Sulfonation and Methylation in Silico - Modelling Studies on SULT1A3 and COMT

Total Page:16

File Type:pdf, Size:1020Kb

Sulfonation and Methylation in Silico - Modelling Studies on SULT1A3 and COMT Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Finland Julius Sipilä Sulfonation and methylation in silico - modelling studies on SULT1A3 and COMT Academic Dissertation To be presented for public discussion, with the permission of the Faculty of Pharmacy of the University of Helsinki, in Auditorium Porthania PII, on May 25th, 2020, at 5 PM Helsinki 2020 Supervisors Professor Jyrki Taskinen D.Sc. (Tech.) 2003-2006 Division of Pharmaceutical Chemistry Faculty of Pharmacy University of Helsinki Professor Jari Yli-Kauhaluoma PhD Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Reviewers Docent Maija Lahtela-Kakkonen School of Pharmacy University of Eastern Finland UEF Finland Professor Olli Pentikäinen Institute of Biomedicine University of Turku UTU Finland Opponent Professor Gerhard Wolber PhD Department of Biology, Chemistry and Pharmacy Institute of Pharmacy Freie Universität Berlin Germany ISBN 978-951-51-6064-5 (paperback) ISBN 978-951-51-6065-2 (PDF) Helsinki 2020 Abstract Phenolic compounds are ubiquitously encountered in all living organisms. Due to the versatile chemical properties of phenols, they can form various types of specific interactions with biological macromolecules and participate in different types of reactions. In humans, endogenous phenols act as important neurotransmitters, hormones, and building blocks of proteins. A multitude of potentially bioactive phenols is ingested from different sources every day. To modulate the activities of endogenous and xenobiotic phenols, several families of Phase II metabolic enzymes have evolved, which can eliminate phenolic compounds through conjugation. In humans, the most important Phase II enzymes for phenol metabolism are UDP-glucuronosyltransferases (UGTs), cytosolic sulfotransferases (SULTs) and catechol O-methyltransferase (COMT). These enzymes increase the solubility of phenolic substrates, making them less active and easier to excrete. Because many clinically applied drugs also possess phenolic functionalities, UGTs, SULTs, and COMT are potentially important for the pharmacokinetics, exposure, and efficacy of therapeutics. In this thesis, the substrate specificity of human SULT1A3 and COMT were studied computationally, using comparative molecular field analysis (CoMFA), which is a widely used 3-dimensional (3D) quantitative structure-activity relationship (QSAR) method, based on the molecular interaction fields of known substrate molecules and their activities. The CoMFA fields describe the shape, size, and electrostatic properties of the substrates, which are the most important determinants of molecular recognition by enzymes. In our CoMFA models, variations in the substrate fields were statistically correlated with changes in enzyme kinetic parameters such as the Michaelis-Menten constant (Km) or maximum velocity (Vmax), allowing the structural elements that are most important for activity to be extracted. The derived CoMFA models can be used to assess the probability that a new and unknown phenolic drug candidate may be a substrate of SULT1A3 or COMT. In the SULT1A3 models, we found a clear preference for structural elements typically found in catecholamines, in agreement with the results of site-directed mutagenesis studies, X-ray crystal structures and molecular dynamics (MD) simulations that have been published after our studies. When describing the electrostatic effects in the CoMFA models for COMT, semi-empirical atomic partial charges were preferred over empirically parametrized charges. In addition, the acid dissociation constant (pKa)value of the reacting catecholic hydroxyl was a critical factor that affected the affinities of the ligands. Replacing the electrostatic field in the CoMFA model with the predicted pKa value facilitated the development of less acidic COMT ligands that are capable of central nervous system (CNS) permeation. To improve the prediction of pKa values for certain privileged COMT ligand scaffolds, we developed a modified Hammett equation, by synthesizing a series of p-vinylphenols and measuring their pKa values. As increasing amounts of X-ray structural information, covering whole protein families, have become publicly available, we have attempted to extract relevant knowledge from the binding sites of several related proteins, to inspire ligand design. We created an automated data processing workflow, designed to process, combine, and analyze the electrostatic and knowledge-based contact preference fields of aligned binding sites. This analysis was performed and validated using the nuclear receptor (NR) family of proteins and was later tested for the prediction of SULT isoenzyme substrate affinities. The field- based protein binding pocket analysis has proven to be a useful tool, however, the intrinsic flexibility that has been observed among the cytosolic SULT family can be challenging to model without considering the dynamics of the system. In summary, the computational models that were developed in this study could be used in combination with other in silico approaches, especially MD simulations, to provide a better picture of the probable enzymes that may be relevant for the metabolism of a new phenolic drug or active metabolite. These models could be also used to design compounds with an improved affinity towards the studied enzymes, which may be clinically interesting due to the important roles played by SULT1A3 and COMT in the catecholamine-mediated neurotransmission pathways. Acknowledgements The research presented in this thesis was performed at the current Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki and at the Research and Development unit of Orion Pharma, Espoo. Computers and chemistry, especially medicinal chemistry, have always fascinated me. My deepest gratitude belongs to the late Professor Jyrki Taskinen, who agreed to supervise my Master’s thesis and, later, my doctoral studies, which combined these two topics. These studies have represented a turning point in my professional life, after which I knew what I really wanted to do. I am still following that path, with passion. Professor Taskinen told me that the best thoughts usually do not appear when sitting in front of the computer in your office; on the contrary, they appear outdoors while doing something enjoyable. Even today, when I am puzzled by a difficult problem, I remember and follow this great advice. I cannot express enough nice words to describe my respect for the other supervisor of my thesis, Professor Jari Yli-Kauhaluoma. Without your patience, responsiveness, and support, this study would have been very difficult for me to finalize. Sincerely, I want to thank Docent Maija Lahtela-Kakkonen and Professor Olli Pentikäinen for reviewing this thesis and improving it, through their constructive comments and suggestions. I want to thank all of my former and current colleagues and co-authors at the Faculty of Pharmacy and Orion R&D, especially Docent Martti Ovaska, for all their support and guidance. During the years, I have really enjoyed the discussions with my colleagues Mika Kurkela, Olli Aitio, Gerd Wohlfahrt, Lars-Olof Pietilä, Peteris Prusis, Heikki Käsnänen, and Tuomo Kalliokoski. I would like to thank my supervisors at Orion R&D, Leena Otsomaa, for giving me a great example to follow, and Christer Nordstedt, for all the inspiring scientific discussions and, of course, for making it crystal clear that getting a PhD is a very wise thing to do. I want to thank the Finnish Cultural Foundation, the Sigrid Juselius Foundation, and the Graduate School in Pharmaceutical Research, for funding. I want to express my greatest gratitude to my parents, for all their support during the years of my studies. My kids Astrid, Alvar and Viktor, I truly thank you all for the patience, and for constantly reminding me about the most important stuff in life. Finally, I want to thank you, Anna, for helping me with this project and for everything else. Julius Sipilä February 2020 Espoo, Finland Contents Abstract Acknowledgements Contents List of publications ..............................................................................................11 Abbreviations.......................................................................................................13 1 Introduction....................................................................................................15 2 Review of the literature .................................................................................19 2.1 Relevance of phenolic compounds in biology ........................................19 2.2 Phase II enzymes in the metabolism of phenolic compounds.................19 2.3 Glucuronidation by UGTs.......................................................................22 2.4 Methylation by COMT............................................................................23 2.4.1 Clinical relevance of COMT.......................................................23 2.4.2 The human COMT gene, protein expression and localization....25 2.4.3 Structure and function of COMT................................................26 2.5 Sulfonation by SULTs.............................................................................28 2.5.1 SULT isoforms............................................................................29 2.5.2 Clinical relevance of SULTs.......................................................29 2.5.3 Structure
Recommended publications
  • 210913Orig1s000 CLINICAL PHARMACOLOGY REVIEW(S)
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 210913Orig1s000 CLINICAL PHARMACOLOGY REVIEW(S) Office of Clinical Pharmacology Review NDA Number 212489 Link to EDR \\cdsesub1\evsprod\nda212489 Submission Date 04/26/2019 Submission Type 505(b)(1) NME NDA (Standard Review) Brand Name ONGENTYS Generic Name opicapone Dosage Form/Strength and Capsules: 25 mg and 50 mg Dosing Regimen 50 mg administered orally once daily at bedtime Route of Administration Oral Proposed Indication Adjunctive treatment to levodopa/carbidopa in patients with Parkinson’s Disease experiencing “OFF” episodes Applicant Neurocrine Biosciences, Inc. (NBI) Associated IND IND (b) (4) OCP Review Team Mariam Ahmed, Ph.D. Atul Bhattaram, Ph.D. Sreedharan Sabarinath, Ph.D. OCP Final Signatory Mehul Mehta, Ph.D. 1 Reference ID: 4585182 Table of Contents 1. EXECUTIVE SUMMARY .............................................................................................................................................................. 4 1.1 Recommendations ..................................................................................................................................................... 4 1.2 Post-Marketing Requirements and Commitments ......................................................................................... 6 2. SUMMARY OF CLINICAL PHARMACOLOGY ASSESSMENT ............................................................................................. 6 2.1 Pharmacology and Clinical Pharmacokinetics ..................................................................................................
    [Show full text]
  • Changes to the Highmark Drug Formularies
    AUGUST 2020 JULY/AUGUST 2020 UPDATE CHANGES TO THE HIGHMARK DRUG FORMULARIES Following is the update to the Highmark Drug Formularies and pharmaceutical management procedures for July/August 2020. The formularies and pharmaceutical management procedures are updated on a bimonthly basis, and the following changes reflect the decisions made in June 2020 by our Pharmacy and Therapeutics Committee. These updates are effective on the dates noted throughout this document. Please reference the guide below to navigate this communication: Section I. Highmark Commercial and Healthcare Reform Formularies A. Changes to the Highmark Comprehensive Formulary and the Highmark Comprehensive Healthcare Reform Formulary B. Changes to the Highmark Progressive Formulary and the Highmark Progressive Healthcare Reform Formulary C. Changes to the Highmark Healthcare Reform Essential Formulary D. Changes to the Highmark Core Formulary E. Changes to the Highmark National Select Formulary F. Updates to the Pharmacy Utilization Management Programs 1. Prior Authorization Program 2. Managed Prescription Drug Coverage (MRxC) Program 3. Formulary Program 4. Quantity Level Limit (QLL) Programs Section II. Highmark Medicare Part D Formularies A. Changes to the Highmark Medicare Part D 5-Tier Incentive Formulary B. Changes to the Highmark Medicare Part D 5-Tier Closed Formulary C. Additions to the Specialty Tier D. Updates to the Pharmacy Utilization Management Programs 1. Prior Authorization Program 2. Managed Prescription Drug Coverage (MRxC) Program 3. Quantity Level Limit (QLL) Program As an added convenience, you can also search our drug formularies and view utilization management policies on the Provider Resource Center (accessible via NaviNet® or our website). Click the Pharmacy Program/Formularies link from the menu on the left.
    [Show full text]
  • Health Plan Insights
    Health Plan Insights January 2020 Updates from December 2019 800.361.4542 | envisionrx.com Confidential - Document has confidential information and may not be copied, published or distributed, in whole or in part, in any form or medium, without EnvisionRxOptions’ prior written consent. Recent FDA Approvals New Medications TRADE NAME DOSAGE FORM APPROVAL MANUFACTURER INDICATION(S) (generic name) STRENGTH DATE Avsola Amgen Inc. Injection, Biosimilar to Remicade. For the treatment December 6, 2019 (infliximab-axxq) 100 mg/20 mL of/reducing the signs and symptoms of: Crohn’s disease, pediatric Crohn’s disease, ulcerative colitis, rheumatoid arthritis in combination with methotrexate, psoriatic arthritis, and plaque psoriasis. Vyondys 53 Sarepta Intravenous Solution, For the treatment of Duchenne muscular December 12, (golodirsen) Therapeutics, Inc. 50 mg/mL dystrophy (DMD) in patients who have a 2019 confirmed mutation of the DMD gene that is amenable to exon 53 skipping. Padcev Astellas Injection, For the treatment of adult patients with locally December 18, (enfortumab 20 mg/vial and 30 advanced or metastatic urothelial cancer who 2019 vedotin-ejfv) mg/vial have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor, and a platinum-containing chemotherapy in the neoadjuvant/adjuvant, locally advanced or metastatic setting. Conjupri CSPC Ouyi Tablets, For use alone or in combination with other (levamlodipine) Pharmaceutical 1.25 mg, 2.5 mg, and antihypertensive agents for the treatment of December 19, Co., Ltd. 5 mg hypertension, to lower blood pressure. 2019 Caplyta Intra-Cellular Capsules, For the treatment of schizophrenia in adults. December 20, (lumateperone) Therapies, Inc.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Opicapone for the Management of End-Of-Dose Motor Fluctuations in Patients with Parkinson’S Disease Treated with L-DOPA
    Opicapone for the management of end-of-dose motor fluctuations in patients with Parkinson’s disease treated with L-DOPA Andrew J. Lees MD1, Joaquim Ferreira MD2, Olivier Rascol MD3, Heinz Reichmann MD,4 Fabrizio Stocchi MD,5 Eduardo Tolosa MD,6 Werner Poewe MD7 1. University College London, Reta Lila Weston Institute, London, UK 2. Hospital de Santa Maria, Centro de Estudos Egas Moniz, Lisbon, Portugal 3. Departments of Clinical Pharmacology and Neurosciences, Clinical Investigation Center CIC 1436, NS-Park/FCRIN network and NeuroToul COEN Center, INSERM, Toulouse University Hospital and Toulouse3 University, Toulouse, France 4. Department of Neurology, Technische Universitaet Dresden, Dresden, Germany 5. Institute of Neurology, IRCCS San Raffaele Pisana, Rome, Italy 6. Neurology Service, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Spain. 7. Department of Neurology, Innsbruck Medical University, Innsbruck, Austria Corresponding author Professor Andrew Lees University College London, Reta Lila Weston Institute, 1 Wakefield Street London WC1N 1PJ London, UK Email: [email protected] Direct telephone: + 44 20 7xxxxxxx Fax: +44 20 7xxxxxxx 1 Joaquim Ferreira [email protected] Olivier Rascol [email protected] Eduardo Tolosa [email protected] Fabrizio Stocchi [email protected] Heinz Reichmann [email protected] Werner Poewe [email protected] 2 Summary Introduction: Opicapone is a third generation, highly potent and effective catechol O‑methyltransferase (COMT) inhibitor that optimizes the pharmacokinetics and bioavailability of L- DOPA therapy. Areas covered: In this review, we describe the preclinical and clinical development of opicapone.
    [Show full text]
  • Rxoutlook® 1St Quarter 2019
    ® RxOutlook 1st Quarter 2020 optum.com/optumrx a RxOutlook 1st Quarter 2020 Orphan drugs continue to feature prominently in the drug development pipeline In 1983 the Orphan Drug Act was signed into law. Thirty seven years later, what was initially envisioned as a minor category of drugs has become a major part of the drug development pipeline. The Orphan Drug Act was passed by the United States Congress in 1983 in order to spur drug development for rare conditions with high unmet need. The legislation provided financial incentives to manufacturers if they could demonstrate that the target population for their drug consisted of fewer than 200,000 persons in the United States, or that there was no reasonable expectation that commercial sales would be sufficient to recoup the developmental costs associated with the drug. These “Orphan Drug” approvals have become increasingly common over the last two decades. In 2000, two of the 27 (7%) new drugs approved by the FDA had Orphan Designation, whereas in 2019, 20 of the 48 new drugs (42%) approved by the FDA had Orphan Designation. Since the passage of the Orphan Drug Act, 37 years ago, additional regulations and FDA designations have been implemented in an attempt to further expedite drug development for certain serious and life threatening conditions. Drugs with a Fast Track designation can use Phase 2 clinical trials to support FDA approval. Drugs with Breakthrough Therapy designation can use alternative clinical trial designs instead of the traditional randomized, double-blind, placebo-controlled trial. Additionally, drugs may be approved via the Accelerated Approval pathway using surrogate endpoints in clinical trials rather than clinical outcomes.
    [Show full text]
  • SULT1A3 Rabbit Pab
    Leader in Biomolecular Solutions for Life Science SULT1A3 Rabbit pAb Catalog No.: A12357 Basic Information Background Catalog No. Sulfotransferase enzymes catalyze the sulfate conjugation of many hormones, A12357 neurotransmitters, drugs, and xenobiotic compounds. These cytosolic enzymes are different in their tissue distributions and substrate specificities. The gene structure Observed MW (number and length of exons) is similar among family members. This gene encodes a 34kDa phenol sulfotransferase with thermolabile enzyme activity. Four sulfotransferase genes are located on the p arm of chromosome 16; this gene and SULT1A4 arose from a Calculated MW segmental duplication. This gene is the most centromeric of the four sulfotransferase 34kDa genes. Read-through transcription exists between this gene and the upstream SLX1A (SLX1 structure-specific endonuclease subunit homolog A) gene that encodes a protein Category containing GIY-YIG domains. Primary antibody Applications WB,IHC,IF Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 6818 P0DMM9 IHC 1:50 - 1:100 Immunogen 1:50 - 1:100 IF Recombinant fusion protein containing a sequence corresponding to amino acids 1-100 of human SULT1A3 (NP_808220.1). Synonyms SULT1A3;HAST;HAST3;M-PST;ST1A3;ST1A3/ST1A4;ST1A5;STM;TL-PST Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using SULT1A3 antibody (A12357) at 1:3000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution.
    [Show full text]
  • 212489Orig1s000 SUMMARY REVIEW
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 212489Orig1s000 SUMMARY REVIEW Gerald D. Podskalny, DO From Eric Bastings, MD Billy Dunn, MD Subject Joint Summary Review NDA/BLA # and Supplement# NDA 212489 Applicant Neurocrine Biosciences, Inc. Date of Submission 04/26/2019 PDUFA Goal Date 04/26/2020 Proprietary Name Ongentys Established or Proper Name Opicapone Dosage Form(s) 25-mg and 50-mg capsules Adjunctive treatment to levodopa/carbidopa in patients Applicant Proposed with Parkinson’s disease (PD) experiencing “off” Indication(s)/Population(s) episodes Applicant Proposed Dosing 50 mg orally once daily at bedtime. Regimen(s) Regulatory Action Approval Recommended Adjunctive treatment to levodopa/carbidopa in patients Indication(s)/Population(s) (if with Parkinson’s disease (PD) experiencing “off” applicable) episodes. Recommended Dosing 50 mg orally once daily at bedtime. Regimen(s) (if applicable) 1 Reference ID: 4597937 Reference ID: 4597937 1. Benefit-Risk Assessment Benefit-Risk Integrated Assessment Parkinson’s disease (PD) is the second most common neurodegenerative disease, with an estimated prevalence of 930,000 individuals in the United States. PD is caused by progressive loss of dopamine producing neurons in the substantia nigra located in the midbrain. The cardinal motor features of PD are bradykinesia, tremor, rigidity, and postural instability. As PD progresses, it causes increasing motor disability. Medications that replace or enhance the effects of dopamine, such as levodopa, treat the motor aspects of PD and remain the mainstay of treatment. About 5 years after starting treatment with levodopa, many patients develop motor fluctuations (dyskinesia and wearing-off). In advanced PD (approaching 10 years with PD and beyond), patients may develop cognitive impairment, neuropsychiatric symptoms (e.g., hallucinations and impulse control disorders) and impaired autonomic function (e.g., incontinence and orthostatic hypotension).
    [Show full text]
  • A Spanish Consensus on the Use of Safinamide for Parkinson's Disease in Clinical Practice
    brain sciences Review A Spanish Consensus on the Use of Safinamide for Parkinson’s Disease in Clinical Practice Javier Pagonabarraga 1,2,3,*, José Matías Arbelo 4,5 , Francisco Grandas 6,7, Maria-Rosario Luquin 8,9, Pablo Martínez Martín 10,11 , Mari Cruz Rodríguez-Oroz 12,13, Francesc Valldeoriola 14,15 and Jaime Kulisevsky 1,2,3,16,17 1 Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; [email protected] 2 Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain 3 Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain 4 Movement Disorders Unit, Neurology Department, Hospital Universitario San Roque, 35001 Las Palmas, Spain; [email protected] 5 Department of Medicine, Universidad Fernando Pessoa-Canarias, 35450 Las Palmas, Spain 6 Movement Disorders Unit-CSUR, Neurology Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; [email protected] 7 Department of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain 8 Movement Disorders Unit, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain; [email protected] 9 Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain 10 Instituto de Salud Carlos III, 28029 Madrid, Spain; [email protected] 11 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain 12 Neurology and Neuroscience Unit, Clínica Universidad de Navarra (CUN), 31008Pamplona,
    [Show full text]
  • Lyophilization and a Preliminary Thermodynamic Characterization of Recombinant SCOMT His6
    UNIVERSIDADE DA BEIRA INTERIOR Ciências Lyophilization and a preliminary thermodynamic characterization of recombinant SCOMT_His6 Rúben Miguel Oliveira Coval Dissertação para obtenção do Grau de Mestre em Biotecnologia (2º ciclo de estudos) Orientador: Professor Doutor Luís António Paulino Passarinha Co-orientador: Mestre Augusto Quaresma Henriques Pedro Covilhã, outubro de 2015 ii “When we are no longer able to change a situation, we are challenged to change ourselves” Viktor Frankl iii iv Acknowledgments First off all, I would like to express my sincere gratitude to my parents, brother and girlfriend for all their sacrifices, encouragement, support and unconditional love. Furthermore, I would also like to give a special thanks to my supervisors Professor Doctor Luís Passarinha and Master Augusto Pedro for all their availability, guidance, expertise, patience and trust. Their help, efforts, vast knowledge, criticism and suggestions were crucial for the development of this project. It was a privilege to work and learn with them. I would also like to acknowledge the University of Beira Interior, in particular the Health Sciences Research Center, where all the work was developed. I am also grateful to all people involved in the Health Sciences Research Center of the University of Beira Interior, particularly to my colleagues in the Biotechnology and Biomolecular Sciences group whose advice and companionship made my work much more easy and pleasant. I could not fail to name a few people who were crucial in this process. I want to make a special thanks to Margarida Grilo and Guilherme Espírito Santo throughout the laboratory help and especially for all past knowledge that were the basis of all this work, and to Filipe Frias for the companionship and help.
    [Show full text]
  • SULT1A3 Polyclonal Antibody Sulfotransferase with Thermolabile Enzyme Activity
    SULT1A3 polyclonal antibody sulfotransferase with thermolabile enzyme activity. Four sulfotransferase genes are located on the p arm of Catalog Number: PAB1216 chromosome 16; this gene and SULT1A4 arose from a segmental duplication. This gene is the most Regulatory Status: For research use only (RUO) centromeric of the four sulfotransferase genes. Exons of this gene overlap with exons of a gene that encodes a Product Description: Rabbit polyclonal antibody raised protein containing GIY-YIG domains (GIYD1). Multiple against full length recombinant SULT1A3. alternatively spliced variants that encode the same protein have been described. [provided by RefSeq] Immunogen: Recombinant protein corresponding to full length human SULT1A3. References: 1. Structure-function relationships in the stereospecific Host: Rabbit and manganese-dependent 3,4-dihydroxyphenylalanine/tyrosine-sulfating activity of Reactivity: Human human monoamine-form phenol sulfotransferase, Applications: IHC, WB SULT1A3. Pai TG, Oxendine I, Sugahara T, Suiko M, (See our web site product page for detailed applications Sakakibara Y, Liu MC. J Biol Chem. 2003 Jan information) 17;278(3):1525-32. Epub 2002 Nov 6. 2. Manganese stimulation and stereospecificity of the Protocols: See our web site at Dopa (3,4-dihydroxyphenylalanine)/tyrosine-sulfating http://www.abnova.com/support/protocols.asp or product activity of human monoamine-form phenol page for detailed protocols sulfotransferase. Kinetic studies of the mechanism using wild-type and mutant enzymes. Pai TG, Ohkimoto K, Form: Liquid Sakakibara Y, Suiko M, Sugahara T, Liu MC. J Biol Chem. 2002 Nov 15;277(46):43813-20. Epub 2002 Sep Recommend Usage: Western Blot (1:1800) 12. The optimal working dilution should be determined by 3.
    [Show full text]
  • Opicapone Capsules for the Treatment of Parkinsons Disease (Pd) in Adult Patients Recommended for Restricted Use (Amber Initiation)
    HERTFORDSHIRE MEDICINES MANAGEMENT COMMITTEE (HMMC) OPICAPONE CAPSULES FOR THE TREATMENT OF PARKINSONS DISEASE (PD) IN ADULT PATIENTS RECOMMENDED FOR RESTRICTED USE (AMBER INITIATION) Name: generic What it is Indication Date Decision NICE / SMC (trade) decision status Guidance last revised Opicapone 50mg Peripheral, Licensed as adjunctive October 2019 Final NICE TA: not hard capsules selective and therapy to available ® (Ongentys ) reversible catechol- preparations of NICE guidance 0-methyltransferase levodopa/ DOPA for Parkinson’s (COMT) inhibitor decarboxylase disease in adults inhibitors in adult (NG71) patients with SMC not Parkinson's disease recommended and end-of-dose motor AWMSG fluctuations who recommended cannot be stabilised on those combinations HMMC recommendation: Opicapone 50mg capsules, within licensed indications, is recommended for restricted use as AMBER initiation as a second line COMT inhibitor in adult patients with PD with end-of-dose motor fluctuations who are intolerant of entacapone and where the next step of treatment would be the non-oral treatment options or tolcapone. Background Information: Opicapone is the third COMT inhibitor licensed in the UK with the recommended dose of 50 mg as an adjunct to levodopa/DDCI inhibitors. It should be taken once-daily at bedtime, at least one hour before or after levodopa combinations. In certain patients, this may enable a simplified drug regimen which may potentially improve compliance. Some patients taking a complicated PD drug regimen may find it easier to add a single tablet such as opicapone and keep their familiar levodopa doses over the day. In contrast, entacapone has to be taken with each levodopa dose, which may be up to 10 times daily.
    [Show full text]