Household Water Treatment Filters Product Guide Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Household Water Treatment Filters Product Guide Table of Contents Household Water Treatment Filters Product Guide Table of contents 1. Introduction ...............................................................1 2. Key parameters ............................................................2 3. Filter categories ............................................................4 4. Validation methods .........................................................22 5. Local procurement .........................................................24 First edition, April 2020 Disclaimer: The use of this product guide is strictly for the internal purposes of the United Nations Children’s Fund (UNICEF) and in no way warrants, represents or implies that it is a complete and thorough evaluation of any of the products mentioned. This guide does not constitute, and should not be considered as, a certification of any of the products. The models and products included in this guide are for information purposes only, the lists are not exhaustive, and they do not represent a catalogue of preferred products. This guide is not to be used for commercial purposes or in any manner that suggests, or could be perceived as, an endorsement, preference for, or promotion of, the supplier’s products by UNICEF or the United Nations. UNICEF bears no responsibility whatsoever for any claims, damages or consequences arising from, or in connection with, the product guide or use of any of the products by any third party. Cover photo: © UNICEF/UNI127727/Vishwanathan 1 Introduction The provision of safe drinking water for all, in an average family size of five persons per sufficient quantities, is a key priority for UNICEF household. Solar disinfection is discussed in this and other water, sanitation and hygiene (WASH) guide, as the other main non-chemical method actors, be it at the onset of an emergency or in of water treatment (along with boiling). Water a protracted crisis. With regards to household- intake needs are based on the Sphere standards level water treatment, there exists a wide range of 2.5 to 3 L per person per day (survival needs), of options (chlorine tablets, water purifying which leads to the requirement of 5 m3 filtering sachets, solar disinfection devices and filters, capacity for a year of use (see Figure 1). among others), which have been applied already, across a range of settings. Figure 1. Scope of this product guide There is a need for a low-cost and durable household-level solution and, among other NO. OF Individual Household Community PERSONS products, UNICEF has targeted household 1 5 20+ water filters. However, there is a wide range of filter products in the global and local market, and it is often challenging to choose the appropriate product in a given context. The filters included in this product guide are Suppliers’ claims are sometimes difficult to all known of by the Supply Division of UNICEF properly evaluate as the products have not up to Q1 2020. This guide does not present an had their performance (effective removal of overview of all the products that are available bacteria, protozoa and viruses from the water) on the market, but looks at the categories tested in independent laboratories or have that represent the majority of available filters, not been field-trialled to test suitability and highlighting a few products in each category. acceptability in field conditions. As limited field The products highlighted are examples testing has been carried out for household only and may require further validation and water filters, further field trials could be testing in the field. conducted by UNICEF, as outlined in chapter 4. The purpose of this product guide is to raise Product guidance is required to help field awareness in regional, country and/or field colleagues identify the products that are the offices of the different products that are most appropriate in a given context in terms available on the market and their specificities, of performance, ease of use, robustness, in view of empowering local procurement of acceptability, affordability, durability, logistics and water filtration products wherever possible. risks. None of the existing filter technologies The first part of the guide (chapters 2 to 4) is is a perfect and universal solution, with each intended to help WASH colleagues evaluate having its pros and cons that must be evaluated, the different filter types on the market, while bearing in mind local considerations. the second part (chapter 5) is designed to The scope of this product guide is concerns provide supply colleagues with an overview of for household-level water filters, considering local procurement for such products. HOUSEHOLD WATER TREATMENT FILTERS PRODUCT GUIDE 1 2 Key parameters Before looking at different filter types, it at other performance parameters, such as flow is important to understand the different rate and overall treatment capacity, what kind parameters to be considered when evaluating of raw water can be treated using a specific household water filter options. How to validate filter (turbidity and robustness to turbid waters), these parameters and take them into account or whether safe storage is included to avoid when doing local procurement is further recontamination of the treated water. These developed in the following chapters. parameters are usually checked in laboratories for validation, and are further explained below. These parameters were developed by the Centre for Affordable Water and Sanitation • Protection: Devices should ensure 99.9% Technology1 in 2017 as part of the Humanitarian virus protection (3 log removal) and 99.99% Innovation Fund Emergency Household Water bacteria and protozoa protection (4 log Filter Challenge, setting a framework for removal). These are the ideal criteria; comparison of filters. These same parameters however, protection-level requirement have been adopted by the United Nations depends on setting, context and needs. Humanitarian Response Depot2 as part of its For example, in some geographical areas laboratory evaluation of filters, focusing on viral-related diseases are less prevalent ease of use and some performance aspects. than bacteria/cyst-related diseases, thus Understanding the different criteria behind targeted protection against those latter these parameters allows for a comprehensive two can be acceptable. In emergencies, evaluation of the available solutions. targeted protection (removal of some and not all categories of pathogens) might also The parameters are separated into the be acceptable, as some level of protection is following three groups: better than no protection at all. Performance For this criterion, independent testing results should be prioritized over This relates to the pure performance of manufacturer claims. For more information the filter, without taking into account any on log removal, pathogens and their specific environmental or human factors. It of course sizes, see Table 1 and Figure 2. includes protection, which is directly linked to the quality of the output water, in view of Table 1. Log removal and equivalency being in line with the Sustainable Development Goal 6 of universal access to safe and Log removal Equivalent affordable drinking water for all. But it also looks 1 log removal 90% removal 2 log removal 99% removal 1 Centre for Affordable Water and Sanitation Technology, <www.cawst.org/>, accessed 9 July 2020. 3 log removal 99.9% removal 2 The United Nations Humanitarian Response Depot (UNHRD) 4 log removal 99.99% removal is a network of strategically located hubs for prepositioning relief items and humanitarian support equipment: The United 5 log removal 99.999% removal Nations Humanitarian Response Depot, <https://unhrd.org/>, accessed 9 July 2020. etc. etc. HOUSEHOLD WATER TREATMENT FILTERS PRODUCT GUIDE 2 Figure 2. Different pathogens and size Ease of use parameters can be checked in laboratories and provide some indications on acceptability, however, only field trials in relevant settings can provide a clear picture of the acceptability of a given product. These parameters include the design of the filter, the simplicity of its installation, operation and maintenance, which should require the minimum amount of training possible (ideally self-sustained through clear • Flow rate: The flow rate of the filter product and visual instructions) and has a direct (or time to treat) should be at least 20 L in impact on its acceptability by end-users. The 12 hours (i.e., 1.7 L per hour), with an ideal device itself should be as light and portable performance of 0.5 L/min (i.e., 30 L per as possible, with no disassembly required for hour), which allows for water to be poured transportation; it should not rely on any external directly into a cup, rather than into a storage energy sources, and should include a fail-safe container where recontamination can occur. mechanism to avoid continued use when the filter stops performing (a visual indication, or • Treatment capacity (lifetime): The preferably a mechanism that prevents the treatment capacity of filters should be a water from flowing through the filter once it minimum of 4,500 L to 5,000 L, which has reached the end of its lifetime). corresponds to the basic survival needs (2.5 L to 3 L/day as per Sphere standards) of Sustainability a family of five over a period of one year. This part relates to ‘external’ considerations • Turbidity: The filter should be able of the filter, such as: the filters’ sustainability to treat water that has a turbidity of (they should be durable and have minimal over 50 nephelometric turbidity
Recommended publications
  • Drinking Water Treatment Systems
    Drinking Water Facts….. Drinking Water Treatment Systems By: Barbara Daniels and Nancy Mesner Revised December 2010 If your home water comes from a public water supply, it has been tested and meets EPA standards for drinking water. If you use a private well, however, you are responsible for assuring that the water is safe to drink. This means that you should periodically have your water tested, make sure your well is in proper condition without faulty well caps or seals, and identify and remove potential sources of con- tamination to your well such as leaking septic systems or surface contamination. With a private well, you are also responsible for any treatment your water may need if it contains harm- ful pollutants or contaminants that affect the taste, odor, corrosiveness or hardness of the water. This fact sheet discusses different types of water treatment systems available to homeowners. Addressing the source of the problem is often less costly in the long run than installing and maintaining a water system. For more information on identifying pollutant sources, problems with your well, or help in testing your well water, see the references at the end of this fact sheet. There are many types of water treatment systems available. No one type of treatment can address every water quality problem, so make sure you purchase the type of equipment that can effectively treat your particular water quality issue. The table below can help direct you to the right solution for your prob- lem. Drinking Water Facts….. What type of water treatment is needed? The table below lists common water contamination problems.
    [Show full text]
  • 19. Water Treatment Plants. the Introduction (Chapter 1) for These
    Chapter 4 – Specifications Designs 19. Water Treatment Plants 19. Water Treatment Plants. The Introduction (Chapter 1) for these design data collection guidelines contains additional information concerning: preparing a design data collection request, design data collection requirements, and coordinating the design data collection and submittal. The following is a list of possible data required for specifications design of water treatment facilities. The size and complexity of the process system and structures should govern the amount and detail of the design data required. A. General Map Showing: (1) A key map locating the general map area within the State. (2) The plant site and other applicable construction areas. (3) Existing towns, highways, roads, railroads, public utilities (electric power, telephone lines, pipelines, etc.), streams, stream-gauging stations, canals, drainage channels. (4) Existing or potential areas or features having a bearing on the design, construction, operation, or management of the project feature such as: recreation areas; fish and wildlife areas; building areas; and areas of archeological, historical, and mining or paleontological interest. The locations of these features should bear the parenthetical reference to the agency most concerned: for example Reclamation. (5) County lines, township lines, range lines, and section lines. (6) Locations of construction access roads, permanent roads, and sites for required construction facilities. (7) Sources of natural construction materials and disposal areas for waste material, including the extent of mitigation required. (a) Location of disposal areas for debris, sediment, sludge, and spent chemicals from cleaning or storage solutions. (8) Water sources to be treated such as surface water or underground water. (9) Location of potential waste areas (i.e., channels).
    [Show full text]
  • Engineering a Model of the Earth As a Water Filter by Jonathon Kilpatrick, Nanette Marcum-Dietrich, John Wallace, and Carolyn Staudt
    Copyright © 2018, National Science Teachers Association (NSTA). Reprinted with permission from Science and Children, Vol. 56, No. 3, October 2018. Engineering a Model of the Earth as a Water Filter By Jonathon Kilpatrick, Nanette Marcum-Dietrich, John Wallace, and Carolyn Staudt eaching students about the wa- from groundwater. Most is supplied smaller pieces lower down,” offered ter cycle is a staple of elemen- through public drinking water sys- one student. Another replied, “A lot of Ttary science instruction. When tems. But over 15 million families rely sand is mixing with the water though, asked to describe the water cycle, most on private, household wells and use and now it looks really dirty. Maybe students can quickly recite the contin- groundwater as their source of fresh sand should go first.” These conversa- ual cyclical process of condensation, water” (EPA 2016). Noting the im- tions continued throughout the design precipitation, and evaporation. But portance of infiltration in the water process. this simple definition misses the es- cycle and in the supply of essential By the end of the session, the stu- sential process of infiltration. Ground- groundwater led us to develop an engi- dents had constructed three filters. water and the process of infiltration, neering activity in which students are Two of them were stackable filters which cleans that water, are vital to our challenged to build a stackable filter with the water passing in turn through survival, but they are also hidden from using the Earth process of infiltration different layers and materials. The view and too often absent from our sci- as a model.
    [Show full text]
  • The Sport Berkey Portable Water Purifier – Generic Version
    ® The Sport Berkey Portable Water Purifier – Generic Version Sport Berkey® The Portable Water Purifier is the ideal personal protection traveling companion — featuring the IONIC ADSORPTION MICRO FILTRATION SYSTEM. The theory behind this innovation is simple. The bottle’s filter is designed to remove and/or dramatically reduce a vast array of health-threatening contaminants from questionable sources of water, including remote lakes and streams, stagnant ponds and water supplies in foreign countries where regulations may be sub standard, at best. Sport Berkey® The Portable Water Purifier Utilizes IONIC ADSORPTION MICRO FILTRATION This advanced technology was developed, refined, and proven through diligent, investigative research and testing performed by water purification specialists, researchers and engineers. The media within the filter element removes contaminants by a surface phenomenon known as “adsorption” which results from the molecular attraction of substances to the surface of the media. As the bottle is pressed, the source water is forced through the filter. The quality and volume of media used, determine the rate of adsorption. The flow rate or time of exposure through the filter has been calculated to yield the greatest volume removal of toxic chemicals caused by pollution from industry Sport Berkey® and agriculture. This exclusive filter also incorporates proprietary absorbing The Portable media that are impregnated into the micro-porous filter for the IONIC Water Purifier eliminates or absorption of pollutants into the filter such as aluminum, cadmium, reduces up to 99.9% of: chromium, copper, lead, mercury, and other dangerous heavy metals. • Harmful microscopic pathogens: The “Tortuous Path” structure of these pores gives it its unique E-coli (>99.99999%), Cryptosporidium, Sport Berkey® Giardia and other pathogenic bacteria.
    [Show full text]
  • The Design and Creation of a Portable Water Purification System
    Andrews University Digital Commons @ Andrews University Honors Theses Undergraduate Research 2012 The Design and Creation of a Portable Water Purification System Adam Shull Follow this and additional works at: https://digitalcommons.andrews.edu/honors Recommended Citation Shull, Adam, "The Design and Creation of a Portable Water Purification System" (2012). Honors Theses. 39. https://digitalcommons.andrews.edu/honors/39 This Honors Thesis is brought to you for free and open access by the Undergraduate Research at Digital Commons @ Andrews University. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact [email protected]. Thank you for your interest in the Andrews University Digital Library Please honor the copyright of this document by not duplicating or distributing additional copies in any form without the author’s express written permission. Thanks for your cooperation. John Nevins Andrews Scholars Andrews University Honors Program Honors Thesis The design and creation of a portable water purification system Adam Shull April 2, 2012 Advisor: Dr. Hyun Kwon Primary Advisor Signature: _____________________ Department: Engineering and Computer Science 2 Abstract A portable, low-power water purification system was developed for use by aid workers in underdeveloped world regions. The design included activated carbon and ceramic candle filtration to 0.2 microns for bacteria and turbidity reduction followed by UV irradiation for virus destruction. Flexibility and modularity were incorporated into the system with AC, DC, and environmental power supply options as well as the facility to purify water from either surface or local utility sources. Initial prototype testing indicated the successful filtration of methylene blue dye to well above the 75% UV transmittance level required for virus destruction by the UV reactor.
    [Show full text]
  • Silver As a Drinking-Water Disinfectant
    Silver as a drinking-water disinfectant Silver as a drinking-water disinfectant Alternative drinking-water disinfectants: silver ISBN 978-92-4-151369-2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Alternative drinking-water disinfectants: bromine, iodine and silver. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders.
    [Show full text]
  • Designing a Low-Cost Ceramic Water Filter Press
    International Journal for Service Learning in Engineering Vol. 8, No. 1, pp. 62-77, Spring 2013 ISSN 1555-9033 Designing a Low-Cost Ceramic Water Filter Press Michael Henry BS, Immunology and Infectious Disease The Pennsylvania State University University Park, PA 16802 [email protected] Siri Maley BS, Mechanical Engineering The Pennsylvania State University University Park, PA 16802 [email protected] Khanjan Mehta* Humanitarian Engineering and Social Entrepreneurship (HESE) Program The Pennsylvania State University University Park, PA 16802 [email protected] *Corresponding Author Abstract -- Diarrheal diseases due to unsanitary water are a leading cause of death in low- and middle- income countries. One potential solution to this problem is widespread access to point-of-use ceramic water filters made from universally-available materials. This increased access can be achieved by empowering local artisans to initiate self-sustaining and scalable entrepreneurial ventures in their communities. However, a major barrier to the start-up of these businesses is the prohibitively expensive press used to form the filters. This article reviews filter press technologies and identifies specific functional requirements for a suitable and affordable filter press. Early-stage field-testing results of a proof-of- concept design that can be manufactured by two people in two days at one-tenth of the cost of popular filter presses is presented. Index Terms - Ceramic Water Filter, Filter Press, Filtration, Global Health INTRODUCTION The water crisis
    [Show full text]
  • A Practical Guide to Implementing Integrated Water Resources Management and the Role for Green Infrastructure”, J
    A Practical Guide to Implementing Integrated Water Resources Management & the Role of Green Infrastructure Prepared for: Prepared for: Funded by: Prepared by: May 2016 ACKNOWLEDGEMENTS Environmental Consulting & Technology, Inc. (ECT), wishes to extend our sincere appreciation to the individuals whose work and contributions made this project possible. First of all, thanks are due to the Great Lakes Protection Fund for funding this project. At Great Lakes Commission, thanks are due to John Jackson for project oversight and valuable guidance, and to Victoria Pebbles for administrative guidance. At ECT, thanks are due to Sanjiv Sinha, Ph.D., for numerous suggestions that helped improve this report. Many other experts also contributed their time, efforts, and talent toward the preparation of this report. The project team acknowledges the contributions of each of the following, and thanks them for their efforts: Bill Christiansen, Alliance for Water Efficiency James Etienne, Grand River Conservation Christine Zimmer, Credit Valley Conservation Authority Authority Cassie Corrigan, Credit Valley Conservation Melissa Soline, Great Lakes & St. Lawrence Authority Cities Initiative Wayne Galliher, City of Guelph Clifford Maynes, Green Communities Canada Steve Gombos, Region of Waterloo Connie Sims – Office of Oakland County Water Julia Parzens, Urban Sustainability Directors Resources Commissioner Network Dendra Best, Wastewater Education For purposes of citation of this report, please use the following: “A Practical Guide to Implementing
    [Show full text]
  • HIF Emergency Household Water Filter Challenge: 0 Evaluation Matrix and Report
    June 2017 HIF Emergency Household Water Filter Challenge: 0 Evaluation Matrix and Report This work is funded by Elrha’s Humanitarian Innovation Fund programme, a grant making facility supporting organisations and individuals to identify, nurture and share innovative and scalable solutions to the most pressing challenges facing effective humanitarian assistance. The HIF is funded by aid from the UK Government. Visit www.elrha.org/hif for more information about their work to improve humanitarian outcomes through research, innovation, and partnership. HIF Emergency Household Water Filter Challenge: Evaluation Matrix and Report June 2017 1 Introduction 1.1 The Problem Safe water provision is one of the top concerns immediately following a sudden‐onset emergency and, at the same time, is one of the persistent concerns during humanitarian response to complex emergencies. Because each emergency is unique and no one solution can be applied across emergencies, a number of approaches have been developed to address the need to provide safe water, from bulk chlorination and distribution by tanker trucks, to point‐of‐use products for water treatment at the household level. Within the suite of household water treatment (HWT) products, filters have received increasing attention with regards to their potential application in emergency situations. In parallel with this increasing attention, there has also been increasing effort to develop household water filters, and as a result, significant progress has been made in terms of the number of filter products available. However, in spite of increasing interest in and availability of household water filters for use in emergencies, there remains a gap in evidence on the effective use of these filters emergency 1 contexts.
    [Show full text]
  • Ultrapure Water
    Ultrapure Water General Filter Requirements Achieving and maintaining ultrapure water (UPW) is extremely important in light of its widespread presence throughout the manufacture of semiconductor integrated circuits. The technology of the industry has advanced so rapidly over the past few years that it has redefined cleanliness requirements, specifically with regard to the need for quantitatively removing colloidal silica, particles, total organic carbon (TOC), bacteria, pyrogens (bacterial fragments) and metal ions. A well-designed UPW system with strategically placed filters, will ensure achievement of this goal, since the type of filter selected in each of the key areas will make a measurable difference in ultimate quality. To meet the demands of a high-purity deionized (DI) water system, filters must: • Not contribute organic, particulate or metal ion contamination to the effluent stream • Not unload trapped contaminants or shed filter material • Be integrity testable to verify removal ratings • Perform identically from lot to lot • Have a low-pressure drop for long life and maximum economy. DI Water Filter A well-maintained UPW system will have a number of carefully selected filters and purifiers placed in strategic positions. A schematic of a DI water system is depicted below. The locations of the filters are representative of those found in a typical water system. Reverse Osmosis (RO) Pretreatment Microza* UNA System Pretreatment is required to operate RO units effectively and economically. The pretreatment will vary depending on the source of the incoming feed water. With surface water as the feed, conventional pretreatment may include such unit operations as coagulation, flocculation, settling, granular media filtration, and cartridge filtration.
    [Show full text]
  • CSR Guidelines for Rural Drinking Water Projects
    Guide line For CSR Guideline for Rural Drinking Water Projects “Business has a responsibility to give back to CSR Guidelines community” For Rural Drinking Water Projects Government of India Ministry of Drinking Water and Sanitation 1 | P a g e Guide line For CSR Guideline for Rural Drinking Water Projects Table of Contents Page S.No Topic Number 1. Background 3 2. Why CSR for Drinking Water 3 3. Snapshot of CSR Guide Line 4 4. Objectives with regard to Water 5 5. Methodology 5 6. Type of Activities 5 7. Identification of Gram Panchayat for implementation of Water 6 projects 8. Role of Ministry of Drinking Water and Sanitation 6 9. Monitoring mechanism 6 10. Tri-partite agreement (TPA) 7 11. Operation and Maintenance 7 12. Conclusion 7 2 | P a g e Guide line For CSR Guideline for Rural Drinking Water Projects 1. Background Due to Poor quality of water and presence of chemical/ bacteriological contamination, many water borne diseases are spread, which causes untold misery, and in several cases even death, thereby adversely affecting the socio-economic progress of the country . From an estimate by WaterAid, it has come out that these diseases negatively effect health and education in children, and further what is worse, 180 million man days approximately are lost in the working population to India every year. Water-related diseases put an economic burden on both the household and the nation’s economy. At household levels, the economic loss includes cost of medical treatment and wage loss during sickness. Loss of working days affects national productivity.
    [Show full text]
  • Read More in the Xylem 2019 Sustainability Report
    Water for a Healthy World 1 | Xylem 2019 Sustainability Report Table of Contents 1. Message from Patrick Decker, President & CEO .... 3 2. Message from Claudia Toussaint, SVP, General Counsel & Chief Sustainability Officer . 6 3. How We Think About Sustainability ............... 9 4. How We Make Progress ........................ 24 5. Serving Our Customers ........................ 33 6. Building a Sustainable Company ................ 47 7. Empowering Communities ..................... 80 8. GRI Content Index ............................. 88 ABOUT THIS REPORT We are pleased to present Xylem’s ninth annual Sustainability Report, which describes our efforts in 2019 to solve global water challenges and support a healthy world. The How We Think About Sustainability section of this report explains the connection between current and emerging issues of water scarcity, water systems resilience to climate change and other water challenges and water affordability, and Xylem’s pivotal role in addressing these issues. We close out our goals set in 2014 and share our initial progress report against our 2025 goals, which we introduced in 2019, including Signature Goals designed to tackle some of the world’s most pressing water issues. We have also produced a set of General Disclosures that contain relevant data and information to meet requirements of the GRI Standards: Core Option. This report is available at https://www.xylem.com/en-us/sustainability/ in a downloadable PDF format. 2 | Xylem 2019 Sustainability Report CHAPTER 1 Message from Patrick Decker, President & CEO Water is key to public health and to sustainability. At Xylem, we define sustainability broadly, as responsible practices that strengthen the environment, global economy and society, creating a safer and more equitable world.
    [Show full text]