Ultrapure Water
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arium® Pro Ultrapure Water Systems Application-Orientated and Flexible to Meet the Highest Demands
arium® pro Ultrapure Water Systems Application-orientated and flexible to meet the highest demands Advantages – Modular – System selection specifically for your application – Flexible - Perfect integration into any laboratory – Easy to use – Display with touch function and intuitive menu – Fast – Favorites function with direct access for recurring volumes Product Description As a reliable source of ultrapure water, the arium® pro series offers a flexible and modular system which, compared to conventional devices, demonstrates excellent added value. All systems meet and exceed the ASTM Type 1 water quality standards and ensure the best reproducible results in their class. Up to 2 liters of consistently high-quality ultrapure water with a conductivity of 0.055 µS/cm (018,2 MO + cm) can be dispensed per minute. The ultrapure water is virtually microorganism-free when an arium® SterilePlus final filter is used. The patented Sartorius technology, the SD card slot, the long service life and low maintenance requirement distinguish the arium® pro systems as an easy-to-use, economical and reliable Type 1 ultrapure water system. Applications Modular – HPLC, GC-MS Various device configurations are specifically tailored to your – Biological applications, e.g. cell culture application. arium® pro provides any desired ultrapure water – Standard applications such as the production of solutions, quality for critical and standard applications. media, and reagents Water purification on a laboratory scale Flexible The space-saving installation of the device on, under, or above “Favorites” function your workstation integrates it perfectly into any laboratory. With the new favorites function it is possible to save recurring The positioning of the display and the water dispensing point volumes and retrieve them as required by direct access. -
Engineering a Model of the Earth As a Water Filter by Jonathon Kilpatrick, Nanette Marcum-Dietrich, John Wallace, and Carolyn Staudt
Copyright © 2018, National Science Teachers Association (NSTA). Reprinted with permission from Science and Children, Vol. 56, No. 3, October 2018. Engineering a Model of the Earth as a Water Filter By Jonathon Kilpatrick, Nanette Marcum-Dietrich, John Wallace, and Carolyn Staudt eaching students about the wa- from groundwater. Most is supplied smaller pieces lower down,” offered ter cycle is a staple of elemen- through public drinking water sys- one student. Another replied, “A lot of Ttary science instruction. When tems. But over 15 million families rely sand is mixing with the water though, asked to describe the water cycle, most on private, household wells and use and now it looks really dirty. Maybe students can quickly recite the contin- groundwater as their source of fresh sand should go first.” These conversa- ual cyclical process of condensation, water” (EPA 2016). Noting the im- tions continued throughout the design precipitation, and evaporation. But portance of infiltration in the water process. this simple definition misses the es- cycle and in the supply of essential By the end of the session, the stu- sential process of infiltration. Ground- groundwater led us to develop an engi- dents had constructed three filters. water and the process of infiltration, neering activity in which students are Two of them were stackable filters which cleans that water, are vital to our challenged to build a stackable filter with the water passing in turn through survival, but they are also hidden from using the Earth process of infiltration different layers and materials. The view and too often absent from our sci- as a model. -
The Sport Berkey Portable Water Purifier – Generic Version
® The Sport Berkey Portable Water Purifier – Generic Version Sport Berkey® The Portable Water Purifier is the ideal personal protection traveling companion — featuring the IONIC ADSORPTION MICRO FILTRATION SYSTEM. The theory behind this innovation is simple. The bottle’s filter is designed to remove and/or dramatically reduce a vast array of health-threatening contaminants from questionable sources of water, including remote lakes and streams, stagnant ponds and water supplies in foreign countries where regulations may be sub standard, at best. Sport Berkey® The Portable Water Purifier Utilizes IONIC ADSORPTION MICRO FILTRATION This advanced technology was developed, refined, and proven through diligent, investigative research and testing performed by water purification specialists, researchers and engineers. The media within the filter element removes contaminants by a surface phenomenon known as “adsorption” which results from the molecular attraction of substances to the surface of the media. As the bottle is pressed, the source water is forced through the filter. The quality and volume of media used, determine the rate of adsorption. The flow rate or time of exposure through the filter has been calculated to yield the greatest volume removal of toxic chemicals caused by pollution from industry Sport Berkey® and agriculture. This exclusive filter also incorporates proprietary absorbing The Portable media that are impregnated into the micro-porous filter for the IONIC Water Purifier eliminates or absorption of pollutants into the filter such as aluminum, cadmium, reduces up to 99.9% of: chromium, copper, lead, mercury, and other dangerous heavy metals. • Harmful microscopic pathogens: The “Tortuous Path” structure of these pores gives it its unique E-coli (>99.99999%), Cryptosporidium, Sport Berkey® Giardia and other pathogenic bacteria. -
The Design and Creation of a Portable Water Purification System
Andrews University Digital Commons @ Andrews University Honors Theses Undergraduate Research 2012 The Design and Creation of a Portable Water Purification System Adam Shull Follow this and additional works at: https://digitalcommons.andrews.edu/honors Recommended Citation Shull, Adam, "The Design and Creation of a Portable Water Purification System" (2012). Honors Theses. 39. https://digitalcommons.andrews.edu/honors/39 This Honors Thesis is brought to you for free and open access by the Undergraduate Research at Digital Commons @ Andrews University. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact [email protected]. Thank you for your interest in the Andrews University Digital Library Please honor the copyright of this document by not duplicating or distributing additional copies in any form without the author’s express written permission. Thanks for your cooperation. John Nevins Andrews Scholars Andrews University Honors Program Honors Thesis The design and creation of a portable water purification system Adam Shull April 2, 2012 Advisor: Dr. Hyun Kwon Primary Advisor Signature: _____________________ Department: Engineering and Computer Science 2 Abstract A portable, low-power water purification system was developed for use by aid workers in underdeveloped world regions. The design included activated carbon and ceramic candle filtration to 0.2 microns for bacteria and turbidity reduction followed by UV irradiation for virus destruction. Flexibility and modularity were incorporated into the system with AC, DC, and environmental power supply options as well as the facility to purify water from either surface or local utility sources. Initial prototype testing indicated the successful filtration of methylene blue dye to well above the 75% UV transmittance level required for virus destruction by the UV reactor. -
GORE® Filters Water Applications
For Ultrapure GORE® Filters Water Applications Major Semiconductor Manufacturer Demonstrates GORE® Filters Perform Comparably to UF Module at Significantly Lower Cost Results The performance of the GORE® Filters was nearly equivalent to that of the ultrafiltration module: • UF: ~50 to 100 counts/liter at 0.05µm • GORE® HR Filters: ~50 to 200 counts/liter at 0.05µm • GORE® 0.02µm Filters: ~200 to 500 counts/liter at 0.05µm • Manufacturer now has data proving that GORE® Filters meet the requirements for ultrapure water applications that had previously required the more costly UF modules Water Quality Test Results Particles > 0.05 micron 1000 900 800 700 Situation 600 500 A major semiconductor manufacturer was seeking a lower-cost 400 300 alternative to ultrafiltration modules for an ultrapure water system. / Liter Counts 200 To compare filtration performance, parallel trials 100 ® 0 were run with GORE Filters and ultrafiltration (UF) modules. 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Time (Hour) Trial Setup GORE® Filter 0.02µm Cartridge ® ® GORE Filter HR Cartridge • Single water source for GORE Filter and UF module UF Module • Single 10-inch GORE® Filter installed after pre-filter • Trial was run with GORE® 0.02µm Filters, then GORE® HR* Filters The manufacturer reported that in this • Water quality from UF module and GORE® Filters compared using ® UDI50 particle counter. application: “The GORE Filter provided *HR: High Retention filter. Testing demonstrates retention superior to typical 0.02µm filter the same particle removal function and efficiency as the UF.” — Senior UPW Engineer UPW loop Water Quality Test was performed post-UF Module and post-GORE® Filter Benefits Realized • GORE® Filters can meet the requirements for most of the GORE® manufacturer’s ultrapure water applications at significantly Filter Storage Tank lower cost than UF modules. -
Silver As a Drinking-Water Disinfectant
Silver as a drinking-water disinfectant Silver as a drinking-water disinfectant Alternative drinking-water disinfectants: silver ISBN 978-92-4-151369-2 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. Alternative drinking-water disinfectants: bromine, iodine and silver. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris. Sales, rights and licensing. To purchase WHO publications, see http://apps.who.int/bookorders. -
Designing a Low-Cost Ceramic Water Filter Press
International Journal for Service Learning in Engineering Vol. 8, No. 1, pp. 62-77, Spring 2013 ISSN 1555-9033 Designing a Low-Cost Ceramic Water Filter Press Michael Henry BS, Immunology and Infectious Disease The Pennsylvania State University University Park, PA 16802 [email protected] Siri Maley BS, Mechanical Engineering The Pennsylvania State University University Park, PA 16802 [email protected] Khanjan Mehta* Humanitarian Engineering and Social Entrepreneurship (HESE) Program The Pennsylvania State University University Park, PA 16802 [email protected] *Corresponding Author Abstract -- Diarrheal diseases due to unsanitary water are a leading cause of death in low- and middle- income countries. One potential solution to this problem is widespread access to point-of-use ceramic water filters made from universally-available materials. This increased access can be achieved by empowering local artisans to initiate self-sustaining and scalable entrepreneurial ventures in their communities. However, a major barrier to the start-up of these businesses is the prohibitively expensive press used to form the filters. This article reviews filter press technologies and identifies specific functional requirements for a suitable and affordable filter press. Early-stage field-testing results of a proof-of- concept design that can be manufactured by two people in two days at one-tenth of the cost of popular filter presses is presented. Index Terms - Ceramic Water Filter, Filter Press, Filtration, Global Health INTRODUCTION The water crisis -
Household Water Treatment Filters Product Guide Table of Contents
Household Water Treatment Filters Product Guide Table of contents 1. Introduction ...............................................................1 2. Key parameters ............................................................2 3. Filter categories ............................................................4 4. Validation methods .........................................................22 5. Local procurement .........................................................24 First edition, April 2020 Disclaimer: The use of this product guide is strictly for the internal purposes of the United Nations Children’s Fund (UNICEF) and in no way warrants, represents or implies that it is a complete and thorough evaluation of any of the products mentioned. This guide does not constitute, and should not be considered as, a certification of any of the products. The models and products included in this guide are for information purposes only, the lists are not exhaustive, and they do not represent a catalogue of preferred products. This guide is not to be used for commercial purposes or in any manner that suggests, or could be perceived as, an endorsement, preference for, or promotion of, the supplier’s products by UNICEF or the United Nations. UNICEF bears no responsibility whatsoever for any claims, damages or consequences arising from, or in connection with, the product guide or use of any of the products by any third party. Cover photo: © UNICEF/UNI127727/Vishwanathan 1 Introduction The provision of safe drinking water for all, in an average family size of five persons per sufficient quantities, is a key priority for UNICEF household. Solar disinfection is discussed in this and other water, sanitation and hygiene (WASH) guide, as the other main non-chemical method actors, be it at the onset of an emergency or in of water treatment (along with boiling). -
"Determination of Total Organic Carbon and Specific UV
EPA Document #: EPA/600/R-05/055 METHOD 415.3 DETERMINATION OF TOTAL ORGANIC CARBON AND SPECIFIC UV ABSORBANCE AT 254 nm IN SOURCE WATER AND DRINKING WATER Revision 1.1 February, 2005 B. B. Potter, USEPA, Office of Research and Development, National Exposure Research Laboratory J. C. Wimsatt, The National Council On The Aging, Senior Environmental Employment Program NATIONAL EXPOSURE RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 415.3 - 1 METHOD 415.3 DETERMINATION OF TOTAL ORGANIC CARBON AND SPECIFIC UV ABSORBANCE AT 254 nm IN SOURCE WATER AND DRINKING WATER 1.0 SCOPE AND APPLICATION 1.1 This method provides procedures for the determination of total organic carbon (TOC), dissolved organic carbon (DOC), and UV absorption at 254 nm (UVA) in source waters and drinking waters. The DOC and UVA determinations are used in the calculation of the Specific UV Absorbance (SUVA). For TOC and DOC analysis, the sample is acidified and the inorganic carbon (IC) is removed prior to analysis for organic carbon (OC) content using a TOC instrument system. The measurements of TOC and DOC are based on calibration with potassium hydrogen phthalate (KHP) standards. This method is not intended for use in the analysis of treated or untreated industrial wastewater discharges as those wastewater samples may damage or contaminate the instrument system(s). 1.2 The three (3) day, pooled organic carbon detection limit (OCDL) is based on the detection limit (DL) calculation.1 It is a statistical determination of precision, and may be below the level of quantitation. -
Semiconductor Industry
Semiconductor industry Heat transfer solutions for the semiconductor manufacturing industry In the microelectronics industry a the cleanroom, an area where the The following applications are all semiconductor fabrication plant environment is controlled to manufactured in a semicon fab: (commonly called a fab) is a factory eliminate all dust – even a single where devices such as integrated speck can ruin a microcircuit, which Microchips: Manufacturing of chips circuits are manufactured. A business has features much smaller than with integrated circuits. that operates a semiconductor fab for dust. The cleanroom must also be LED lighting: Manufacturing of LED the purpose of fabricating the designs dampened against vibration and lamps for lighting purposes. of other companies, such as fabless kept within narrow bands of PV industry: Manufacturing of solar semiconductor companies, is known temperature and humidity. cells, based on Si wafer technology or as a foundry. If a foundry does not also thin film technology. produce its own designs, it is known Controlling temperature and Flat panel displays: Manufacturing of as a pure-play semiconductor foundry. humidity is critical for minimizing flat panels for everything from mobile static electricity. phones and other handheld devices, Fabs require many expensive devices up to large size TV monitors. to function. The central part of a fab is Electronics: Manufacturing of printed circuit boards (PCB), computer and electronic components. Semiconductor plant Waste treatment The cleanroom Processing equipment Preparation of acids and chemicals Utility equipment Wafer preparation Water treatment PCW Water treatment UPW The principal layout and functions of would be the least complex, requiring capacities. Unique materials combined the fab are similar in all the industries. -
HIF Emergency Household Water Filter Challenge: 0 Evaluation Matrix and Report
June 2017 HIF Emergency Household Water Filter Challenge: 0 Evaluation Matrix and Report This work is funded by Elrha’s Humanitarian Innovation Fund programme, a grant making facility supporting organisations and individuals to identify, nurture and share innovative and scalable solutions to the most pressing challenges facing effective humanitarian assistance. The HIF is funded by aid from the UK Government. Visit www.elrha.org/hif for more information about their work to improve humanitarian outcomes through research, innovation, and partnership. HIF Emergency Household Water Filter Challenge: Evaluation Matrix and Report June 2017 1 Introduction 1.1 The Problem Safe water provision is one of the top concerns immediately following a sudden‐onset emergency and, at the same time, is one of the persistent concerns during humanitarian response to complex emergencies. Because each emergency is unique and no one solution can be applied across emergencies, a number of approaches have been developed to address the need to provide safe water, from bulk chlorination and distribution by tanker trucks, to point‐of‐use products for water treatment at the household level. Within the suite of household water treatment (HWT) products, filters have received increasing attention with regards to their potential application in emergency situations. In parallel with this increasing attention, there has also been increasing effort to develop household water filters, and as a result, significant progress has been made in terms of the number of filter products available. However, in spite of increasing interest in and availability of household water filters for use in emergencies, there remains a gap in evidence on the effective use of these filters emergency 1 contexts. -
Arium® Pro Ultrapure Water Systems Application-Orientated and Flexible to Meet the Highest Demands
arium® pro Ultrapure Water Systems Application-Orientated and Flexible to Meet the Highest Demands Modular – selection of five systems specially for your application Flexible – perfect fit to every laboratory environment Easy to use – glass touch display with intuitive menu Water Purification in Laboratories navigation arium® pro ultrapure water systems Description Modular The arium® pro series offers a flexible and The selection of five systems contains module modular system which, compared to conven- components specially tailored to your appli- tional devices, demonstrates excellent cost cation. arium® pro supplies the desired level efficiency. of ultrapure water quality for any critical and standard applications. All systems meet and exceed the ASTM Type 1 water quality standards and ensure the best Flexible reproducible results in their class. Up to The space-saving installation of the device 2 liter of consistently high-quality ultrapure on, under, or above your workstation water with a conductivity of 0.055 µS/cm integrates it perfectly into any laboratory. (0 18.2 MO + cm) can be dispensed each The display-dispense unit can be flexible minute. The ultrapure water is virtually positioned. microorganism-free when a Sartopore® 2 150 end filter is used. Display with touch-function Even the opening of the dispensing valve The patented Sartorius technology, SD card can be controlled by the unique display. slot, long service life, and low maintenance Simply navigate intuitively in the easy-to- requirement distinguish the arium® pro use and clear menu navigation by lightly systems as easy-to-use, efficient and reliable touching the display – even with gloves. Type 1 ultrapure water systems.