Extra-Solar Planets

Extra-Solar Planets

Extra-Solar Planets The Ongoing Discovery Era Keith Horne SUPA, St.Andrews Extra-Solar Planets The Discovery Era • < 1995 Solar System planets • 1995 first extrasolar planet • ( 51 Peg ) a Hot Jupiter! • 2005 ~150 Hot-Cool Jupiters • 2010-15 Habitable Earths -- common or rare? • 2015-25 Are we alone? Extra-solar Life? Direct Imaging HARD! Extreme Adaptive Optics Coronography Nulling Interferometry GQ Lup Faint companions to: White Dwarfs Brown Dwarfs with common proper motion GQ Lup: 22 mJ 100 AU Neuhaeuser et al. 2005 2M1207: 5 mJ 55 AU Chauvin et al. 2005 AB Pic : 14 mJ 280 AU Chauvin et al. 2005 Indirect Discovery Methods • Doppler Star Wobbles: • Transits: • Microlensing: Exoplanet Discovery Space Jupiter Earth Key Technology: 1995 First Doppler Wobble Planet: 51 Peg Discovered by accident: Mayor & Queloz (1995) Quickly confirmed: Marcy & Butler (1995) P = 4.2 days (!) a = 0.05 AU T ~2000K m sin(i) = 0.5 mJ New class of planet: “Hot Jupiter” Doppler Wobble Planets 2005 Sep (first decade) 134 stars 158 planets 18 multi-planet . systems ~5% of stars “wobble” 1-2 planets / month Wide range of planet masses and orbit sizes < m 10mJ P >2d Jupiter Earth Eccentric Orbits Unclear why. Planet-planet interactions Small planets ejected Tidal circularisation High metalicity of planet host stars more more metals --> planets Enhanced planet formation ? Pollution of stellar atmosphere? Santos 2003 Fischer & Valenti 2004 GJ 876 M4V star + 2 gas giants in resonant orbits : m sin(i) = 0.56 m J P = 30 d m sin(i) = 1.89 mj P = 60 d Marcy et al. 2001 + smallest hot planet ( terrestrial ? ) m sini ~ 8 m e P = 1.9 d Rivera et al. 2005 Lessons from Doppler Wobbles • > 5% of Sun-like stars host a Jupiter • Metalicity matters • Orbits differ from Solar System – wide range of orbit radii ( P > 2d ) – wide range of eccentricities • New processes – Migration -- inspiral – eccentricity pumping – ejection • What about the other 95% ? – Is the Solar System typical or rare ? Planets form in dusty disks Computer simulations of planet formation Orbital migration • Spiral waves induced by planet – Exchange angular momentum with disk ) Gravitational Instability • Type 1 -- no gap. Fast. * M – m < Saturn / Type III k s i Type II -- gap. Slow. d • M ( Type I Type II – m > Saturn g o no gap gap • Type III -- runaway L – m ~ Saturn Log( m p / M * ) • Planets migrate into the star! – Need to suppress Type I migration. e.g. Masset & Papaloizou, 2003 Ida & Lin Model Distribution Observed Distribution Most of these planets accrete onto star Masses) Mass (Earth Mass Presently Unobservable Semi-Major Axis (AU) Semi-Major Axis (AU) Ida and Lin (2004, 2005) carried out a large number of Monte-Carlo simulations which draw from distributions of disk masses and seed-planetesimals to model the process of core accretion in the presence of migration. These simulations reproduce the planet “desert”, and predict a huge population of terrestrial and ice giant planets somewhat below the current detection threshold for radial velocity surveys. Transits: Hot Jupiters Jupiter Earth Transit Lightcurves ≈ rJup 0.1 RSun Depth: 2 −2 ∆f rp R∗ ≈1% f rJup RSun Duration: 2/3 M P 1/ 3 ∆t ≈ 3h ∗ MSun 4d Probability: −1/3 − R M P 2/3 P ≈10% ∗ ∗ t RSun MSun 4d 1999 First Transiting Planet HD 209458 V=7.6 mag 1.6% “winks” last 3 hours repeat every 3.5 days ) Charbonneau & Brown (2000) STARE 10 cm telescope STARE data HD 209458 “Bloated” Gas Giant m ~ 0.63 mJ r ~ 1.3 rJ i ~ 87 o HST/STIS HD 209458 Transits Brown et al. (2001) r = 1.35 ± 0.06 rJ i = 86 o.6 ± 0 o.2 1% HST: Fit Residuals ~10 -4 No Moons r > 1.2 rEarth No Rings r > 1.8 rEarth winds clouddecks composition planetary atmosphere Spectroscopy Brown (2001) Transit Transit transit depth 1.5% 1.6% Na Na I wavelength (microns) HST Transit Spectroscopy detects Na I in the atmosphere of HD 209458b 3.2 ×10 −4 × −4 Charbonneau et al. (2002) 3.1 10 Evaporating Atmosphere Vidal-Madjar et al. (2003) 5% 10% 10% Star occults planet 0.2 % Spitzer/IRAC 4.5, 8.0 micron Direct detection of TrES-1: Charbonneau et al. 2005 infrared light from planet HD 209458: Deming et al. 2005 2005 Ground-based Transit Surveys WASP Wide Deep OGLE 19 mag = 1.3m OGLE 3 kpc 300pc 13 mag = 11cm WASP Wide Deep Wide Deep 10cm 1-4m 10o < 1o OGLE III Transit Candidates 1. 3m Las Campanas (microlens survey telescope) Mosaic 8-chip CCD camera 2001 Galactic Bulge -- 64 candidates 2002 Carina -- 73 candidates 2004 Nov Deep surveys of Galactic Plane fields yield many false alarms : grazing or blended eclipsing binaries, brown dwarf eclipses 6 planets discovered by transits and confirmed by radial velocities 3 with P < 3d (?) Period Distribution New class of very-hot Jupiters? Different selection effects ? Radius vs Mass At least 2 parameters Rapid inward migration ---> no time to cool Wide Transit Survey Discovery Potential Assume HD 209458 (V=7.6 mag) is brightest. mag 8 9 10 11 12 13 all sky 1 4 16 64 256 1024 16 ox16 o - - 0.1 0.4 1.6 7 How long to find them all ? ~ 150 16 ox16 o fields ~ 2 months / field ~ 25/ N years N = number of 16 ox16 o cameras UK WASP Experiment Wide-Angle Search for Planets 2004 SuperWASP La Palma 2005 SuperWASP SAAO Robotic Mount 8 cameras / mount 11cm F/1.8 lens 2K x 2K E2V CCD 8o x 8 o field 15 arcsec pixels UK WASP Consortium: Belfast, St.Andrews, Keele, Open, Leicester, Cambridge, IAC, SAAO. D.Pollacco = PI SuperWASP La Palma 2004 Data Under Analysis Spectroscopic follow-up of candidates is underway SuperWASP 2004 Transit Candidate -- 1% -- How to find Earths ? • Hot Earths : Transits from Space – 2006-08 … Corot – 2008-12 … Kepler • Habitable Earths: Hard to Find – Habitable Zone: T~300K liquid water on rocky planet surfaces • Cool Earths : Gravitational Lensing – 2004-12 … OGLE, PLANET, RoboNet, microFUN, MOA “Habitable” Earths: common or rare? ~100 Doppler wobble planets Jupiter Earth Hot Planets Cool Planets Hot Earths Transits from Space Earth transit depth: ∆f ~ 10−4 = 0.01% f HST results suggest this is detectable. Space Transit Missions Designed to detect Earth analogs r ~ r⊕ ~ 0.01 Rsun T ≈ 300K P ~ 1 yr a ~ 1 au ∆t ~ 13 h ∆f / f ~ 10−4 Transit probability: Pt ~ 5.0 % “The Habitable Zone” T~300K ⊕ Eddington Planet Catch Simulation habitable hot Jupiters Earths Gravitational Microlensing Hunting for Cool Planets near the Lens Star Gravitational Lensing Observer’s View: 2 distorted images Lensing by a Star with a Planet Lens star … no planet Lens star with a planet ~600 Galactic Bulge lensing events found each year −3 M lens~ 3.0 M sun RE ~ 4 AU ~ 10 arcsec (Animations by Scott Gaudi) Planet Hunting Method planet d1 m / mJ t p ~ t E ~ 30d M / 0.3 M sun h1 m / mE Three-Stage Approach • Stage 1: discover microlens events -6 – prob ~10 , tE ~ 10 - 100 d – OGLE (+ MOA) find ~ 600 / yr • Stage 2: discover planet-like anomalies – Jupiters: prob ~ 15% tp ~ 1 d Earths: prob ~ 1.5% t ~ 1 h – p t ∝ m • Stage 3: characterise planets – continuous monitoring • Teams: OGLE, MOA , PLANET, microFUN – 2005… UK 2m Robotic telescope network RoboNet • COOL EARTHS DETECTABLE OGLE III Galactic Bulge Microlens Search Fields 1.3 m Las Campanas ~ 150 million stars ~ 4 day sampling ~ 600 microlens events . each year Early Warning System internet alerts Planet Detection Zones OGLE III data (~600 events / yr) Planet exclusion zones --------10%--- residuals (no anomalies) Planet detection probability Planet-like Anomalies Several found each year Brief (<4d) 60% brightening Must intensify monitoring to discover more, and to characterise the planet masses. Microlens Follow-up Networks: PLANET, MOA, microFUN, RoboNet PLANET 4 southern sites 0.6-1.5 m telescopes selected events ~24-hour coverage Cool Planet Hunting with the UK’s 2m Robotic Telescopes Liverpool Telescope: La Palma Faulkes Telescopes: FT-N, Maui FT-S, Siding Springs RoboNet 1 --> REX REX = Robotic EX oplanet discovery Network REX proposal for 2 more southern telescopes. Dedicated to exoplanet hunting Doppler wobbles, transits, microlensing. OB -03 -235/MB -03 -053 first microlens planet m ~ 1.5 mJ OGLE alert Bond et al. (2004) OB-05-071 m ~ 3 mJ Udalski et al. (2005) OB-05-390 m ~ 5 m⊕ Beaulieu et al. (2005) Lowest-mass exoplanet to date Ida & Lin Model Distribution Observed Distribution Most of these planets accretemicrolensing onto star Masses) Mass (EarthMass Presently Unobservable Semi-Major Axis (AU) Semi-Major Axis (AU) Ida and Lin (2004, 2005) carried out a large number of Monte-Carlo simulations which draw from distributions of disk masses and seed-planetesimals to model the process of core accretion in the presence of migration. These simulations reproduce the planet “desert”, and predict a huge population of terrestrial and ice giant planets somewhat below the current detection threshold for radial velocity surveys. Are “Habitable” Planets common or rare ? Jupiter Earth ESA: Darwin ~ 2015-20? infrared space interferometer destructive interference cancels out the starlight snapshot ~500 nearby systems study ~ 50 in detail NASA’s Terrestrial Planet Finder 2014 : TPF-C 4-6 m visible light coronagraph 2020 : TPF-I 3-4 m infrared interferometer Life’s Signature: disequilibrium atmosphere (e.g. oxygen-rich) simulated Darwin spectrum Which planet is alive? The Road Ahead • Doppler Wobbles –2005 ... 150 --> 200 Jupiters –longer periods, multi-planet systems • Transits –2005-10 … WASP ~10 3 Hot Jupiters –2006-08 … Corot Hot Earths –2008-12 … Kepler Hot --> Habitable Earths • Microlensing –2005-15 … cool Jupiters --> Earths • Darwin / TPF –2015-2025 … direct images, spectra, Life? Thanks for listening! Thanks for Listening! And thanks to G.Laughlin, G.Lodato, R.Nelson for slides used in this talk.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    68 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us