Opicapone for the Management of End-Of-Dose Motor Fluctuations in Patients with Parkinson’S Disease Treated with L-DOPA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Novel Neuroprotective Compunds for Use in Parkinson's Disease
Novel neuroprotective compounds for use in Parkinson’s disease A thesis submitted to Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science By Ahmed Shubbar December, 2013 Thesis written by Ahmed Shubbar B.S., University of Kufa, 2009 M.S., Kent State University, 2013 Approved by ______________________Werner Geldenhuys ____, Chair, Master’s Thesis Committee __________________________,Altaf Darvesh Member, Master’s Thesis Committee __________________________,Richard Carroll Member, Master’s Thesis Committee ___Eric_______________________ Mintz , Director, School of Biomedical Sciences ___Janis_______________________ Crowther , Dean, College of Arts and Sciences ii Table of Contents List of figures…………………………………………………………………………………..v List of tables……………………………………………………………………………………vi Acknowledgments.…………………………………………………………………………….vii Chapter 1: Introduction ..................................................................................... 1 1.1 Parkinson’s disease .............................................................................................. 1 1.2 Monoamine Oxidases ........................................................................................... 3 1.3 Monoamine Oxidase-B structure ........................................................................... 8 1.4 Structural differences between MAO-B and MAO-A .............................................13 1.5 Mechanism of oxidative deamination catalyzed by Monoamine Oxidases ............15 1 .6 Neuroprotective effects -
Therapy for Movement Disorders
Cynthia Comella, MD, FAAN Rush University Medical Center Chicago, IL TREATMENT OF MOTOR SYMPTOMS IN PARKINSON DISEASE Disclosures . Compensation/honoraria for services as a consultant or an advisory committee member: Acadia, Aeon, Allergan, Inc; Impax Pharmaceuticals; Ipsen Biopharmaceuticals, Inc; Medtronic Inc.; Merz Pharmaceuticals; Neurocrine. Royalties: Cambridge, Humana Press; Wolters Kluwer Objectives Treatment of PD . Available treatments for motor PD Treatment of motor symptoms Treatment of motor complications Motor fluctuations Dyskinesia . Overview new therapies in clinical trial Not my objectives Before I came here I was confused about this subject. Having listened to your lecture I am still confused. But on a higher level. Enrico Fermi PD motor symptoms: Therapeutic targets Oertel W, Shulz JB. J Neurochem 2016 . No effective neuroprotective agent . Monotherapy (Efficacious) Levodopa Dopamine agonists: (pramipexole, ropinirole, rotigotine) MAO-B inhibitors: (selegiline, rasagiline) Amantadine (likely) . Motor fluctuations (Efficacious) Efficacious: Dopamine agonists (pramipexole, ropinirole, rotigotine, apomorphine) Levodopa gel intestinal infusions COMT inhibitors (entacapone, tolcapone, opicapone) MAO-B inhibitors (rasagiline, safinamide) Zonisamide Bilateral STN and GPi stimulation . Dyskinesia (Efficacious) Intestinal infusions Amantadine Bilateral STN and GPi stimulation clozapine Fox et al. Mov Disord March 2018 Modest benefit . MAO-B inhibitors (selegiline, rasagiline, safinamide) Modest benefit -
INVESTIGATION of NATURAL PRODUCT SCAFFOLDS for the DEVELOPMENT of OPIOID RECEPTOR LIGANDS by Katherine M
INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS By Katherine M. Prevatt-Smith Submitted to the graduate degree program in Medicinal Chemistry and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. _________________________________ Chairperson: Dr. Thomas E. Prisinzano _________________________________ Dr. Brian S. J. Blagg _________________________________ Dr. Michael F. Rafferty _________________________________ Dr. Paul R. Hanson _________________________________ Dr. Susan M. Lunte Date Defended: July 18, 2012 The Dissertation Committee for Katherine M. Prevatt-Smith certifies that this is the approved version of the following dissertation: INVESTIGATION OF NATURAL PRODUCT SCAFFOLDS FOR THE DEVELOPMENT OF OPIOID RECEPTOR LIGANDS _________________________________ Chairperson: Dr. Thomas E. Prisinzano Date approved: July 18, 2012 ii ABSTRACT Kappa opioid (KOP) receptors have been suggested as an alternative target to the mu opioid (MOP) receptor for the treatment of pain because KOP activation is associated with fewer negative side-effects (respiratory depression, constipation, tolerance, and dependence). The KOP receptor has also been implicated in several abuse-related effects in the central nervous system (CNS). KOP ligands have been investigated as pharmacotherapies for drug abuse; KOP agonists have been shown to modulate dopamine concentrations in the CNS as well as attenuate the self-administration of cocaine in a variety of species, and KOP antagonists have potential in the treatment of relapse. One drawback of current opioid ligand investigation is that many compounds are based on the morphine scaffold and thus have similar properties, both positive and negative, to the parent molecule. Thus there is increasing need to discover new chemical scaffolds with opioid receptor activity. -
Emulated Clinical Trials from Longitudinal Real-World Data Efficiently Identify Candidates for Neurological Disease Modification
medRxiv preprint doi: https://doi.org/10.1101/2020.08.11.20171447; this version posted November 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Emulated Clinical Trials from Longitudinal Real-World Data Efficiently Identify Candidates for Neurological Disease Modification: Examples from Parkinson's Disease Daphna Laifenfeld, PhD1,a,†, Chen Yanover, PhD2,b,†, Michal Ozery-Flato, PhD3,†, Oded Shaham, PhD2,c, Michal Rozen-Zvi, PhD3,4,*, Nirit Lev, MD/PhD1,d,‡ , Yaara Goldschmidt, PhD2,e,‡, Iris Grossman, PhD1,f,‡ 1Formerly Teva Pharmaceuticals Research & Development, Petach Tikva, Israel; 2Formerly IBM Research – Haifa, Israel; 3IBM Research – Haifa, Israel; 4Faculty of Medicine, The HeBrew University, Jerusalem, Israel; aPresent Address: Ibex Medical Analytics, Tel Aviv, Israel; bPresent Address: KI Research Institute, Kfar Malal, Israel; cPresent Address: MeMed Dx, Haifa, Israel; dPresent Address: Meir Medical Center and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel; ePresent Address: K Health, Tel Aviv, Israel; fPresent Address: Gross Advantage, Brookline, MA, USA; † These authors contriButed equally and share first authorship. ‡ These authors contriButed equally to this work. * Corresponding author: Michal Rosen-Zvi [email protected] Haifa University Campus, Mount Carmel Haifa, 3498825, Israel Tel: (972) 04-8296517 Keywords: Real World Data; Clinical Evidence; Parkinson’s disease; Artificial Intelligence; Causal Inference; Rasagiline; Zolpidem; Disease Modifying Therapeutics; Repurposing. NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. -
(12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas Et Al
US 20130253 056A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0253056A1 Nemas et al. (43) Pub. Date: Sep. 26, 2013 (54) CONTINUOUS ADMINISTRATION OF (60) Provisional application No. 61/179,511, filed on May LEVODOPA AND/OR DOPA 19, 2009. DECARBOXYLASE INHIBITORS AND COMPOSITIONS FOR SAME Publication Classification (71) Applicant: NEURODERM, LTD., Ness-Ziona (IL) (51) Int. Cl. A63L/216 (2006.01) (72) Inventors: Mara Nemas, Gedera (IL); Oron (52) U.S. Cl. Yacoby-Zeevi, Moshav Bitsaron (IL) CPC .................................... A6 IK3I/216 (2013.01) USPC .......................................................... 514/538 (73) Assignee: Neuroderm, Ltd., Ness-Ziona (IL) (57) ABSTRACT (21) Appl. No.: 13/796,232 Disclosed herein are for example, liquid aqueous composi (22) Filed: Mar 12, 2013 tions that include for example an ester or salt of levodopa, or an ester or salt of carbidopa, and methods for treating neuro Related U.S. Application Data logical or movement diseases or disorders such as restless leg (63) Continuation-in-part of application No. 12/961,534, syndrome, Parkinson's disease, secondary parkinsonism, filed on Dec. 7, 2010, which is a continuation of appli Huntington's disease, Parkinson's like syndrome, PSP. MSA, cation No. 12/836,130, filed on Jul. 14, 2010, now Pat. ALS, Shy-Drager syndrome, dystonia, and conditions result No. 7,863.336, which is a continuation of application ing from brain injury including carbon monoxide or manga No. 12/781,357, filed on May 17, 2010, now Pat. No. nese intoxication, using Substantially continuous administra 8,193,243. tion of levodopa and/or carbidopa or ester and/or salt thereof. -
PSP: Some Answers
PSP: Some Answers Lawrence I. Golbe, MD Professor of Neurology, Rutgers Robert Wood Johnson Medical School Director of Clinical Affairs and Scientific Advisory Board Chairman, CurePSP October 2017 What is Progressive Supranuclear Palsy (PSP)? Of the approximately five to seven of every 100,000 people in Canada with progressive supranuclear palsy (PSP), few, if any, had ever heard of the disease before their diagnosis. In fact, most patients with PSP report that their family doctors knew nothing about it until a neurologist made the diagnosis. As of now, three of every four people with a diagnosis of PSP could have been diagnosed earlier, if their doctor had suspected it and performed the appropriate examination. However, it is appearing in medical journals more and more often, which will help doctors become familiar with PSP. This pamphlet should help patients and their families do the same. Why has no one heard of PSP? PSP is rare: no one even realized it existed until 1963, when several patients were first described at a national neurology research convention and the disease was given its name. In retrospect, at least 12 cases of PSP had appeared in the medical literature between 1909 and 1962, but because of its resemblance to Parkinson’s, it wasn’t recognized as a distinct disease. The brain under the microscope is almost identical to that of “post-encephalitic parkinsonism,” a common condition in the early 20th century but now nearly extinct, which also made for erroneous diagnoses during that era. Although PSP is slightly more common than the well-known amyotrophic lateral sclerosis (called ALS, or Lou Gehrig’s disease in the U.S. -
Summary of Drug Limitations Mary C
RON DESANTIS GOVERNOR SUMMARY OF DRUG LIMITATIONS MARY C. MAYHEW SECRETARY **Medications listed in this document may or may not require a prior authorization. Please view the Preferred Drug List at: http://ahca.myflorida.com/Medicaid/Prescribed_Drug/pharm_thera/fmpdl.shtml** Summary of Drug Limitations Abilify (aripiprazole) 2mg, 5mg, 20mg, 30mg tablets Minimum age = 6; Maximum of 1 tablet per day Abilify (aripiprazole) 10mg, 15mg tablets Minimum age = 6; Maximum of 15mg per day for ages = 6 - 11; Maximum of 30mg per day for ages = 12-17 Maximum of 1 tablet per day Abilify (aripiprazole) Discmelt 10mg, 15mg tabs Minimum age = 6; Maximum of 15mg per day for ages = 6 - 11; Maximum of 30mg per day for ages = 12-17; Maximum of 2 tablets per day Abilify (aripiprazole) 1mg/ml solution Minimum age = 6; Maximum of 15ml per day for ages = 6 - 11; Maximum of 30ml per day for ages = 12-17; Maximum of 30ml per day for ages =/> 18 Abilify Maintena (aripiprazole) syringe/vial Minimum age = 18; Maximum of 1 syringe or vial every 28 days Absorica (isotretinoin) 10mg, 20mg, 25mg,30mg, 35mg, & Minimum age = 12 40mg capsules Abstral (fentanyl citrate) sublingual tablets Minimum age = 18; Maximum of 4 sublingual tablets per day Acanya (benzoyl peroxide/clindamycin)Gel, gel pump Minimum Age= 12 Accolate (zafirlukast) tablets Maximum of 3 tablets per day Aciphex (rabeprazole) 5mg, 10mg sprinkle capsules Minimum age = 1; Maximum age = 11; Maximum of 1 capsule per day Aciphex (rabeprazole) 20mg tablets Minimum age = 1; Maximum of 2 tablets per day Actemra (tocilizumab) 80mg/4ml, 200mg/10ml, Minimum age= 2 400mg/20ml Vials, & 162mg/0.9ml Syringe Actimmune (Interferon Gamma-1b) Maximum of 6ml every 28days Actiq (fentanyl citrate) Lozenges Minimum age = 18; Maximum of 4 lozenges per day Activella (estradiol/norethindrone) tablets Minimum age = 18 Updated 02/28/2019 1 RON DESANTIS GOVERNOR SUMMARY OF DRUG LIMITATIONS MARY C. -
210913Orig1s000 CLINICAL PHARMACOLOGY REVIEW(S)
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 210913Orig1s000 CLINICAL PHARMACOLOGY REVIEW(S) Office of Clinical Pharmacology Review NDA Number 212489 Link to EDR \\cdsesub1\evsprod\nda212489 Submission Date 04/26/2019 Submission Type 505(b)(1) NME NDA (Standard Review) Brand Name ONGENTYS Generic Name opicapone Dosage Form/Strength and Capsules: 25 mg and 50 mg Dosing Regimen 50 mg administered orally once daily at bedtime Route of Administration Oral Proposed Indication Adjunctive treatment to levodopa/carbidopa in patients with Parkinson’s Disease experiencing “OFF” episodes Applicant Neurocrine Biosciences, Inc. (NBI) Associated IND IND (b) (4) OCP Review Team Mariam Ahmed, Ph.D. Atul Bhattaram, Ph.D. Sreedharan Sabarinath, Ph.D. OCP Final Signatory Mehul Mehta, Ph.D. 1 Reference ID: 4585182 Table of Contents 1. EXECUTIVE SUMMARY .............................................................................................................................................................. 4 1.1 Recommendations ..................................................................................................................................................... 4 1.2 Post-Marketing Requirements and Commitments ......................................................................................... 6 2. SUMMARY OF CLINICAL PHARMACOLOGY ASSESSMENT ............................................................................................. 6 2.1 Pharmacology and Clinical Pharmacokinetics .................................................................................................. -
Changes to the Highmark Drug Formularies
AUGUST 2020 JULY/AUGUST 2020 UPDATE CHANGES TO THE HIGHMARK DRUG FORMULARIES Following is the update to the Highmark Drug Formularies and pharmaceutical management procedures for July/August 2020. The formularies and pharmaceutical management procedures are updated on a bimonthly basis, and the following changes reflect the decisions made in June 2020 by our Pharmacy and Therapeutics Committee. These updates are effective on the dates noted throughout this document. Please reference the guide below to navigate this communication: Section I. Highmark Commercial and Healthcare Reform Formularies A. Changes to the Highmark Comprehensive Formulary and the Highmark Comprehensive Healthcare Reform Formulary B. Changes to the Highmark Progressive Formulary and the Highmark Progressive Healthcare Reform Formulary C. Changes to the Highmark Healthcare Reform Essential Formulary D. Changes to the Highmark Core Formulary E. Changes to the Highmark National Select Formulary F. Updates to the Pharmacy Utilization Management Programs 1. Prior Authorization Program 2. Managed Prescription Drug Coverage (MRxC) Program 3. Formulary Program 4. Quantity Level Limit (QLL) Programs Section II. Highmark Medicare Part D Formularies A. Changes to the Highmark Medicare Part D 5-Tier Incentive Formulary B. Changes to the Highmark Medicare Part D 5-Tier Closed Formulary C. Additions to the Specialty Tier D. Updates to the Pharmacy Utilization Management Programs 1. Prior Authorization Program 2. Managed Prescription Drug Coverage (MRxC) Program 3. Quantity Level Limit (QLL) Program As an added convenience, you can also search our drug formularies and view utilization management policies on the Provider Resource Center (accessible via NaviNet® or our website). Click the Pharmacy Program/Formularies link from the menu on the left. -
Azilect, INN-Rasagiline
SCIENTIFIC DISCUSSION 1. Introduction AZILECT is indicated for the treatment of idiopathic Parkinson’s disease (PD) as monotherapy (without levodopa) or as adjunct therapy (with levodopa) in patients with end of dose fluctuations. Rasagiline is administered orally, at a dose of 1 mg once daily with or without levodopa. Parkinson’s disease is a common neurodegenerative disorder typified by loss of dopaminergic neurones from the basal ganglia, and by a characteristic clinical syndrome with cardinal physical signs of resting tremor, bradikinesia and rigidity. The main treatment aims at alleviating symptoms through a balance of anti-cholinergic and dopaminergic drugs. Parkinson’s disease (PD) treatment is complex due to the progressive nature of the disease, and the array of motor and non-motor features combined with early and late side effects associated with therapeutic interventions. Rasagiline is a chemical inhibitor of the enzyme monoamine oxidase (MAO) type B which has a major role in the inactivation of biogenic and diet-derived amines in the central nervous system. MAO has two isozymes (types A and B) and type B is responsible for metabolising dopamine in the central nervous system; as dopamine deficiency is the main contributing factor to the clinical manifestations of Parkinson’s disease, inhibition of MAO-B should tend to restore dopamine levels towards normal values and this improve the condition. Rasagiline was developed for the symptomatic treatment of Parkinson’s disease both as monotherapy in early disease and as adjunct therapy to levodopa + aminoacids decarboxylase inhibitor (LD + ADI) in patients with motor fluctuations. 2. Quality Introduction Drug Substance • Composition AZILECT contains rasagiline mesylate as the active substance. -
From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J
REVIEW The Neuropsychopharmacology of Phencyclidine: From NMDA Receptor Hypofunction to the Dopamine Hypothesis of Schizophrenia J. David Jentsch, Ph.D., and Robert H. Roth, Ph.D. Administration of noncompetitive NMDA/glutamate effects of these drugs are discussed, especially with regard to receptor antagonists, such as phencyclidine (PCP) and differing profiles following single-dose and long-term ketamine, to humans induces a broad range of exposure. The neurochemical effects of NMDA receptor schizophrenic-like symptomatology, findings that have antagonist administration are argued to support a contributed to a hypoglutamatergic hypothesis of neurobiological hypothesis of schizophrenia, which includes schizophrenia. Moreover, a history of experimental pathophysiology within several neurotransmitter systems, investigations of the effects of these drugs in animals manifested in behavioral pathology. Future directions for suggests that NMDA receptor antagonists may model some the application of NMDA receptor antagonist models of behavioral symptoms of schizophrenia in nonhuman schizophrenia to preclinical and pathophysiological research subjects. In this review, the usefulness of PCP are offered. [Neuropsychopharmacology 20:201–225, administration as a potential animal model of schizophrenia 1999] © 1999 American College of is considered. To support the contention that NMDA Neuropsychopharmacology. Published by Elsevier receptor antagonist administration represents a viable Science Inc. model of schizophrenia, the behavioral and neurobiological KEY WORDS: Ketamine; Phencyclidine; Psychotomimetic; widely from the administration of purportedly psychot- Memory; Catecholamine; Schizophrenia; Prefrontal cortex; omimetic drugs (Snyder 1988; Javitt and Zukin 1991; Cognition; Dopamine; Glutamate Jentsch et al. 1998a), to perinatal insults (Lipska et al. Biological psychiatric research has seen the develop- 1993; El-Khodor and Boksa 1997; Moore and Grace ment of many putative animal models of schizophrenia. -
Compositions for Continuous Administration of Dopa
(19) TZZ ¥ _T (11) EP 2 432 454 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/08 (2006.01) A61K 9/10 (2006.01) 01.03.2017 Bulletin 2017/09 A61K 31/198 (2006.01) A61P 25/16 (2006.01) (21) Application number: 10725880.8 (86) International application number: PCT/IL2010/000400 (22) Date of filing: 17.05.2010 (87) International publication number: WO 2010/134074 (25.11.2010 Gazette 2010/47) (54) COMPOSITIONS FOR CONTINUOUS ADMINISTRATION OF DOPA DECARBOXYLASE INHIBITORS ZUSAMMENSETZUNGEN FÜR DIE KONTINUIERLICHE VERABREICHUNG VON DOPA-DECARBOXYLASEHEMMERN COMPOSITIONS POUR ADMINISTRATION CONTINUE D’UN INHIBITEUR DE LA DOPA-DÉCARBOXYLASE (84) Designated Contracting States: (74) Representative: ABG Patentes, S.L. et al AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Avenida de Burgos, 16D GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Edificio Euromor PL PT RO SE SI SK SM TR 28036 Madrid (ES) (30) Priority: 19.05.2009 US 179511 P (56) References cited: WO-A1-2006/006929 US-A- 4 409 233 (43) Date of publication of application: 28.03.2012 Bulletin 2012/13 • NYHOLM D: "Enteral levodopa/carbidopa gel infusion for the treatment of motor fluctuations (73) Proprietor: Neuroderm Ltd and dyskinesias in advanced Parkinson’s 74036 Ness Ziona (IL) disease" EXPERT REVIEW OF NEUROTHERAPEUTICS, FUTURE DRUGS, (72) Inventors: LONDON, GB LNKD- • YACOBY-ZEEVI, Oron DOI:10.1586/14737175.6.10.1403, vol. 6, no. 10, 1 60946 Bitsaron (IL) January 2006 (2006-01-01), pages 1403-1411, •NEMAS,Mara XP008082627 ISSN: 1473-7175 70700 Gedera (IL) Remarks: Thefile contains technical information submitted after the application was filed and not included in this specification Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.