Health Plan Insights

Total Page:16

File Type:pdf, Size:1020Kb

Health Plan Insights Health Plan Insights January 2020 Updates from December 2019 800.361.4542 | envisionrx.com Confidential - Document has confidential information and may not be copied, published or distributed, in whole or in part, in any form or medium, without EnvisionRxOptions’ prior written consent. Recent FDA Approvals New Medications TRADE NAME DOSAGE FORM APPROVAL MANUFACTURER INDICATION(S) (generic name) STRENGTH DATE Avsola Amgen Inc. Injection, Biosimilar to Remicade. For the treatment December 6, 2019 (infliximab-axxq) 100 mg/20 mL of/reducing the signs and symptoms of: Crohn’s disease, pediatric Crohn’s disease, ulcerative colitis, rheumatoid arthritis in combination with methotrexate, psoriatic arthritis, and plaque psoriasis. Vyondys 53 Sarepta Intravenous Solution, For the treatment of Duchenne muscular December 12, (golodirsen) Therapeutics, Inc. 50 mg/mL dystrophy (DMD) in patients who have a 2019 confirmed mutation of the DMD gene that is amenable to exon 53 skipping. Padcev Astellas Injection, For the treatment of adult patients with locally December 18, (enfortumab 20 mg/vial and 30 advanced or metastatic urothelial cancer who 2019 vedotin-ejfv) mg/vial have previously received a programmed death receptor-1 (PD-1) or programmed death-ligand 1 (PD-L1) inhibitor, and a platinum-containing chemotherapy in the neoadjuvant/adjuvant, locally advanced or metastatic setting. Conjupri CSPC Ouyi Tablets, For use alone or in combination with other (levamlodipine) Pharmaceutical 1.25 mg, 2.5 mg, and antihypertensive agents for the treatment of December 19, Co., Ltd. 5 mg hypertension, to lower blood pressure. 2019 Caplyta Intra-Cellular Capsules, For the treatment of schizophrenia in adults. December 20, (lumateperone) Therapies, Inc. 42 mg 2019 Tissue Blue Dutch Ophthalmic Ophthalmic Solution, To selectively stain the internal limiting December 20, (brilliant blue g) Research 0.025% membrane (ILM). 2019 Dayvigo Eisai R&D Tablets, For the treatment of adult patients with December 20, (lemborexant) Management Co., 5 mg and 10 mg insomnia, characterized by difficulties with 2019 Ltd sleep onset and/or sleep maintenance. Enhertu Daiichi Sankyo Injection, For the treatment of adult patients with December 20, (fam- 100 mg unresectable or metastatic HER2-positive 2019 trastuzumab breast cancer who have received two or more deruxtecan-nxki) prior anti-HER2-based regimens in the metastatic setting. Ubrelvy Allergan Tablets, For the acute treatment of migraine with or December 23, (ubrogepant) 10 mg and 50 mg without aura in adults. 2019 800.361.4542 | envisionrx.com 2 Confidential - Document has confidential information and may not be copied, published or distributed, in whole or in part, in any form or medium, without EnvisionRxOptions’ prior written consent. New Combinations and Formulations TRADE NAME DOSAGE FORM APPROVAL MANUFACTURER INDICATION(S) (generic name) STRENGTH DATE Nouress Avadel Legacy Injection, For use as an additive to amino acids December 13, 2019 (cysteine 50 mg/mL solutions to meet nutritional requirements of hydrochloride) neonates (preterm and term infants less than one month of age) requiring total parenteral nutrition. Arazlo Dow Topical Lotion, For the topical treatment of acne vulgaris in December 18, 2019 (tazarotene) Pharmaceuticals 0.045% patients 9 years of age and older. Genosyl Vero Biotech Gas Inhalation, To improve oxygenation and reduce the December 20, 2019 (nitric oxide) 20 ppm need for extracorporeal membrane oxygenation in term and near-term (>34 weeks gestation) neonates with hypoxic respiratory failure associated with clinical or echocardiographic evidence of pulmonary hypertension in conjunction with ventilatory support and other appropriate agents. New Generics APPROVAL GENERIC NAME TRADE NAME DOSAGE FORM MANUFACTURER(S) DATE Sucralfate Carafate Oral Suspension Amneal Pharmaceuticals LLC December 2, 2019 Fingolimod Gilenya Capsules Biocon Pharma Inc.; HEC Pharm USA Inc.; December 4, 2019 Hydrochloride Sun Pharmaceutical Industries, Inc. Everolimus Afinitor Tablets Teva Pharmaceuticals USA, Inc.; Par December 9, 2019 Pharmaceutical Inc. (excl. 10 mg) Sodium Teradecyl Sotradecol Injection Custopharm, Inc. December 9, 2019 Sulfate Etonogestrel and NuvaRing Vaginal Ring Amneal Pharmaceuticals LLC December 11, 2019 Ethinyl Estradiol Alvimopan Entereg Capsules Watson Laboratories Inc. December 19, 2019 Diazoxide Proglycem Oral Suspension E5 Pharma Inc. December 20, 2019 Apixaban Eliquis Tablets Mylan Pharmaceuticals Inc.; Micro Labs December 23, 2019 Limited Ziprasidone Geodon Injection Gland Pharma Limited December 26, 2019 Mesylate Mirabegron Myrbetriq Extended Release Sawai USA Inc. December 27, 2019 Tablets 800.361.4542 | envisionrx.com 3 Confidential - Document has confidential information and may not be copied, published or distributed, in whole or in part, in any form or medium, without EnvisionRxOptions’ prior written consent. Pipeline New Medication Pipeline MECHANISM OF ANTICIPATED DRUG NAME GENERIC NAME ROUTE INDICATION(S) ACTION APPROVAL DATE Pedmark Sodium Intravenous Chelating agent Chemotherapy-induced 2H 2019 Thiosulfate ototoxicity Tazemetostat Tazemetostat Oral EZH2 inhibitor Soft tissue sarcoma 01/23/2020 Dificid (oral Fidaxomicin Oral Narrow-spectrum Clostridium difficile 01/24/2020 suspension) macrocyclic antibiotic associated diarrhea Palforzia TBD Oral Allergen Allergy to peanuts 01/2020 immunotherapy BLU-285 Avapritinib Oral Receptor tyrosine Gastrointestinal cancer 02/14/2020 kinase inhibitor ETC-1002 Bempedoic Acid Oral ATP citrate lyase Hypercholesterolemia 02/21/2020 inhibitor Barhemsys Amisulpride Intravenous Atypical antipsychotic Postoperative nausea 02/26/2020 and vomiting Bempedoic Acid / Bempedoic Acid; Oral Intestinal cholesterol Hypercholesterolemia 02/26/2020 Ezetimibe Ezetimibe absorption inhibitor, ATP citrate lyase inhibitor ALD403 Eptinezumab Intravenous Calcitonin gene- Migraine 02/2020 related peptide inhibitor Empa + Lina + Met Empagliflozin; Oral Biguanides, Sodium- Diabetes Mellitus 02/2020 XR Linagliptin; glucose linked Metformin transporter 2 inhibitor, Dipeptidyl peptidase-4 inhibitor Teprotumumab Teprotumumab Intravenous Insulin-like growth Thyroid eye disease 03/08/2020 factor-1 receptor antagonist ITCA 650 Exenatide Implant Glucagon-like Diabetes Mellitus 03/09/2020 peptide-1 agonist Fintepla Fenfluramine Oral Serotonin reuptake Dravet syndrome 03/25/2020 inhibitor Lennox-Gastaut syndrome 800.361.4542 | envisionrx.com 4 Confidential - Document has confidential information and may not be copied, published or distributed, in whole or in part, in any form or medium, without EnvisionRxOptions’ prior written consent. MECHANISM OF ANTICIPATED DRUG NAME GENERIC NAME ROUTE INDICATION(S) ACTION APPROVAL DATE Ozanimod Ozanimod Oral Sphingosine 1- Relapsing multiple 03/25/2020 phosphate receptor sclerosis modulators HTX-011 Bupivacaine; Injectable Nonsteroidal anti- Post-operative pain 03/26/2020 Meloxicam inflammatory drugs, Amide anesthetic Triferic Ferric Intravenous Iron supplement Anemia in end stage 03/28/2020 Pyrophosphate renal disease Citrate BHV-3000 Rimegepant Oral Calcitonin gene- Migraine 1Q 2020 related peptide inhibitor Bronchitol Mannitol Inhaled Mucolytic Cystic fibrosis, 1Q 2020 Bronchiectasis LCI699 Osilodrostat Oral Aldosterone synthase Cushing's disease in 1Q 2020 inhibitor adult patients PRO 140 Leronlimab Subcutaneous Entry inhibitor HIV infection 1Q 2020 MenQuadfi Meningococcal Intramuscular Meningitis B vaccine Meningococcal disease 04/25/2020 Conjugate Vaccine Ongentys Opicapone Oral Catechol-O- Motor deficit 04/26/2020 methyltransferase inhibitor Sarclisa Isatuximab Intravenous Anti-CD38 antibody Multiple myeloma 04/30/2020 Prostate cancer Non- small cell lung cancer Remimazolam Remimazolam Intravenous Benzodiazepine Sedation 04/2020 Dasotraline Dasotraline Oral Serotonin, Binge eating disorder 05/14/2020 norepinephrine and dopamine reuptake inhibitor RG7916 Risdiplam Oral Splicing modulator Spinal muscular atrophy 05/24/2020 Amphora Citric Acid; L- Intravaginal pH buffer Pregnancy prevention 05/25/2020 Lactic Acid; Potassium Bitartrate 800.361.4542 | envisionrx.com 5 Confidential - Document has confidential information and may not be copied, published or distributed, in whole or in part, in any form or medium, without EnvisionRxOptions’ prior written consent. MECHANISM OF ANTICIPATED DRUG NAME GENERIC NAME ROUTE INDICATION(S) ACTION APPROVAL DATE INCB054828 Pemigatinib Oral Fibroblast growth Biliary tract cancer 05/30/2020 factor receptor inhibitor IMMU-132 Sacituzumab Intravenous Cytotoxic agent, Anti- Hormone receptor 06/02/2020 Govitecan Trop2 antibody positive breast cancer Inebilizumab Inebilizumab Intravenous Anti-CD19 antibody Neuromyelitis optica 06/2020 Orilissa Elagolix Oral Luteinizing hormone Uterine fibroids 2Q 2020 releasing hormone antagonist Selumetinib Selumetinib Oral MEK inhibitor Neurofibromatosis 2Q 2020 Sulphate Bimatoprost SR Bimatoprost Ophthalmic Prostaglandin analog Glaucoma or Ocular 1H 2020 Implant Hypertension VP-102 Cantharidin Topical Blistering agent Molluscum contagiosum 07/13/2020 Verruca vulgaris (common warts) UX007 Triheptanoin Oral Lipid replacement Long-chain fatty acid 07/31/2020 therapy oxidation disorders, Glucose transporter-1 deficiency AGN-150998 Abicipar Pegol Ophthalmic Vascular endothelial Wet age-related macular 07/2020 growth factor inhibitor degeneration Viaskin Peanut TBD Topical Allergen Allergy to peanuts 08/05/2020 immunotherapy TRC101 Veverimer Oral Acid binder Metabolic acidosis
Recommended publications
  • AHFS Pharmacologic-Therapeutic Classification System
    AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective
    [Show full text]
  • 210913Orig1s000 CLINICAL PHARMACOLOGY REVIEW(S)
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 210913Orig1s000 CLINICAL PHARMACOLOGY REVIEW(S) Office of Clinical Pharmacology Review NDA Number 212489 Link to EDR \\cdsesub1\evsprod\nda212489 Submission Date 04/26/2019 Submission Type 505(b)(1) NME NDA (Standard Review) Brand Name ONGENTYS Generic Name opicapone Dosage Form/Strength and Capsules: 25 mg and 50 mg Dosing Regimen 50 mg administered orally once daily at bedtime Route of Administration Oral Proposed Indication Adjunctive treatment to levodopa/carbidopa in patients with Parkinson’s Disease experiencing “OFF” episodes Applicant Neurocrine Biosciences, Inc. (NBI) Associated IND IND (b) (4) OCP Review Team Mariam Ahmed, Ph.D. Atul Bhattaram, Ph.D. Sreedharan Sabarinath, Ph.D. OCP Final Signatory Mehul Mehta, Ph.D. 1 Reference ID: 4585182 Table of Contents 1. EXECUTIVE SUMMARY .............................................................................................................................................................. 4 1.1 Recommendations ..................................................................................................................................................... 4 1.2 Post-Marketing Requirements and Commitments ......................................................................................... 6 2. SUMMARY OF CLINICAL PHARMACOLOGY ASSESSMENT ............................................................................................. 6 2.1 Pharmacology and Clinical Pharmacokinetics ..................................................................................................
    [Show full text]
  • Changes to the Highmark Drug Formularies
    AUGUST 2020 JULY/AUGUST 2020 UPDATE CHANGES TO THE HIGHMARK DRUG FORMULARIES Following is the update to the Highmark Drug Formularies and pharmaceutical management procedures for July/August 2020. The formularies and pharmaceutical management procedures are updated on a bimonthly basis, and the following changes reflect the decisions made in June 2020 by our Pharmacy and Therapeutics Committee. These updates are effective on the dates noted throughout this document. Please reference the guide below to navigate this communication: Section I. Highmark Commercial and Healthcare Reform Formularies A. Changes to the Highmark Comprehensive Formulary and the Highmark Comprehensive Healthcare Reform Formulary B. Changes to the Highmark Progressive Formulary and the Highmark Progressive Healthcare Reform Formulary C. Changes to the Highmark Healthcare Reform Essential Formulary D. Changes to the Highmark Core Formulary E. Changes to the Highmark National Select Formulary F. Updates to the Pharmacy Utilization Management Programs 1. Prior Authorization Program 2. Managed Prescription Drug Coverage (MRxC) Program 3. Formulary Program 4. Quantity Level Limit (QLL) Programs Section II. Highmark Medicare Part D Formularies A. Changes to the Highmark Medicare Part D 5-Tier Incentive Formulary B. Changes to the Highmark Medicare Part D 5-Tier Closed Formulary C. Additions to the Specialty Tier D. Updates to the Pharmacy Utilization Management Programs 1. Prior Authorization Program 2. Managed Prescription Drug Coverage (MRxC) Program 3. Quantity Level Limit (QLL) Program As an added convenience, you can also search our drug formularies and view utilization management policies on the Provider Resource Center (accessible via NaviNet® or our website). Click the Pharmacy Program/Formularies link from the menu on the left.
    [Show full text]
  • Insight ISSUE 1
    ISSUE 1 IMMUNE CHECKPOINTS & insight IMMUNOTHERAPY RESEARCH Immune Checkpoints and Cancer Cancer immunotherapy seeks to use the many A better approach is to intervene when T cells components of the immune system to attack meet cancer cells, where TCR-mediated activation cancer cells. More specifically, immunotherapy initiates cell killing. Programmed death-1 (PD-1) is maximizes the effectiveness of components of a lymphocyte receptor that binds PD-L1 or PD-L2. the antigen-presentation and antigen-response When PD-L1 is expressed on cancer cells, it causes system, primarily dendritic cells and lymphocytes, PD-1 to negatively regulate TCR-mediated activation respectively. Ideally, this approach can offer more of T cells, limiting their cytotoxic activity. Several selective killing of cancer cells than other therapeutic antibodies have been developed to block the modalities, such as chemotherapy. ability of PD-L1 to interact with PD-1. Clinical trials using these antibodies to antagonize the PD-L1/PD-1 Immune checkpoint therapy is a form of cancer interaction have demonstrated tumor killing that is immunotherapy that centers on lymphocyte both specific and long-lasting.3,4 In May 2016, signaling, with a current focus on T cells. These the first PD-L1 inhibitor was approved by the cells can be activated to multiply, secrete cytokines, U.S. Food and Drug Administration for the and kill target cells with high selectivity. Activation treatment of bladder cancer. requires the T cell receptor (TCR) be stimulated by an antigen presented by the major histocompatibility Studies using antibodies to block the inhibitory complex (Ag/MHC). Selectivity and strength of checkpoint receptors CTLA-4 and PD-1 demonstrate activation are regulated by co-stimulatory or the feasibility of this type of immunotherapy.
    [Show full text]
  • © Ferrata Storti Foundation
    LETTERS TO THE EDITOR It was recently demonstrated in sickle cell mice that Impaired pulmonary endothelial barrier function in increased vascular permeability contributes to pulmonary sickle cell mice edema and the pathophysiology of ACS.8 Studies using Evans blue dye confirmed an increased permeability in Acute and chronic pulmonary complications leading to the sickle cell mouse lung, however, EC barrier function significant morbidity and mortality occur in persons with was not investigated. To gain additional insights into bar- sickle cell disease (SCD). One of the leading causes of rier function, we performed studies with cultured EC 1 death is acute chest syndrome (ACS), diagnosed by a from the lungs of the Townes knock-in sickle cell mouse 2 new infiltrate on chest x-ray often triggered by infection. (SS) and heterozygote (AS) littermates. Using endothe- The resulting low oxygen saturation leads to hemoglobin lial-specific CD31 conjugated Dynabeads, we isolated S polymerization, red blood cell sickling, vaso-occlusion mouse lung microvascular EC (MLMVEC) from SS 3 and hypoxia, the hallmark of ACS. Pulmonary endothe- (SS-MLMVEC) and AS (AS-MLMVEC) mice (Online lial cell (EC) barrier function is mainly regulated by the Supplementary Methods). The EC were grown as a opening and closing of tight junctions in the intercellular monolayer, and phase-contrast microscopy demonstrated space that controls the passage of macromolecules and the cobblestone structure (Figure 1A). They expressed cells across the vascular wall.4 The association of tight endothelial nitric oxide synthase and platelet adhesion junctions with the actin cytoskeleton is required for the molecule and take up acetylated low density lipoprotein dynamic regulation of junction opening and closure.5 (data not shown), characteristics consistent with the EC Under hypoxic and infection conditions, cell-cell junc- phenotype.
    [Show full text]
  • Opicapone for the Management of End-Of-Dose Motor Fluctuations in Patients with Parkinson’S Disease Treated with L-DOPA
    Opicapone for the management of end-of-dose motor fluctuations in patients with Parkinson’s disease treated with L-DOPA Andrew J. Lees MD1, Joaquim Ferreira MD2, Olivier Rascol MD3, Heinz Reichmann MD,4 Fabrizio Stocchi MD,5 Eduardo Tolosa MD,6 Werner Poewe MD7 1. University College London, Reta Lila Weston Institute, London, UK 2. Hospital de Santa Maria, Centro de Estudos Egas Moniz, Lisbon, Portugal 3. Departments of Clinical Pharmacology and Neurosciences, Clinical Investigation Center CIC 1436, NS-Park/FCRIN network and NeuroToul COEN Center, INSERM, Toulouse University Hospital and Toulouse3 University, Toulouse, France 4. Department of Neurology, Technische Universitaet Dresden, Dresden, Germany 5. Institute of Neurology, IRCCS San Raffaele Pisana, Rome, Italy 6. Neurology Service, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Spain. 7. Department of Neurology, Innsbruck Medical University, Innsbruck, Austria Corresponding author Professor Andrew Lees University College London, Reta Lila Weston Institute, 1 Wakefield Street London WC1N 1PJ London, UK Email: [email protected] Direct telephone: + 44 20 7xxxxxxx Fax: +44 20 7xxxxxxx 1 Joaquim Ferreira [email protected] Olivier Rascol [email protected] Eduardo Tolosa [email protected] Fabrizio Stocchi [email protected] Heinz Reichmann [email protected] Werner Poewe [email protected] 2 Summary Introduction: Opicapone is a third generation, highly potent and effective catechol O‑methyltransferase (COMT) inhibitor that optimizes the pharmacokinetics and bioavailability of L- DOPA therapy. Areas covered: In this review, we describe the preclinical and clinical development of opicapone.
    [Show full text]
  • What Should I Know About My Cardiac Nuclear Stress Test with Lexiscan® (Regadenoson) Injection?
    What should I know about my cardiac nuclear stress test with Lexiscan® (regadenoson) injection? Use: Lexiscan (regadenoson) injection is a prescription drug given through an IV line that increases blood flow through the arteries of the heart during a cardiac nuclear stress test. Lexiscan is given to patients when they are unable to exercise adequately for a stress test. Important Safety Information: Lexiscan should not be given to patients who have certain abnormal heart rhythms unless they have a pacemaker. PLEASE SEE IMPORTANT SAFETY INFORMATION ON PAGE 16. PLEASE SEE FULL PRESCRIBING INFORMATION ON PAGES 22-25. Coronary artery disease What is coronary artery disease? The heart is a specialized muscle. Like other muscles in your body, it needs oxygen and nutrients. The coronary (heart) arteries deliver oxygen and nutrients to your heart so that it can effectively pump blood throughout your body. People with heart disease may have 1 or more coronary arteries that have become narrowed or clogged over time by fatty deposits (also called plaques). These can decrease blood flow to the heart. Page 2 is an illustration that shows you what a healthy artery looks like compared with an unhealthy artery. So less blood flow is bad, right? Exactly. Reduced blood flow may cause chest pain (angina), shortness of normal artery breath, and potentially a heart attack. Injured heart muscle can be permanently damaged if the coronary arteries stay blocked for too long. If there is a problem with your heart, it is important to find out about it as soon as possible. My doctor scheduled me for an MPI test.
    [Show full text]
  • Rxoutlook® 1St Quarter 2019
    ® RxOutlook 1st Quarter 2020 optum.com/optumrx a RxOutlook 1st Quarter 2020 Orphan drugs continue to feature prominently in the drug development pipeline In 1983 the Orphan Drug Act was signed into law. Thirty seven years later, what was initially envisioned as a minor category of drugs has become a major part of the drug development pipeline. The Orphan Drug Act was passed by the United States Congress in 1983 in order to spur drug development for rare conditions with high unmet need. The legislation provided financial incentives to manufacturers if they could demonstrate that the target population for their drug consisted of fewer than 200,000 persons in the United States, or that there was no reasonable expectation that commercial sales would be sufficient to recoup the developmental costs associated with the drug. These “Orphan Drug” approvals have become increasingly common over the last two decades. In 2000, two of the 27 (7%) new drugs approved by the FDA had Orphan Designation, whereas in 2019, 20 of the 48 new drugs (42%) approved by the FDA had Orphan Designation. Since the passage of the Orphan Drug Act, 37 years ago, additional regulations and FDA designations have been implemented in an attempt to further expedite drug development for certain serious and life threatening conditions. Drugs with a Fast Track designation can use Phase 2 clinical trials to support FDA approval. Drugs with Breakthrough Therapy designation can use alternative clinical trial designs instead of the traditional randomized, double-blind, placebo-controlled trial. Additionally, drugs may be approved via the Accelerated Approval pathway using surrogate endpoints in clinical trials rather than clinical outcomes.
    [Show full text]
  • 212489Orig1s000 SUMMARY REVIEW
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 212489Orig1s000 SUMMARY REVIEW Gerald D. Podskalny, DO From Eric Bastings, MD Billy Dunn, MD Subject Joint Summary Review NDA/BLA # and Supplement# NDA 212489 Applicant Neurocrine Biosciences, Inc. Date of Submission 04/26/2019 PDUFA Goal Date 04/26/2020 Proprietary Name Ongentys Established or Proper Name Opicapone Dosage Form(s) 25-mg and 50-mg capsules Adjunctive treatment to levodopa/carbidopa in patients Applicant Proposed with Parkinson’s disease (PD) experiencing “off” Indication(s)/Population(s) episodes Applicant Proposed Dosing 50 mg orally once daily at bedtime. Regimen(s) Regulatory Action Approval Recommended Adjunctive treatment to levodopa/carbidopa in patients Indication(s)/Population(s) (if with Parkinson’s disease (PD) experiencing “off” applicable) episodes. Recommended Dosing 50 mg orally once daily at bedtime. Regimen(s) (if applicable) 1 Reference ID: 4597937 Reference ID: 4597937 1. Benefit-Risk Assessment Benefit-Risk Integrated Assessment Parkinson’s disease (PD) is the second most common neurodegenerative disease, with an estimated prevalence of 930,000 individuals in the United States. PD is caused by progressive loss of dopamine producing neurons in the substantia nigra located in the midbrain. The cardinal motor features of PD are bradykinesia, tremor, rigidity, and postural instability. As PD progresses, it causes increasing motor disability. Medications that replace or enhance the effects of dopamine, such as levodopa, treat the motor aspects of PD and remain the mainstay of treatment. About 5 years after starting treatment with levodopa, many patients develop motor fluctuations (dyskinesia and wearing-off). In advanced PD (approaching 10 years with PD and beyond), patients may develop cognitive impairment, neuropsychiatric symptoms (e.g., hallucinations and impulse control disorders) and impaired autonomic function (e.g., incontinence and orthostatic hypotension).
    [Show full text]
  • A Spanish Consensus on the Use of Safinamide for Parkinson's Disease in Clinical Practice
    brain sciences Review A Spanish Consensus on the Use of Safinamide for Parkinson’s Disease in Clinical Practice Javier Pagonabarraga 1,2,3,*, José Matías Arbelo 4,5 , Francisco Grandas 6,7, Maria-Rosario Luquin 8,9, Pablo Martínez Martín 10,11 , Mari Cruz Rodríguez-Oroz 12,13, Francesc Valldeoriola 14,15 and Jaime Kulisevsky 1,2,3,16,17 1 Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; [email protected] 2 Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain 3 Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain 4 Movement Disorders Unit, Neurology Department, Hospital Universitario San Roque, 35001 Las Palmas, Spain; [email protected] 5 Department of Medicine, Universidad Fernando Pessoa-Canarias, 35450 Las Palmas, Spain 6 Movement Disorders Unit-CSUR, Neurology Department, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; [email protected] 7 Department of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain 8 Movement Disorders Unit, Clínica Universidad de Navarra (CUN), 31008 Pamplona, Spain; [email protected] 9 Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain 10 Instituto de Salud Carlos III, 28029 Madrid, Spain; [email protected] 11 Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain 12 Neurology and Neuroscience Unit, Clínica Universidad de Navarra (CUN), 31008Pamplona,
    [Show full text]
  • Lyophilization and a Preliminary Thermodynamic Characterization of Recombinant SCOMT His6
    UNIVERSIDADE DA BEIRA INTERIOR Ciências Lyophilization and a preliminary thermodynamic characterization of recombinant SCOMT_His6 Rúben Miguel Oliveira Coval Dissertação para obtenção do Grau de Mestre em Biotecnologia (2º ciclo de estudos) Orientador: Professor Doutor Luís António Paulino Passarinha Co-orientador: Mestre Augusto Quaresma Henriques Pedro Covilhã, outubro de 2015 ii “When we are no longer able to change a situation, we are challenged to change ourselves” Viktor Frankl iii iv Acknowledgments First off all, I would like to express my sincere gratitude to my parents, brother and girlfriend for all their sacrifices, encouragement, support and unconditional love. Furthermore, I would also like to give a special thanks to my supervisors Professor Doctor Luís Passarinha and Master Augusto Pedro for all their availability, guidance, expertise, patience and trust. Their help, efforts, vast knowledge, criticism and suggestions were crucial for the development of this project. It was a privilege to work and learn with them. I would also like to acknowledge the University of Beira Interior, in particular the Health Sciences Research Center, where all the work was developed. I am also grateful to all people involved in the Health Sciences Research Center of the University of Beira Interior, particularly to my colleagues in the Biotechnology and Biomolecular Sciences group whose advice and companionship made my work much more easy and pleasant. I could not fail to name a few people who were crucial in this process. I want to make a special thanks to Margarida Grilo and Guilherme Espírito Santo throughout the laboratory help and especially for all past knowledge that were the basis of all this work, and to Filipe Frias for the companionship and help.
    [Show full text]
  • EANM Procedural Guidelines for Radionuclide Myocardial Perfusion Imaging with SPECT and SPECT/CT
    EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT Chair of writing committee (responsible for the coordination of the overall process): Hein J. Verberne and Birger Hesse Authors: Hein J. Verberne, Wanda Acampa, Constantinos Anagnostopoulos, Jim Ballinger, Frank Bengel, Pieter De Bondt, Ronny R. Buechel, Alberto Cuocolo, Berthe L.F. van Eck-Smit, Albert Flotats, Marcus Hacker, Cecilia Hindorf, Philip A. Kaufmann, Oliver Lindner, Michael Ljungberg, Markus Lonsdale, Alain Manrique, David Minarik, Arthur J.H.A. Scholte, Riemer H.J.A. Slart, Elin Trägårdh, Tim C. de Wit, Birger Hesse Correspondence to: H.J. Verberne, MD PhD Department of Nuclear Medicine, F2-238 Academic Medical Center University of Amsterdam Meibergdreef 9 1105 AZ Amsterdam The Netherlands Tel: *31-20-5669111, pager 58 436 Fax: *31-20-5669092 E-mail: [email protected] 1 Author affiliations: H.J. Verberne Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands Tel: +31 20 566 9111, pager 58 436 Fax: +31 20 566 9092 E-mail: [email protected] W. Acampa Institute of Biostructures and Bioimaging, National Council of Research, Naples, Italy Tel: +39 0812203409 Fax: +39 0815457081 E-mail: [email protected] C. Anagnostopoulos Center for Experimental surgery, Clinical and Translational Research, Biomedical research foundation, Academy of Athens, Greece Tel: +30 210 65 97 126 or +30 210 65 97 067 Fax: +30 210 65 97 502 E-mail: [email protected] J. Ballinger Department of Nuclear Medicine, Guy's Hospital - Guy's & St Thomas' Trust Foundation, London, United Kingdom Tel: +44 207 188 5521 Fax: +44 207 188 4094 E-mail: [email protected] F.
    [Show full text]