
    Queen's University School of Computing CISC 203: Discrete Mathematics for Computing II Lecture 7: Boolean and Abstract Algebra Winter 2019 1 Boolean Algebras Recall from your study of set theory in CISC 102 that a set is a collection of items that are related in some way by a common property or rule. There are a number of operations that can be applied to sets, like [, \, and C. Combining these operations in a certain way allows us to develop a number of identities or laws relating to sets, and this is known as the algebra of sets. In a classical logic course, the first thing you typically learn about is propositional calculus, which is the branch of logic that studies propositions and connectives between propositions. For instance, \all men are mortal" and \Socrates is a man" are propositions, and using propositional calculus, we may conclude that \Socrates is mortal". In a sense, propositional calculus is very closely related to set theory, in that propo- sitional calculus is the study of the set of propositions together with connective operations on propositions. Moreover, we can use combinations of connective operations to develop the laws of propositional calculus as well as a collection of rules of inference, which gives us even more power to manipulate propositions. Before we continue, it is worth noting that the operations mentioned previously|and indeed, most of the operations we have been using throughout these notes|have a special name. Operations like [ and \ apply to pairs of sets in the same way that + and × apply to pairs of numbers.
    [Show full text]
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • 7.2 Binary Operators Closure
    last edited April 19, 2016 7.2 Binary Operators A precise discussion of symmetry benefits from the development of what math- ematicians call a group, which is a special kind of set we have not yet explicitly considered. However, before we define a group and explore its properties, we reconsider several familiar sets and some of their most basic features. Over the last several sections, we have considered many di↵erent kinds of sets. We have considered sets of integers (natural numbers, even numbers, odd numbers), sets of rational numbers, sets of vertices, edges, colors, polyhedra and many others. In many of these examples – though certainly not in all of them – we are familiar with rules that tell us how to combine two elements to form another element. For example, if we are dealing with the natural numbers, we might considered the rules of addition, or the rules of multiplication, both of which tell us how to take two elements of N and combine them to give us a (possibly distinct) third element. This motivates the following definition. Definition 26. Given a set S,abinary operator ? is a rule that takes two elements a, b S and manipulates them to give us a third, not necessarily distinct, element2 a?b. Although the term binary operator might be new to us, we are already familiar with many examples. As hinted to earlier, the rule for adding two numbers to give us a third number is a binary operator on the set of integers, or on the set of rational numbers, or on the set of real numbers.
    [Show full text]
  • An Elementary Approach to Boolean Algebra
    Eastern Illinois University The Keep Plan B Papers Student Theses & Publications 6-1-1961 An Elementary Approach to Boolean Algebra Ruth Queary Follow this and additional works at: https://thekeep.eiu.edu/plan_b Recommended Citation Queary, Ruth, "An Elementary Approach to Boolean Algebra" (1961). Plan B Papers. 142. https://thekeep.eiu.edu/plan_b/142 This Dissertation/Thesis is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Plan B Papers by an authorized administrator of The Keep. For more information, please contact [email protected]. r AN ELEr.:ENTARY APPRCACH TC BCCLF.AN ALGEBRA RUTH QUEAHY L _J AN ELE1~1ENTARY APPRCACH TC BC CLEAN ALGEBRA Submitted to the I<:athematics Department of EASTERN ILLINCIS UNIVERSITY as partial fulfillment for the degree of !•:ASTER CF SCIENCE IN EJUCATION. Date :---"'f~~-----/_,_ffo--..i.-/ _ RUTH QUEARY JUNE 1961 PURPOSE AND PLAN The purpose of this paper is to provide an elementary approach to Boolean algebra. It is designed to give an idea of what is meant by a Boclean algebra and to supply the necessary background material. The only prerequisite for this unit is one year of high school algebra and an open mind so that new concepts will be considered reason­ able even though they nay conflict with preconceived ideas. A mathematical science when put in final form consists of a set of undefined terms and unproved propositions called postulates, in terrrs of which all other concepts are defined, and from which all other propositions are proved.
    [Show full text]
  • Irreducible Representations of Finite Monoids
    U.U.D.M. Project Report 2019:11 Irreducible representations of finite monoids Christoffer Hindlycke Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Mars 2019 Department of Mathematics Uppsala University Irreducible representations of finite monoids Christoffer Hindlycke Contents Introduction 2 Theory 3 Finite monoids and their structure . .3 Introductory notions . .3 Cyclic semigroups . .6 Green’s relations . .7 von Neumann regularity . 10 The theory of an idempotent . 11 The five functors Inde, Coinde, Rese,Te and Ne ..................... 11 Idempotents and simple modules . 14 Irreducible representations of a finite monoid . 17 Monoid algebras . 17 Clifford-Munn-Ponizovski˘ıtheory . 20 Application 24 The symmetric inverse monoid . 24 Calculating the irreducible representations of I3 ........................ 25 Appendix: Prerequisite theory 37 Basic definitions . 37 Finite dimensional algebras . 41 Semisimple modules and algebras . 41 Indecomposable modules . 42 An introduction to idempotents . 42 1 Irreducible representations of finite monoids Christoffer Hindlycke Introduction This paper is a literature study of the 2016 book Representation Theory of Finite Monoids by Benjamin Steinberg [3]. As this book contains too much interesting material for a simple master thesis, we have narrowed our attention to chapters 1, 4 and 5. This thesis is divided into three main parts: Theory, Application and Appendix. Within the Theory chapter, we (as the name might suggest) develop the necessary theory to assist with finding irreducible representations of finite monoids. Finite monoids and their structure gives elementary definitions as regards to finite monoids, and expands on the basic theory of their structure. This part corresponds to chapter 1 in [3]. The theory of an idempotent develops just enough theory regarding idempotents to enable us to state a key result, from which the principal result later follows almost immediately.
    [Show full text]
  • Problems in Abstract Algebra
    STUDENT MATHEMATICAL LIBRARY Volume 82 Problems in Abstract Algebra A. R. Wadsworth 10.1090/stml/082 STUDENT MATHEMATICAL LIBRARY Volume 82 Problems in Abstract Algebra A. R. Wadsworth American Mathematical Society Providence, Rhode Island Editorial Board Satyan L. Devadoss John Stillwell (Chair) Erica Flapan Serge Tabachnikov 2010 Mathematics Subject Classification. Primary 00A07, 12-01, 13-01, 15-01, 20-01. For additional information and updates on this book, visit www.ams.org/bookpages/stml-82 Library of Congress Cataloging-in-Publication Data Names: Wadsworth, Adrian R., 1947– Title: Problems in abstract algebra / A. R. Wadsworth. Description: Providence, Rhode Island: American Mathematical Society, [2017] | Series: Student mathematical library; volume 82 | Includes bibliographical references and index. Identifiers: LCCN 2016057500 | ISBN 9781470435837 (alk. paper) Subjects: LCSH: Algebra, Abstract – Textbooks. | AMS: General – General and miscellaneous specific topics – Problem books. msc | Field theory and polyno- mials – Instructional exposition (textbooks, tutorial papers, etc.). msc | Com- mutative algebra – Instructional exposition (textbooks, tutorial papers, etc.). msc | Linear and multilinear algebra; matrix theory – Instructional exposition (textbooks, tutorial papers, etc.). msc | Group theory and generalizations – Instructional exposition (textbooks, tutorial papers, etc.). msc Classification: LCC QA162 .W33 2017 | DDC 512/.02–dc23 LC record available at https://lccn.loc.gov/2016057500 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Abstract Algebra
    Abstract Algebra Martin Isaacs, University of Wisconsin-Madison (Chair) Patrick Bahls, University of North Carolina, Asheville Thomas Judson, Stephen F. Austin State University Harriet Pollatsek, Mount Holyoke College Diana White, University of Colorado Denver 1 Introduction What follows is a report summarizing the proposals of a group charged with developing recommendations for undergraduate curricula in abstract algebra.1 We begin by articulating the principles that shaped the discussions that led to these recommendations. We then indicate several learning goals; some of these address specific content areas and others address students' general development. Next, we include three sample syllabi, each tailored to meet the needs of specific types of institutions and students. Finally, we present a brief list of references including sample texts. 2 Guiding Principles We lay out here several principles that underlie our recommendations for undergraduate Abstract Algebra courses. Although these principles are very general, we indicate some of their specific implications in the discussions of learning goals and curricula below. Diversity of students We believe that a course in Abstract Algebra is valuable for a wide variety of students, including mathematics majors, mathematics education majors, mathematics minors, and majors in STEM disciplines such as physics, chemistry, and computer science. Such a course is essential preparation for secondary teaching and for many doctoral programs in mathematics. Moreover, algebra can capture the imagination of students whose attraction to mathematics is primarily to structure and abstraction (for example, 1As with any document that is produced by a committee, there were some disagreements and compromises. The committee members had many lively and spirited communications on what undergraduate Abstract Algebra should look like for the next ten years.
    [Show full text]
  • Abstract Algebra
    Abstract Algebra Paul Melvin Bryn Mawr College Fall 2011 lecture notes loosely based on Dummit and Foote's text Abstract Algebra (3rd ed) Prerequisite: Linear Algebra (203) 1 Introduction Pure Mathematics Algebra Analysis Foundations (set theory/logic) G eometry & Topology What is Algebra? • Number systems N = f1; 2; 3;::: g \natural numbers" Z = f:::; −1; 0; 1; 2;::: g \integers" Q = ffractionsg \rational numbers" R = fdecimalsg = pts on the line \real numbers" p C = fa + bi j a; b 2 R; i = −1g = pts in the plane \complex nos" k polar form re iθ, where a = r cos θ; b = r sin θ a + bi b r θ a p Note N ⊂ Z ⊂ Q ⊂ R ⊂ C (all proper inclusions, e.g. 2 62 Q; exercise) There are many other important number systems inside C. 2 • Structure \binary operations" + and · associative, commutative, and distributive properties \identity elements" 0 and 1 for + and · resp. 2 solve equations, e.g. 1 ax + bx + c = 0 has two (complex) solutions i p −b ± b2 − 4ac x = 2a 2 2 2 2 x + y = z has infinitely many solutions, even in N (thei \Pythagorian triples": (3,4,5), (5,12,13), . ). n n n 3 x + y = z has no solutions x; y; z 2 N for any fixed n ≥ 3 (Fermat'si Last Theorem, proved in 1995 by Andrew Wiles; we'll give a proof for n = 3 at end of semester). • Abstract systems groups, rings, fields, vector spaces, modules, . A group is a set G with an associative binary operation ∗ which has an identity element e (x ∗ e = x = e ∗ x for all x 2 G) and inverses for each of its elements (8 x 2 G; 9 y 2 G such that x ∗ y = y ∗ x = e).
    [Show full text]
  • Semigroups and Monoids 
    S Luis Alonso-Ovalle // Contents Subgroups Semigroups and monoids Subgroups Groups. A group G is an algebra consisting of a set G and a single binary operation ◦ satisfying the following axioms: . ◦ is completely defined and G is closed under ◦. ◦ is associative. G contains an identity element. Each element in G has an inverse element. Subgroups. We define a subgroup G0 as a subalgebra of G which is itself a group. Examples: . The group of even integers with addition is a proper subgroup of the group of all integers with addition. The group of all rotations of the square h{I, R, R0, R00}, ◦i, where ◦ is the composition of the operations is a subgroup of the group of all symmetries of the square. Some non-subgroups: SEMIGROUPS AND MONOIDS . The system h{I, R, R0}, ◦i is not a subgroup (and not even a subalgebra) of the original group. Why? (Hint: ◦ closure). The set of all non-negative integers with addition is a subalgebra of the group of all integers with addition, because the non-negative integers are closed under addition. But it is not a subgroup because it is not itself a group: it is associative and has a zero, but . does any member (except for ) have an inverse? Order. The order of any group G is the number of members in the set G. The order of any subgroup exactly divides the order of the parental group. E.g.: only subgroups of order , , and are possible for a -member group. (The theorem does not guarantee that every subset having the proper number of members will give rise to a subgroup.
    [Show full text]
  • 1 Algebra Vs. Abstract Algebra 2 Abstract Number Systems in Linear
    MATH 2135, LINEAR ALGEBRA, Winter 2017 and multiplication is also called the “logical and” operation. For example, we Handout 1: Lecture Notes on Fields can calculate like this: Peter Selinger 1 · ((1 + 0) + 1) + 1 = 1 · (1 + 1) + 1 = 1 · 0 + 1 = 0+1 1 Algebra vs. abstract algebra = 1. Operations such as addition and multiplication can be considered at several dif- 2 Abstract number systems in linear algebra ferent levels: • Arithmetic deals with specific calculation rules, such as 8 + 3 = 11. It is As you already know, Linear Algebra deals with subjects such as matrix multi- usually taught in elementary school. plication, linear combinations, solutions of systems of linear equations, and so on. It makes heavy use of addition, subtraction, multiplication, and division of • Algebra deals with the idea that operations satisfy laws, such as a(b+c)= scalars (think, for example, of the rule for multiplying matrices). ab + ac. Such laws can be used, among other things, to solve equations It turns out that most of what we do in linear algebra does not rely on the spe- such as 3x + 5 = 14. cific laws of arithmetic. Linear algebra works equally well over “alternative” • Abstract algebra is the idea that we can use the laws of algebra, such as arithmetics. a(b + c) = ab + ac, while abandoning the rules of arithmetic, such as Example 2.1. Consider multiplying two matrices, using arithmetic modulo 2 8 + 3 = 11. Thus, in abstract algebra, we are able to speak of entirely instead of the usual arithmetic. different “number” systems, for example, systems in which 1+1=0.
    [Show full text]
  • Binary Operations
    Binary operations 1 Binary operations The essence of algebra is to combine two things and get a third. We make this into a definition: Definition 1.1. Let X be a set. A binary operation on X is a function F : X × X ! X. However, we don't write the value of the function on a pair (a; b) as F (a; b), but rather use some intermediate symbol to denote this value, such as a + b or a · b, often simply abbreviated as ab, or a ◦ b. For the moment, we will often use a ∗ b to denote an arbitrary binary operation. Definition 1.2. A binary structure (X; ∗) is a pair consisting of a set X and a binary operation on X. Example 1.3. The examples are almost too numerous to mention. For example, using +, we have (N; +), (Z; +), (Q; +), (R; +), (C; +), as well as n vector space and matrix examples such as (R ; +) or (Mn;m(R); +). Using n subtraction, we have (Z; −), (Q; −), (R; −), (C; −), (R ; −), (Mn;m(R); −), but not (N; −). For multiplication, we have (N; ·), (Z; ·), (Q; ·), (R; ·), (C; ·). If we define ∗ ∗ ∗ Q = fa 2 Q : a 6= 0g, R = fa 2 R : a 6= 0g, C = fa 2 C : a 6= 0g, ∗ ∗ ∗ then (Q ; ·), (R ; ·), (C ; ·) are also binary structures. But, for example, ∗ (Q ; +) is not a binary structure. Likewise, (U(1); ·) and (µn; ·) are binary structures. In addition there are matrix examples: (Mn(R); ·), (GLn(R); ·), (SLn(R); ·), (On; ·), (SOn; ·). Next, there are function composition examples: for a set X,(XX ; ◦) and (SX ; ◦).
    [Show full text]