Phase Transitions in the Series Boracite
Total Page:16
File Type:pdf, Size:1020Kb
881 The Canad,ian Mineralo gist Vol. 34, pp. 881-892(1996) PHASETRANSITIONS IN THESERIES BORACITE- TREMBATHITE- GONGOLITE: PHASERELAflONS PETERC. BURNSTar.ll MICHAEL A. CARPENTER Department of Earth Sciences, University of Canbridge, Downing Steet, Cambridge CB2 3EQ, U.K. Ansrnq.cr The Sussex,New Brunswick,marine-evaporile-hosted borate deposits contain boracite-group minerals of the solid-solution seriesMgrBrOtrCl - FerBrO'.CI. Samplesof boracite,txembathite and congolite have beencharacterized by electron-probe microanalysisand by high-temperatureoptical examinationand X-ray powder diffraction. At 25oC,the orthorhombicboracite structure(PcA) is stablefor compositionsfrom MgrBrO,rCl to (Mgl.eFet.l)B?Ot3cl,and the rhombohedralcongolite structure(jR3c) occurs for compositionsranging from (Mg1.eFe1.1)B7O,uClto FerBrO,rCl. At high temperatures,all specimens examinedhave the cubic boracitestructure (F43c). Cooling resultsin a frst-order phasetransition to the orthorhombicstruc- ture, and specimenswith more than 36 mol.VoFerBrO,rCl undergoa further first-order phasetransition to the rhombohedral structure.The boundariesbetween the phaseswith cubic, orthorhombicand rhombohedralstructures are linear in composition- temperaturespace. There is a markeddiscontinuity in the unit-cell volume of specimensrich in Mg at the phasetransition from the cubic to the orthorhombicstructure; the positive volume strain is greatestin the Mg-rich samples.The high-temperature X-ray diffraction data show that the cubic-to-orthorhombicphase transition is frst order in samplesrich in Mg, but increasing Fe contentresults in a trend towaxdtricritical or second-ordercharacter. Higher Fe contentsare associatedwith a decreasein the absolutevalue of the volume strain due to the phasetransition. Although the symmetry-breakingstrain due to the phase transition is very small, it is revealed by the variation in peak width as a function of temperaturein the X-ray powder diffractograms. Keywords:boracite, trembathite, congolite, phase transition, phase relations, solid solution,mineral physics. SoNttu.a.rns l€s d6p6tsde boratede Sussex,au Nouveau-Brunswick,d'origine dvaporitiquemarine, contiennent des mindraux du groupe de la boracite,membres de la solutionsolide Mg3B7O,3Cl - FerBrOl3Cl.Nous avons caractdris6 les 6chantillonsde boracite, trembathiteet congolitepar analysei la microsonde6lectronique, par ex:rmendes propri6t6s optiques d tempdrature61ev6e, et par diffractionX. A25"C, la structurede la boraciteorthorhombique (Pca21) s'applique aux compositionsdans I'intervalle MgrBtO'rCl d (Mgr.eFer.r)B7Or,Cl,et la structurerhomboddrique de la congolite(R3c) s'appliqueaux compositionsdans I'intervalleentre (Mgr.nFer.r)B7ol3cl i FqBrO,rCl. A temp6rature6lev6e, tous les sp6cimens6tudi6s possbdent la strucfure de la boracitecubique (F43c). Un refroidissementcause une inversionde premier ordre i la structureorthorhombique; de plus, tout 6chantilloncontenant plus de 36To de Fe3BrO,,Cl (base molaire) subit une deuxidmetransition, a h structure rhombo6drique.les limites deschamps de stabilit6 desphases ayant les structurescubique, orthorhombique et rhombo6drique sont lin6aires dans un diagrammede composition versus temperature.Nous ddcelonsune discontinuit6importante dans le volume de la maille 6l6mentairedans le cas d'6chantillons riches en Mg en passantde la structurecubique h la structure orthorhombique;la distorsiondu r6seauassoci6e h la transitionest plus importantedans les dchantillonsles plus riches en Mg. Les donndesde diffraction X obtenuese rcmpdrature61ev6e montrent que cettetransition a un caractdrede premier ordre dans le cas d'6chantillonsriches en Mg, mais avecune augmentationen Fe, son caractdredevient tricritique ou de deuxibmeordre. lrs teneursplus 6lev6esen Fe mdnentd une diminution du degr6 de distorsion volumique due i l'inversion. La distorsion associ6ei l'inversion requisepour r6duire la sym6trieest trOsfaible; malgr6ceci, la largeurdes pics de diffraction en fonction de la temp6ratffeen est un reflet sensible. (Traduit par la R6daction) Mots-clds:boracite, trembathite, congolite, ffansition de phase,relations de phases,solution solide,physique min6rale. I Presentaddress: Department of Geology,University of lllinois at Urbana-Champaign,245Natural History Building, 1301 WestGreen Street, Urbana. Illinois 61801.U.S.A. 882 THE CANADIAN MINERALOGIST INTRoDUcTIoN specimens(due to these phasetransitions), and will illustrate how the microstructurerelates to the thermal Boracite-type phases have the general formula history of boratedeposits. M3B,OBX, whereM is a divalent cation (Mg, Cr, Mn, Most of the boracite-groupmineral specimens Fe, Co, Ni, Cu, Zn, Cd), and X is a halogen atom examined in this study are from the Penobsquis (Cl, Br, I). These phases have been synthetically evaporitedeposit, located in Sussex,New Brunswick. preparedand extensivelystudied, owing to the ferro- Since their discovery two decadesago, the marine- elastic, fenoelectric and magnetic properties of the evaporite-hostedborate deposits at Sussex have crystals Q.lelmes 1974). Five of the boracite-type received considerableattention (Roulston & Waugh phaseshave been describedas minerals (Table 1); all 1981, Rachfin et al. 1,986,Mandarino et al. 1990, have Cl as the halogen,and four containMg and Fe as Bums et al. 1992" Roberts et al. 1993. Gice et al. the divalent cation. Crystals of natural boracite-group 1994).The Mississippian-agedeposits occur in the mineralsusually containcomplex twinning anddisplay Windsor Group of the Moncton sub-basin,a part of anomalous optical properties, although some well- the northeasterly trending Fundy basin. Borate formed specimensshow excellent large domains. minerals are primarily located in the Upper Halite Schmid& Tippmann(1978) provided an interesting Memberfnomenclature of Roulston& Waugh(1983); historical overview of early studiesof boracite-group this is refened to as the Middle Halite Member by minerals. Roulston& Waugh (1981)1.Details of the geology The phasetransitions in boracite-typephases hpvp of the evaporite depositsmay be found in Roulston received a great deal oJ attention over the past three & Waugh (1983).In additionto a suite of a dozen decadesbecause of possible applications in the or more previously recognized borate mineral material sciences.For example,boracite-type phases species, mineralogical studies of these deposits have been considered as possible components for have led to the descriptions of the boracite-group optical page composers,optical storage,and passive mineral trembathite (Burns el al. 1992) and t}te display devices becausethey are ferroelecrics that CarBruO3a(OH)%C14.l3H2O polymorphs pringleite permit optical contrast upon switching (Schmid & and ruitenbergite (Roberts et al. 1993), whose Tippmann 1978). A necessaryrequirement for using structuresbear similarities to those of aluminosilicate boracite-typephases in this contextis the development zeolites(Gice et aI. 1994). of a composition having a very small shear angle The Zechsteinsalt depositsof Germanyalso contain in order to prevent cracking and various other boracite-gtoupminerals of a range of compositions. detrimental effects outlined by Schmid & Tippmann Heide& Vijlksch (1979)and Heide et aL (1980)have (1e78). examinedthe boratesin these deposits;their studies This study concernsphase relations in the series included chemical analyses, studies of crystal Mg3BrOtrCl - FerBTOrrCl.The seriesincludes the morphology by scanningelectron microscopy,X-ray minerals boracite [Mg3B7O13Cl], trembatlite diffraction, and differential thermal analyses. The [(Mg,Fe).BrO,rCl]and congolite[(Fe,Mg)rBrO13Cl]. Zechsteindeposits contain both well-formed pseudo- The structure of boracite is orthorhombic at room cubic crystals and fibrous intergrowths of boracite- temperature,whereas the structure of congolite is group minerals.Heide & Vdlksch (1979) indicated rhombohedral.Thus a solid-solution series between that the pseudocubiccrystals may have formed at Mg3B7Ol3Cland FqB7O13Clmust involve a phase several different times, and that intergrowths of transition. The purposeof this work is to characterize mimetic twins are absent. This absence of twins the phaserelations in this system,both as a function of indicatesthat the crystalsgrew in the stability field of Mg:Fe ratio and of temperature.In later contributions, the orthorhombicor rhombohedralstructure" and that a we will examine the microstructure in natural phasetransition has not occurred.Heide et al. (1980) reported chemical compositionsfor 21 specimensof boracite-groupminerals from the Zechsteindeposits. Crystal compositions range from end-member Mg3B7Ol3Clto (Fe2.54Mno.rnMgs.2)B7O13Cl. TABI.E 1. CELL DIMENSIONS OF BORACITE-GROUP1\4INENAT6 STRUCruRE AND PHASE TRANSITIONS Spae Grup o (A) o tAl c (b R€€ boracite-typephases boncit€ MgdrOn0l Pa2t 8.677(6) 8.668(8) 12.09(1) 1 The crystal structuresof all have cubic symmetry, space group F43c, at ht$ qi€ito (FeJVIglBzOrCl Po2: d.od d.oo \2.17 2 tr@bathite (Mg,Fe)rBrOuq A& 8.67q2) 20.99(1) 3 temperature.The structureof cubic boracite (Ito et al, mngoliie (Fe,Mg)gBrOrClE& 8.62.211) 21.064{6) 4 1951,Sueno et aL 1973)consists of a frameworkof chmbsite MnsB0rsgl Pw2t 8.68(1) 8.68(1) 12.26(1) 6 comer-sharing BO4 tetrahedra,with the metal and halogen atoms located within cavities in the borate MeM:(\)Bw (1996);(2)Kiiba& Schuc.ke(1966); (8)BlJruetal (1992); (4) Wentlliag et @l (19?2); (6) Hon@ & Beck (1962). framework(Frg. l). Using the descriptorof Burns el a/. TRANSITIONSIN BORACITE-GROIJPPHASES