Extra-Solar Planets

The Ongoing Discovery Era

Keith Horne SUPA, St.Andrews Extra-Solar Planets The Discovery Era • < 1995 Solar System planets • 1995 first extrasolar planet • ( 51 Peg ) a Hot Jupiter! • 2005 ~150 Hot-Cool Jupiters • 2010-15 Habitable Earths -- common or rare? • 2015-25 Are we alone? Extra-solar Life?

Direct Imaging HARD! Extreme Adaptive Optics Coronography Nulling Interferometry GQ Lup Faint companions to: White Dwarfs Brown Dwarfs with common proper motion

GQ Lup: 22 mJ 100 AU Neuhaeuser et al. 2005 2M1207: 5 mJ 55 AU Chauvin et al. 2005 AB Pic : 14 mJ 280 AU Chauvin et al. 2005 Indirect Discovery Methods • Doppler Star Wobbles:

• Transits:

• Microlensing: Discovery Space

Jupiter

Earth

Key Technology: 1995 First Doppler Wobble Planet: 51 Peg Discovered by accident: Mayor & Queloz (1995) Quickly confirmed: Marcy & Butler (1995)

P = 4.2 days (!) a = 0.05 AU T ~2000K

m sin(i) = 0.5 mJ New class of planet: “Hot Jupiter” Doppler Wobble Planets 2005 Sep (first decade)

134 stars 158 planets 18 multi-planet . systems

~5% of stars “wobble” 1-2 planets / month Wide range of planet masses and orbit sizes < m 10mJ P >2d

Jupiter

Earth Eccentric Orbits

Unclear why.

Planet-planet interactions Small planets ejected Tidal circularisation High metalicity of planet host stars

more more metals --> planets

Enhanced planet formation ? Pollution of stellar atmosphere? Santos 2003 Fischer & Valenti 2004 GJ 876 M4V star + 2 gas giants in resonant orbits : m sin(i) = 0.56 m J P = 30 d m sin(i) = 1.89 mj P = 60 d Marcy et al. 2001

+ smallest hot planet ( terrestrial ? ) m sini ~ 8 m e P = 1.9 d

Rivera et al. 2005 Lessons from Doppler Wobbles • > 5% of Sun-like stars host a Jupiter • Metalicity matters • Orbits differ from Solar System – wide range of orbit radii ( P > 2d ) – wide range of eccentricities • New processes – Migration -- inspiral – eccentricity pumping – ejection • What about the other 95% ? – Is the Solar System typical or rare ? Planets form in dusty disks Computer simulations of planet formation Orbital migration

• Spiral waves induced by planet – Exchange angular momentum with disk

) Gravitational Instability • Type 1 -- no gap. Fast. *

M

– m < Saturn / Type III

k

s

i Type II -- gap. Slow. d • M

( Type I Type II – m > Saturn g o no gap gap • Type III -- runaway L – m ~ Saturn Log( m p / M * ) • Planets migrate into the star! – Need to suppress Type I migration.

e.g. Masset & Papaloizou, 2003 Ida & Lin Model Distribution Observed Distribution

Most of these planets accrete onto star Masses) Mass (Earth Mass Presently Unobservable

Semi-Major Axis (AU) Semi-Major Axis (AU)

Ida and Lin (2004, 2005) carried out a large number of Monte-Carlo simulations which draw from distributions of disk masses and seed-planetesimals to model the process of core accretion in the presence of migration. These simulations reproduce the planet “desert”, and predict a huge population of terrestrial and ice giant planets somewhat below the current detection threshold for radial velocity surveys. Transits: Hot Jupiters

Jupiter

Earth

Transit Lightcurves

≈ rJup 0.1 RSun Depth:  2  −2 f rp R∗ ≈1%    f rJup  RSun  Duration: 2/3  M  P 1/ 3 t ≈ 3h  ∗      MSun  4d Probability:

−1/3 −  R  M  P 2/3 P ≈10% ∗  ∗    t   RSun MSun  4d 1999 First Transiting Planet

HD 209458 V=7.6 mag 1.6% “winks” last 3 hours repeat every 3.5 days

) Charbonneau & Brown (2000) STARE 10 cm telescope STARE data HD 209458

“Bloated” Gas Giant

m ~ 0.63 mJ r ~ 1.3 rJ i ~ 87 o HST/STIS HD 209458 Transits

Brown et al. (2001)

r = 1.35 ± 0.06 rJ i = 86 o.6 ± 0 o.2 1% HST: Fit Residuals ~10 -4

No Moons r > 1.2 rEarth

No Rings r > 1.8 rEarth Transit Spectroscopy

Brown (2001) 1.5%

h

t

p planetary atmosphere e

d

t

i composition s n 1.6%

a

r cloud decks t winds Na I wavelength (microns) HST Transit Spectroscopy detects Na I in the atmosphere of HD 209458b

3.2 ×10 −4

× −4 Charbonneau et al. (2002) 3.1 10 Evaporating Atmosphere

Vidal-Madjar et al. (2003)

5%

10%

10% Star occults planet

0.2 % Spitzer/IRAC 4.5, 8.0 micron

Direct detection of TrES-1: Charbonneau et al. 2005 infrared light from planet HD 209458: Deming et al. 2005 2005 Ground-based Transit Surveys

WASP

Wide Deep

OGLE 19 mag = 1.3m OGLE 3 kpc 300pc 13 mag = 11cm WASP

Wide Deep Wide Deep 10cm 1-4m

10o

< 1o OGLE III Transit Candidates

1. 3m Las Campanas (microlens survey telescope) Mosaic 8-chip CCD camera 2001 Galactic Bulge -- 64 candidates 2002 Carina -- 73 candidates 2004 Nov Deep surveys of Galactic Plane fields yield many false alarms : grazing or blended eclipsing binaries, brown dwarf eclipses

6 planets discovered by transits and confirmed by radial velocities 3 with P < 3d (?) Period Distribution

New class of very-hot Jupiters?

Different selection effects ? Radius vs Mass

At least 2 parameters Rapid inward migration ---> no time to cool Wide Transit Survey Discovery Potential

Assume HD 209458 (V=7.6 mag) is brightest. mag 8 9 10 11 12 13 all sky 1 4 16 64 256 1024 16 ox16 o - - 0.1 0.4 1.6 7 How long to find them all ? ~ 150 16 ox16 o fields ~ 2 months / field ~ 25/ N years N = number of 16 ox16 o cameras UK WASP Experiment Wide-Angle Search for Planets

2004 SuperWASP La Palma 2005 SuperWASP SAAO Robotic Mount 8 cameras / mount 11cm F/1.8 lens 2K x 2K E2V CCD 8o x 8 o field 15 arcsec pixels

UK WASP Consortium: Belfast, St.Andrews, Keele, Open, Leicester, Cambridge, IAC, SAAO. D.Pollacco = PI SuperWASP La Palma 2004 Data Under Analysis

Spectroscopic follow-up of candidates is underway

SuperWASP 2004 Transit Candidate

-- 1% -- How to find Earths ?

• Hot Earths : Transits from Space

– 2006-08 … Corot – 2008-12 … Kepler

• Habitable Earths: Hard to Find

– Habitable Zone: T~300K liquid water on rocky planet surfaces • Cool Earths : Gravitational Lensing

– 2004-12 … OGLE, PLANET, RoboNet, microFUN, MOA “Habitable” Earths: common or rare?

~100 Doppler wobble planets

Jupiter

Earth

Hot Planets Cool Planets Hot Earths Transits from Space

Earth transit depth: f ~ 10−4 = 0.01% f HST results suggest this is detectable. Space Transit Missions Designed to detect Earth analogs

r ~ r⊕ ~ 0.01 Rsun T ≈ 300K P ~ 1 yr a ~ 1 au t ~ 13 h f / f ~ 10−4

Transit probability: Pt ~ 5.0 % “The Habitable Zone” T~300K

Planet Catch Simulation

habitable hot Jupiters

Earths Gravitational Microlensing

Hunting for Cool Planets near the Lens Star Gravitational Lensing

Observer’s View:

2 distorted images Lensing by a Star with a Planet Lens star … no planet Lens star with a planet

~600 Galactic Bulge lensing events found each year −3 M lens~ 3.0 M sun RE ~ 4 AU ~ 10 arcsec (Animations by Scott Gaudi) Planet Hunting Method

planet

d1 m / mJ t p ~ t E ~ 30d M / 0.3 M sun h1 m / mE Three-Stage Approach • Stage 1: discover microlens events -6 – prob ~10 , tE ~ 10 - 100 d – OGLE (+ MOA) find ~ 600 / yr • Stage 2: discover planet-like anomalies

– Jupiters: prob ~ 15% tp ~ 1 d Earths: prob ~ 1.5% t ~ 1 h – p t ∝ m • Stage 3: characterise planets – continuous monitoring • Teams: OGLE, MOA , PLANET, microFUN – 2005… UK 2m Robotic telescope network RoboNet • COOL EARTHS DETECTABLE OGLE III Galactic Bulge Microlens Search Fields

1.3 m Las Campanas ~ 150 million stars ~ 4 day sampling ~ 600 microlens events . each year

Early Warning System internet alerts Planet Detection Zones

OGLE III data (~600 events / yr) Planet exclusion zones

------10%---

residuals (no anomalies) Planet detection probability Planet-like Anomalies

Several found each year

Brief (<4d) 60% brightening

Must intensify monitoring to discover more, and to characterise the planet masses. Microlens Follow-up Networks:

PLANET, MOA, microFUN, RoboNet

PLANET 4 southern sites 0.6-1.5 m telescopes selected events ~24-hour coverage Cool Planet Hunting with the UK’s 2m Robotic Telescopes

Liverpool Telescope: La Palma

Faulkes Telescopes: FT-N, Maui FT-S, Siding Springs RoboNet 1 --> REX REX = Robotic EX oplanet discovery Network

REX proposal for 2 more southern telescopes. Dedicated to exoplanet hunting Doppler wobbles, transits, microlensing. OB -03 -235/MB -03 -053 first microlens planet

m ~ 1.5 mJ

OGLE alert

Bond et al. (2004) OB-05-071

m ~ 3 mJ

Udalski et al. (2005) OB-05-390

m ~ 5 m⊕

Beaulieu et al. (2005) Lowest-mass exoplanet to date Ida & Lin Model Distribution Observed Distribution

Most of these planets accretemicrolensing onto star Masses) Mass (Earth Mass Presently Unobservable

Semi-Major Axis (AU) Semi-Major Axis (AU)

Ida and Lin (2004, 2005) carried out a large number of Monte-Carlo simulations which draw from distributions of disk masses and seed-planetesimals to model the process of core accretion in the presence of migration. These simulations reproduce the planet “desert”, and predict a huge population of terrestrial and ice giant planets somewhat below the current detection threshold for radial velocity surveys. Are “Habitable” Planets common or rare ?

Jupiter

Earth ESA: ~ 2015-20? infrared space interferometer destructive interference cancels out the starlight snapshot ~500 nearby systems study ~ 50 in detail NASA’s Terrestrial Planet Finder

2014 : TPF-C 4-6 m visible light coronagraph

2020 : TPF-I 3-4 m infrared interferometer Life’s Signature: disequilibrium atmosphere (e.g. oxygen-rich)

simulated Darwin spectrum

Which planet is alive? The Road Ahead • Doppler Wobbles –2005 ... 150 --> 200 Jupiters –longer periods, multi-planet systems • Transits –2005-10 … WASP ~10 3 Hot Jupiters –2006-08 … Corot Hot Earths –2008-12 … Kepler Hot --> Habitable Earths • Microlensing –2005-15 … cool Jupiters --> Earths • Darwin / TPF –2015-2025 … direct images, spectra, Life? Thanks for listening! Thanks for Listening!

And thanks to G.Laughlin, G.Lodato, R.Nelson for slides used in this talk. Thanks for listening!