Household Water Treatment and Safe Storage Factsheet: Source Protection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Drinking Water Treatment Systems
Drinking Water Facts….. Drinking Water Treatment Systems By: Barbara Daniels and Nancy Mesner Revised December 2010 If your home water comes from a public water supply, it has been tested and meets EPA standards for drinking water. If you use a private well, however, you are responsible for assuring that the water is safe to drink. This means that you should periodically have your water tested, make sure your well is in proper condition without faulty well caps or seals, and identify and remove potential sources of con- tamination to your well such as leaking septic systems or surface contamination. With a private well, you are also responsible for any treatment your water may need if it contains harm- ful pollutants or contaminants that affect the taste, odor, corrosiveness or hardness of the water. This fact sheet discusses different types of water treatment systems available to homeowners. Addressing the source of the problem is often less costly in the long run than installing and maintaining a water system. For more information on identifying pollutant sources, problems with your well, or help in testing your well water, see the references at the end of this fact sheet. There are many types of water treatment systems available. No one type of treatment can address every water quality problem, so make sure you purchase the type of equipment that can effectively treat your particular water quality issue. The table below can help direct you to the right solution for your prob- lem. Drinking Water Facts….. What type of water treatment is needed? The table below lists common water contamination problems. -
19. Water Treatment Plants. the Introduction (Chapter 1) for These
Chapter 4 – Specifications Designs 19. Water Treatment Plants 19. Water Treatment Plants. The Introduction (Chapter 1) for these design data collection guidelines contains additional information concerning: preparing a design data collection request, design data collection requirements, and coordinating the design data collection and submittal. The following is a list of possible data required for specifications design of water treatment facilities. The size and complexity of the process system and structures should govern the amount and detail of the design data required. A. General Map Showing: (1) A key map locating the general map area within the State. (2) The plant site and other applicable construction areas. (3) Existing towns, highways, roads, railroads, public utilities (electric power, telephone lines, pipelines, etc.), streams, stream-gauging stations, canals, drainage channels. (4) Existing or potential areas or features having a bearing on the design, construction, operation, or management of the project feature such as: recreation areas; fish and wildlife areas; building areas; and areas of archeological, historical, and mining or paleontological interest. The locations of these features should bear the parenthetical reference to the agency most concerned: for example Reclamation. (5) County lines, township lines, range lines, and section lines. (6) Locations of construction access roads, permanent roads, and sites for required construction facilities. (7) Sources of natural construction materials and disposal areas for waste material, including the extent of mitigation required. (a) Location of disposal areas for debris, sediment, sludge, and spent chemicals from cleaning or storage solutions. (8) Water sources to be treated such as surface water or underground water. (9) Location of potential waste areas (i.e., channels). -
Water Quality Interventions to Prevent Diarrhoea: Cost and Cost-Effectiveness
Water Quality Interventions to Prevent Diarrhoea: Cost and Cost-Effectiveness Dr Thomas F. Clasen, London School of Hygiene & Tropical Medicine, UK Ms Laurence Haller, World Health Organization, Geneva, Switzerland Public Health and the Environment Water, Sanitation and Hygiene WHO/HSE/WSH/08.02 Water Quality Interventions to Prevent Diarrhoea: Cost and Cost-Effectiveness Prepared by: Dr Thomas F. Clasen, London School of Hygiene & Tropical Medicine, UK Ms Laurence Haller, World Health Organization, Geneva, Switzerland Public Health and the Environment World Health Organization Geneva 2008 Water Quality Interventions to Prevent Diarrhoea: Cost and Cost-Effectiveness © World Health Organization 2008 The illustration on the cover page is extracted from Rescue Mission: Planet Earth, © Peace Child International 1994; used by permission. All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. -
Household Water Treatment Filters Product Guide Table of Contents
Household Water Treatment Filters Product Guide Table of contents 1. Introduction ...............................................................1 2. Key parameters ............................................................2 3. Filter categories ............................................................4 4. Validation methods .........................................................22 5. Local procurement .........................................................24 First edition, April 2020 Disclaimer: The use of this product guide is strictly for the internal purposes of the United Nations Children’s Fund (UNICEF) and in no way warrants, represents or implies that it is a complete and thorough evaluation of any of the products mentioned. This guide does not constitute, and should not be considered as, a certification of any of the products. The models and products included in this guide are for information purposes only, the lists are not exhaustive, and they do not represent a catalogue of preferred products. This guide is not to be used for commercial purposes or in any manner that suggests, or could be perceived as, an endorsement, preference for, or promotion of, the supplier’s products by UNICEF or the United Nations. UNICEF bears no responsibility whatsoever for any claims, damages or consequences arising from, or in connection with, the product guide or use of any of the products by any third party. Cover photo: © UNICEF/UNI127727/Vishwanathan 1 Introduction The provision of safe drinking water for all, in an average family size of five persons per sufficient quantities, is a key priority for UNICEF household. Solar disinfection is discussed in this and other water, sanitation and hygiene (WASH) guide, as the other main non-chemical method actors, be it at the onset of an emergency or in of water treatment (along with boiling). -
A Practical Guide to Implementing Integrated Water Resources Management and the Role for Green Infrastructure”, J
A Practical Guide to Implementing Integrated Water Resources Management & the Role of Green Infrastructure Prepared for: Prepared for: Funded by: Prepared by: May 2016 ACKNOWLEDGEMENTS Environmental Consulting & Technology, Inc. (ECT), wishes to extend our sincere appreciation to the individuals whose work and contributions made this project possible. First of all, thanks are due to the Great Lakes Protection Fund for funding this project. At Great Lakes Commission, thanks are due to John Jackson for project oversight and valuable guidance, and to Victoria Pebbles for administrative guidance. At ECT, thanks are due to Sanjiv Sinha, Ph.D., for numerous suggestions that helped improve this report. Many other experts also contributed their time, efforts, and talent toward the preparation of this report. The project team acknowledges the contributions of each of the following, and thanks them for their efforts: Bill Christiansen, Alliance for Water Efficiency James Etienne, Grand River Conservation Christine Zimmer, Credit Valley Conservation Authority Authority Cassie Corrigan, Credit Valley Conservation Melissa Soline, Great Lakes & St. Lawrence Authority Cities Initiative Wayne Galliher, City of Guelph Clifford Maynes, Green Communities Canada Steve Gombos, Region of Waterloo Connie Sims – Office of Oakland County Water Julia Parzens, Urban Sustainability Directors Resources Commissioner Network Dendra Best, Wastewater Education For purposes of citation of this report, please use the following: “A Practical Guide to Implementing -
Limitations of Solar Disinfection (SODIS) Water Treatment in Low-Income Communities Honors Senior Thesis
Limitations of Solar Disinfection (SODIS) Water Treatment in Low-Income Communities Honors Senior Thesis Release Agreement Form The High Library supports the preservation and dissemination of all papers and projects completed as part of the requirements for the Elizabethtown College Honors Program (Honors Senior Thesis). Your signature on the following form confirms your authorship of this work and your permission for the High Library to make this work available. By agreeing to make it available, you are also agreeing to have this work included in the institutional repository, JayScholar. If you partnered with others in the creation of this work, your signature also confirms that you have obtained their permission to make this work available. Should any concerns arise regarding making this work available, faculty advisors may contact the Director of the High Library to discuss the available options. Release Agreement I, as the author of this work, do hereby grant to Elizabethtown College and the High Library a non-exclusive worldwide license to reproduce and distribute my project, in whole or in part, in all forms of media, including but not limited to electronic media, now or hereafter known, subject to the following terms and conditions: Copyright No copyrights are transferred by this agreement, so I, as the author, retain all rights to the work, including but not limited to the right to use in future works (such as articles or books). With this submission, I represent that any third-party content included in the project has been used with permission from the copyright holder(s) or falls within fair use under United States copyright law (http://www.copyright.gov/title17/92chap1.html#107). -
Challenges to the Commercial Viability of Point-Of-Use (POU) Water Treatment Systems in Low-Income Settings John Harris Disserta
Challenges to the Commercial Viability of Point-of-Use (POU) Water Treatment Systems in Low-Income Settings John Harris Dissertation submitted in partial fulfillment of an: MSc in Water Science Policy and Management School of Geography and the Environment Oxford University September 2, 2005 Abstract Point-of-use (POU) water treatment systems have been put forward in recent years as low-cost, scalable, and effective solutions to the significant challenge of providing potable drinking water in lower income settings. In spite of their usefulness, however, levels of adoption and continued use remain low. Recently, several projects have turned to a commercial approach in order to make the products more widely available. This trend seeks to position POU products alongside other health-related products which have been delivered in part by a commercial approach, such as condoms or bed-nets. Drawing upon semi-structured interviews with key industry experts, this research argues that these initial projects have failed to boost significantly adoption rates. Reasons for this failure are explored. Nevertheless, the pursuit of commercial viability presents a promising strategy by which to promote POU products’ adoption and sustained use. Strategies that have helped POU projects achieve partial commercial viability thus far, and may be useful in formulating strategies for POU projects seeking commercial viability in the future, are developed and explored. While projects promoting POU products have to date been unsuccessful in achieving commercial viability, should they do so in the future, these products, in conjunction with a commercial approach, have the opportunity to change the paradigm for the provision of potable water in lower income settings. -
CSR Guidelines for Rural Drinking Water Projects
Guide line For CSR Guideline for Rural Drinking Water Projects “Business has a responsibility to give back to CSR Guidelines community” For Rural Drinking Water Projects Government of India Ministry of Drinking Water and Sanitation 1 | P a g e Guide line For CSR Guideline for Rural Drinking Water Projects Table of Contents Page S.No Topic Number 1. Background 3 2. Why CSR for Drinking Water 3 3. Snapshot of CSR Guide Line 4 4. Objectives with regard to Water 5 5. Methodology 5 6. Type of Activities 5 7. Identification of Gram Panchayat for implementation of Water 6 projects 8. Role of Ministry of Drinking Water and Sanitation 6 9. Monitoring mechanism 6 10. Tri-partite agreement (TPA) 7 11. Operation and Maintenance 7 12. Conclusion 7 2 | P a g e Guide line For CSR Guideline for Rural Drinking Water Projects 1. Background Due to Poor quality of water and presence of chemical/ bacteriological contamination, many water borne diseases are spread, which causes untold misery, and in several cases even death, thereby adversely affecting the socio-economic progress of the country . From an estimate by WaterAid, it has come out that these diseases negatively effect health and education in children, and further what is worse, 180 million man days approximately are lost in the working population to India every year. Water-related diseases put an economic burden on both the household and the nation’s economy. At household levels, the economic loss includes cost of medical treatment and wage loss during sickness. Loss of working days affects national productivity. -
Read More in the Xylem 2019 Sustainability Report
Water for a Healthy World 1 | Xylem 2019 Sustainability Report Table of Contents 1. Message from Patrick Decker, President & CEO .... 3 2. Message from Claudia Toussaint, SVP, General Counsel & Chief Sustainability Officer . 6 3. How We Think About Sustainability ............... 9 4. How We Make Progress ........................ 24 5. Serving Our Customers ........................ 33 6. Building a Sustainable Company ................ 47 7. Empowering Communities ..................... 80 8. GRI Content Index ............................. 88 ABOUT THIS REPORT We are pleased to present Xylem’s ninth annual Sustainability Report, which describes our efforts in 2019 to solve global water challenges and support a healthy world. The How We Think About Sustainability section of this report explains the connection between current and emerging issues of water scarcity, water systems resilience to climate change and other water challenges and water affordability, and Xylem’s pivotal role in addressing these issues. We close out our goals set in 2014 and share our initial progress report against our 2025 goals, which we introduced in 2019, including Signature Goals designed to tackle some of the world’s most pressing water issues. We have also produced a set of General Disclosures that contain relevant data and information to meet requirements of the GRI Standards: Core Option. This report is available at https://www.xylem.com/en-us/sustainability/ in a downloadable PDF format. 2 | Xylem 2019 Sustainability Report CHAPTER 1 Message from Patrick Decker, President & CEO Water is key to public health and to sustainability. At Xylem, we define sustainability broadly, as responsible practices that strengthen the environment, global economy and society, creating a safer and more equitable world. -
School Idea in Prisons for Adults Albert C
Journal of Criminal Law and Criminology Volume 5 | Issue 1 Article 7 1914 School Idea in Prisons for Adults Albert C. Hill Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/jclc Part of the Criminal Law Commons, Criminology Commons, and the Criminology and Criminal Justice Commons Recommended Citation Albert C. Hill, School Idea in Prisons for Adults, 5 J. Am. Inst. Crim. L. & Criminology 52 (May 1914 to March 1915) This Article is brought to you for free and open access by Northwestern University School of Law Scholarly Commons. It has been accepted for inclusion in Journal of Criminal Law and Criminology by an authorized editor of Northwestern University School of Law Scholarly Commons. THE SCHOOL IDEA IN PRISONS FOR ADULTS. ALBERT C. HILL.' The attitude of the public towards its criminals has never been very kindly, just or intelligent. Hatred, revenge, cruelty, indifference, Pharisaism, exploitation have characterized the conduct of society to- wards those, who, for one reason or another, have been branded as crim- inals. Badness has often been tolerated and even condoned, so long as it did not end in conviction by a court, but the convict and the ex- convict have always suffered from the neglect and inhumanity of man. A change in public sentiment, however, is now in progress. Society -is becoming more and more sensitive to the sad cry of neglected chil- dren and to the despairing appeals of helpless and hopeless adults. The sentiment of human brotherhood is growing stronger and the call for help meets with more ready response than formerly. -
Integrating Sanitation Into Services for People Living with HIV and AIDS
INTEGRATING SANITATION INTO THE BASIC CARE PACKAGE INTEGRATING SANITATION INTO SERVICES FOR PEOPLE LIVING WITH HIV AND AIDS JULY 2012 JULY 2012 This publication was prepared for the U.S. Agency for International Development. This publication was prepared for the U.S. Agency for International Development. INTEGRATING SANITATION INTO THE BASIC CARE PACKAGE C-Change is a USAID-funded project, implemented by FHI 360, to improve the effectiveness and sustainability of social and behavior change communication (SBCC) across development areas, including family planning and reproductive health, HIV prevention, malaria prevention, other health areas, civil society, and democracy and governance. C- Change works with regional and local partners to strengthen their capacity to implement effective SBCC programs. For information, visit www.c-changeproject.org. WASHplus, a five-year (2010–2015) cooperative agreement managed by FHI 360 with CARE and Winrock International as core partners, is funded through USAID’s Bureau for Global Health. WASHplus creates supportive environments for healthy households and communities by delivering interventions that lead to improvements in water, sanitation, hygiene (WASH) and indoor air pollution (IAP). WASHplus uses at-scale as well as integrated programming approaches to reduce diarrheal diseases and acute respiratory infections, the two top killers of children under five years of age globally. For information, visit www.washplus.org or email: [email protected]. Contact Information: USAID C-Change and WASHplus Projects FHI Development 360 1825 Connecticut Avenue, NW Washington, DC 20009-5721 Tel. 202-884-8000; Fax: 202-884-8454 Submitted to: Gloria Coe and Shanti Conly, AOTRs C-Change Project Merri Weinger, AOTR WASHplus Project U.S. -
SAFE WATER SYSTEMS: an Evaluation of the Zambia CLORIN Program
SAFE WATER SYSTEMS: An Evaluation of the Zambia CLORIN Program FINAL REPORT 26 September 2004 Lynnette Olembo, MPH. Principal Investigator, Johns Hopkins Bloomberg School of Public Health FAD Kaona, BA, MA PhD. Co-investigator, Mwengu Social and Health Research Center Mary Tuba, MA, B.SW. Programs Manager, Mwengu Social and Health Research Center Gilbert Burnham, MD, PhD. Department of International Health, Johns Hopkins School of Public Health Technical Advice: Eckhard Kleinau, DrPH, MD, , Senior Technical Director, Environmental Health Project (EHP) Funding Provided by: U.S. Agency for International Development (USAID) through the Environmental Health Project (EHP) Narrative Safe Water System evaluation report. 26 September 2004. Page 1 ORGANIZATION This report is organized into three parts. This first part contains the narrative. The second part contains the data tables, and the third part contains the questionnaire. ABSTRACT AND KEY FINDINGS This is a report of the evaluation of the Zambia Safe Water Systems program conducted by The Mwengu Social and Health Research Centre and the Johns Hopkins Bloomberg School of Public Health. The intent of this study was to assess how the Safe Water System was being used in areas where marketing and distribution had focused. Sites were selected on a nationwide basis using distribution information from Society for Family Health (SFH), Population Services Inter- national’s (PSI) local affiliate, who ran the social marketing program for CLORIN. A sample size of 1319 households was used, stratifying for type of marketing and household characteristics. For each of these households interviews were carried out among heads of households, primary water caretakers, primary child caretakers and information gathered on children in the household under age five.