Differential Diagnosis of T2 Hyperintense Brainstem Lesions: Part 1

Total Page:16

File Type:pdf, Size:1020Kb

Differential Diagnosis of T2 Hyperintense Brainstem Lesions: Part 1 Differential Diagnosis of T2 Hyperintense Brainstem Lesions: Part 1. Focal Lesions Juan A. Guzmán-De-Villoria, MD,* Pilar Fernández-García, MD,† and Concepción Ferreiro-Argüelles, MD‡ Brainstem lesions can be classified as focal or diffuse. Magnetic resonance imaging is the most suitable imaging modality for evaluating these lesions. As a rule, focal lesions are not large and have well-defined margins. Causes include tumors, vascular malformations, demyelinating diseases, brain abscesses, hypertrophic olivary degeneration, and dilated Virchow–Robin spaces. Differential diagnoses of these numerous entities mandates a review of magnetic resonance imaging findings in conjunction with epidemiologic aspects, clinical features, and other medical test results. Semin Ultrasound CT MRI 31:246-259 © 2010 Elsevier Inc. All rights reserved. agnetic resonance imaging (MRI) is the most sensi- atively nonspecific, hence as a result each group encom- Mtive and specific technique for diagnosing disorders passes a range of different disorders. of the posterior fossa and the brainstem (BS) in particular. The list of pathologic entities set forth in this and the follow- Visualization of this area of the body by computed tomog- ing discussion is not intended to be exhaustive but rather to be raphy (CT) is difficult because of the presence of bone- sufficiently ample to cover most of the lesions likely to affect the hardening artifacts.1 Entities visible in the BS are highly BS (Table 1 and Fig. 1). Additionally, classification as a focal or diverse in their natures as well as treatment and progno- diffuse lesion is determined on the basis of MRI findings, and sis,1 and they can often pose a challenge for radiologists. hence one and the same disorder, such as gliomas, can fall The object of this article is to list diagnostic guidelines within both of these proposed groupings. focusing on key imaging, epidemiologic, and clinical fea- tures as an aid to arriving at differential diagnoses of BS lesions visualized by MRI. Focal BS Tumors To this end, BS lesions have been divided into 2 main This group includes tumors having well-defined margins af- groups, focal and diffuse, with each group being consid- fecting at least one half of the BS segment in which they are ered separately in the following 2 articles. Lesion margin located, although they may extend longitudinally into a sin- was the imaging criterion used for classification because gle adjacent segment provided that the margins remain well focal lesions have a well-defined border. As a rule such defined and that the tumor compresses and displaces, rather lesions are small, affecting only a single segment of the BS. than infiltrates, the adjacent cerebral parenchyma.2 The proposed classification of BS lesions is intended to Patient age is the first factor to be considered when diag- help facilitate diagnosis by using this relatively simple im- nosing a focal BS tumor. Gliomas are the most common neo- aging criterion, readily discernible by radiologists but rel- plasm in children, comprising nearly 90% of tumors of the BS during childhood.3 These tumors may be located in any part of the BS but are most commonly found in the midbrain and *Department of Radiology/Neuroradiology, Hospital General Universitario the medulla.3 Where the midbrain is affected, involvement of “Gregorio Marañón,” Madrid, Spain. 4,5 †Department of Radiology/Neuroradiology, Hospital General Universitario the ventral portion, ie, the cerebral peduncle, is rare. Cer- “Gregorio Marañón,” Madrid, Spain. tain locations are highly characteristic, for example, tectal ‡Department of Radiology, Hospital “Severo Ochoa,” Leganés, Madrid, gliomas (Fig. 2A) and gliomas of the cervicomedullary junc- Spain. tion with posterior exophytic expansion into the fourth ven- Address reprint requests to: Juan A. Guzmán-De-Villoria, Department of 3,6 Radiology/Neuroradiology, Hospital General Universitario “Gregorio tricle or below the cerebellum. Marañón,” Madrid, Spain, c/o Dr. Esquedo 46, 28007 Madrid, Spain. Clinical findings for patients vary with tumor location. Ac- E-mail: [email protected] cordingly, focal midbrain gliomas located in the tectum will give 246 0887-2171/10/$-see front matter © 2010 Elsevier Inc. All rights reserved. doi:10.1053/j.sult.2010.03.001 Diagnosis of T2 hyperintense BS lesions 247 Table 1 Conclusions of Focal BS Lesions That Are Hyperintense on T2-Weighted Imaging Clinical Entity Epidemiology Symptoms Location Key MRI Findings Other Particulars Focal glioma Children: 5-10 years Indefinite depending Children: midbrain and medulla. Nonenhancing in children Tectal tumors benign in old on location Cervicomedullary junction Enhancement and necrosis appearance and 90% BS tumors are (exophytic). Tectal plate in adults course in children gliomas Adults: pons. Tectal plate and young adults Adults: 40-60 years old <2% of all gliomas PNET <3 years old Indefinite depending Pons Nonenhancing Dissemination via CSF on location Dermoid/epidermoid All ages, very rare Indefinite, variable Prepontine cistern invading the Signal similar to CSF on tumors Aseptic meningitis pons T1 and T2 Hyperintense on FLAIR 2 ADC Nonenhancing Metastasis >45 years old Indefinite depending Nonspecific Multiple, necrosis, 3%-5% of all brain on location enhancement, bleeding, metastases edema Arterial infarctions >45 years old plus Indefinite depending Anteromedial, anterolateral, Morphology depending on High proportion of false cardiovascular on location lateral, posterior vascular vascular territory negatives on DWI in risk factors, heart territories 2 ADC 0-14 d first 24 h disease, vascular Deep lesion where affected dissection, or vessel is small dolichoectasia DVA 20-50 years old Mostly Adjacent to fourth ventricle, Dilated medullary veins Associated with CM 50%-60% of all asymptomatic brachium pontis or dentate (caput medusae) (more frequently) or vascular nucleus converging on a single capillary malformations drainage vein telangiectasia (2%-3% in BS) CM 30 years old Recurring-remitting Pons > midbrain > medulla “Popcorn-like” structure Multiple CMs in 5%-10% of all clinical symptoms Hyperintense center on T1 sporadic and familial vascular and T2 (methemoglobin) forms malformations Hypointense margins on (18%-35% in BS) T2 (hemosiderin) Capillary In adults Mostly Pons <2 cm. Magnetic susceptibility telangiectasia asymptomatic Single. caused by deoxyHb Slightly hyperintense on T2 in ectasic vessels Moderate, stippled enhancement GEءHypointense on T2 AVM 20-30 years old Acute clinical Midbrain > pons > medulla Abnormal vessels exhibit Hemorrhagic signs 2%-6% of all situation due to signal void or where bleeding intracranial AVMs bleeding hyperintense on T1 and/ occurs or T2 where there is turbulent flow or thrombosis MS 15-45 years old Recurring-remitting Floor of fourth ventricle or Small lesions Lesser tendency to form clinical symptoms surface of pons Active lesions are “black holes” on T1 enhancing Less hyperintense on T2, less well defined than supratentorial lesions ADEM Children and young Preceded by Nonspecific Single or multiple lesions Concomitant adults pseudoinfluenza variable in size involvement of Infection or symptoms May be enhancing cerebellum, basal vaccination 1-3 Recurring clinical 2 ADC for acute lesions ganglia or thalamus wks earlier symptoms Periventricular cerebral Monophasic (؉ Fr.) white matter spared or multiphasic ( MS) (MDEM) Abscesses All ages Indefinite depending Pons Ring-shaped uptake Rule out primary focus on location vasogenic edema of infection in cranial nerve pair VI 2 ADC except paranasal, sinuses, and VII tuberculosis middle ear, or teeth involvement MRS: lactate, succinate, amino acids HOD All ages Palatal tremor ION: ION hyperintense on T2 > Triggering lesions Nystagmus -ipsilateral (CTT lesion) 3-4 weeks-indefinitely Atrophy of cerebellar Hypermetropic or -contralateral (DN or SCP Hypertrophy ION 6 mo to cortex and torsional lesion) 3/4 years contralateral DN saccades -bilateral (SCP and CTT lesion) Nonenhancing 248 J.A. Guzmán-De-Villoria, P. Fernández-García, and C. Ferreiro-Argüelles Table 1 Continued Clinical Entity Epidemiology Symptoms Location Key MRI Findings Other Particulars Dilated VR Spaces Advanced age Asymptomatic Region: Signal similar to CSF on May be multiseptate Sometimes ● pontomesencephalic all sequences Gliosis sometimes hydrocephalus ● midbrain-diencephalic produces peripheral ● midbrain-thalamus hyperintense on T2 ADC, apparent diffusion coefficient; ADEM, acute disseminated encephalomyelitis; AVM, arteriovenous malformation; BS, brainstem; CM, cavernous malformation; CSF, cerebrospinal fluid; CTT, central tegmental tract; DeoxyHb, deoxyhemoglobin; DN, dentate nucleus; DVA, developmental venous anomaly; DWI, diffusion-weighted Imaging; GE, gradient echo; HOD, hypertrophic olivary degeneration; ION, inferior olivary nucleus; MDEM, acute multiphasic encephalo- myelitis; MRS, MR spectroscopy; MS, multiple sclerosis; PNET, primitive neuroectodermal tumor; SCP, superior cerebellar peduncle; VHL, von Hippel–Lindau; VR, Virchow–Robin. rise to signs of hydrocephalus, namely, headache, vomiting, and than 3 years,7 whereas tumors in children who are a little papilledema. Gliomas located in the tegmentum will cause dys- older, between 5 and 10 years of age, tend to be gliomas.6 function of the oculomotor nuclei and their connecting fibers. PNETs are most commonly located in the pons, where, Signs of ataxia will be present in the case of extension towards unlike PNETs located elsewhere, these lesions are not
Recommended publications
  • Intractable Vomiting and Hiccups As the Presenting Symptom of Neuromyelitis Optica
    Case Report Intractable vomiting and hiccups as the presenting symptom of neuromyelitis optica Girish Baburao Kulkarni, Pradeep Kallollimath, R. Subasree, M. Veerendrakumar Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India Abstract Vomiting and hiccups can be due to peripheral or central causes. Neurological diseases causing vomiting and hiccups are due to lesions of medulla involving area postrema and nucleus tractus solitarius. Neuromyelitis optica (NMO) is one such disease which involves these structures. However refractory vomiting and hiccups as the presenting symptom of NMO is unusual. Here we report a patient with NMO in whom refractory vomiting and hiccups were the sole manifestation of the first attack. Diagnosis can be missed at this stage leading to delay in treatment and further complications. This case demonstrates the importance of considering NMO in any patient presenting with refractory vomiting and hiccups and with local and metabolic causes ruled out and linear medullary lesion on magnetic resonance imaging may indicate the diagnosis even when the classical clinical criteria are not met. Anti NMO antibody testing should be done and if positive appropriate treatment should be initiated to prevent further neurological damage. Key Words Aquaporin antibody, hiccups, intractable vomiting, neuromyelitis optica For correspondence: Dr. Girish Baburao Kulkarni, Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore ‑ 560 029, Karnataka,
    [Show full text]
  • Central Pain in the Face and Head
    P1: KWW/KKL P2: KWW/HCN QC: KWW/FLX T1: KWW GRBT050-128 Olesen- 2057G GRBT050-Olesen-v6.cls August 17, 2005 2:10 ••Chapter 128 ◗ Central Pain in the Face and Head J¨orgen Boivie and Kenneth L. Casey CENTRAL PAIN IN THE FACE AND HEAD Anesthesia dolorosa denotes pain in a region with de- creased sensibility after lesions in the CNS or peripheral International Headache Society (IHS) code and diag- nervous system (PNS). The term deafferentation pain is nosis: used for similar conditions, but it is more commonly used in patients with lesions of spinal nerves. 13.18.1 Central causes of facial pain 13.18.1 Anesthesia dolorosa (+ code to specify cause) 13.18.2 Central poststroke pain EPIDEMIOLOGY 13.18.3 Facial pain attributed to multiple sclerosis 13.18.4 Persistent idiopathic facial pain The prevalence of central pain varies depending on the un- 13.18.5 Burning mouth syndrome derlying disorder (Tables 128-1 and 128-2) (7,29). In the ab- 13.19 Other centrally mediated facial pain (+ code to sence of large scale epidemiologic studies, only estimates specify etiology) of central pain prevalence can be quoted. In the only prospective epidemiologic study of central Note that diagnosis with IHS codes 13.18.1, 13.18.4, and pain, 191 patients with central poststroke pain (CPSP) 13.18.5 may have peripheral causes. were followed for 12 months after stroke onset (1). Sixteen World Health Organization (WHO) code and diagnosis: (8.4%) developed central pain, an unexpectedly high inci- G 44.810 or G44.847.
    [Show full text]
  • Magnetic Resonance Imaging of Multiple Sclerosis: a Study of Pulse-Technique Efficacy
    691 Magnetic Resonance Imaging of Multiple Sclerosis: A Study of Pulse-Technique Efficacy Val M. Runge1 Forty-two patients with the clinical diagnosis of multiple sclerosis were examined by Ann C. Price1 proton magnetic resonance imaging (MRI) at 0.5 T. An extensive protocol was used to Howard S. Kirshner2 facilitate a comparison of the efficacy of different pulse techniques. Results were also Joseph H. Allen 1 compared in 39 cases with high-resolution x-ray computed tomography (CT). MRI revealed characteristic abnormalities in each case, whereas CT was positive in only 15 C. Leon Partain 1 of 33 patients. Milder grades 1 and 2 disease were usually undetected by CT, and in all A. Everette James, Jr.1 cases, the abnormalities noted on MRI were much more extensive than on CT. Cerebral abnormalities were best shown with the T2-weighted spin-echo sequence (TE/TR = 120/1000); brainstem lesions were best defined on the inversion-recovery sequence (TE/TI/TR =30/400/1250). Increasing TE to 120 msec and TR to 2000 msec heightened the contrast between normal and abnormal white matter. However, the signal intensity of cerebrospinal fluid with this pulse technique obscured some abnormalities. The diagnosis of multiple sclerosis continues to be a clinical challenge [1,2). The lack of an objective means of assessment further complicates the evaluation of treatment regimens. Evoked potentials, cerebrospinal fluid (CSF) analysis , and computed tomography (CT) are currently used for diagnosis, but all lack sensitivity and/or specificity. Furthermore, postmortem examinations demonstrate many more lesions than those suggested by clinical means [3).
    [Show full text]
  • Le Journal Canadien Des Sciences Neurologiques
    LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES tations of ambulatory cassette recordings, computer application edge may lead to the rapid productive careers of young clinical for data reduction and seizure and spike recognition, and the investigators and scientists being replaced sooner by the next power and pitfalls of monitoring techniques in differentiating group of young Turks. "fits from faints". Broad applications including the pre-surgical The clinical reviews of cases by Jonesco-Sisesti are painstaking, evaluation are well-covered. Although some chapters give good and it's salutary to again see the careful clinical observation descriptions of subcategories of primary generalized and com­ that formed the basis of modern neurology. How long has it plex partial seizures, this material is available in other more been since we saw someone recording Oppenheim's, Gordon's, general texts on epilepsy. Schaeffer's reflexes as part of the clinical examination. One Unfortunately, I feel the weaknesses outweigh the qualities must pause when reading that the "mediopublic reflex pro­ of the book. There should be a more clear definition of research duced a definite inferior response and a weak superior response", versus routine clinical application of the technology. Through­ but the pause is enjoyable as it recalls the impeccable respect out the book the value of such monitoring is repeatedly stressed, for the neurological examination prior to the age of technology. yet there are no controlled studies to support its superiority Dr. Ross was given the idea for this project may years ago by over conventional clinical and EEG evaluations. The case for the late Dr.
    [Show full text]
  • A Network of Genetic Repression and Derepression Specifies Projection
    A network of genetic repression and derepression INAUGURAL ARTICLE specifies projection fates in the developing neocortex Karpagam Srinivasana,1, Dino P. Leonea, Rosalie K. Batesona, Gergana Dobrevab, Yoshinori Kohwic, Terumi Kohwi-Shigematsuc, Rudolf Grosschedlb, and Susan K. McConnella,2 aDepartment of Biology, Stanford University, Stanford, CA 94305; bMax-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; and cLawrence Berkeley National Laboratory, Berkeley, CA 94720 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2011. Contributed by Susan K. McConnell, September 28, 2012 (sent for review August 24, 2012) Neurons within each layer in the mammalian cortex have stereotypic which results in a suppression of corticothalamic and callosal projections. Four genes—Fezf2, Ctip2, Tbr1, and Satb2—regulate fates, respectively, and axon extension along the corticospinal these projection identities. These genes also interact with each tract (CST). Fezf2 mutant neurons fail to repress Satb2 and Tbr1, other, and it is unclear how these interactions shape the final pro- thus their axons cross the CC and/or innervate the thalamus jection identity. Here we show, by generating double mutants of inappropriately. Fezf2, Ctip2, and Satb2, that cortical neurons deploy a complex In callosal projection neurons, Satb2 represses the expression Ctip2 Bhlhb5 genetic switch that uses mutual repression to produce subcortical of and , leading to a repression of subcerebral fates. Satb2 Tbr1 or callosal projections. We discovered that Tbr1, EphA4, and Unc5H3 Interestingly, we found that promotes expression in fi upper layer callosal neurons, and Tbr1 expression in these neu- are critical downstream targets of Satb2 in callosal fate speci ca- fi tion.
    [Show full text]
  • Brainstem: Structure & Its Mode of Action
    Journal of Neurology & Neurophysiology 2021, Vol.12, Issue 3, 521 Opinion Brainstem: Structure & Its Mode of action Karthikeyan Rupani Research Fellow, Tata Medical Centre, India. Corresponding Author* The brainstem is exceptionally little, making up around as it were 2.6 percent of the brain's add up to weight. It has the basic parts of directing cardiac, and Rupani K, respiratory work, making a difference to control heart rate and breathing rate. Research Fellow, Tata Medical Centre, India; It moreover gives the most engine and tactile nerve supply to the confront and E-mail: [email protected] neck by means of the cranial nerves. Ten sets of cranial nerves come from the brainstem. Other parts incorporate the direction of the central apprehensive Copyright: 2021 Rupani K. This is an open-access article distributed under the framework and the body's sleep cycle. It is additionally of prime significance terms of the Creative Commons Attribution License, which permits unrestricted within the movement of engine and tangible pathways from the rest of the use, distribution, and reproduction in any medium, provided the original author brain to the body, and from the body back to the brain. These pathways and source are credited. incorporate the corticospinal tract (engine work), the dorsal column-medial lemniscus pathway and the spinothalamic tract [3]. The primary part of the brainstem we'll consider is the midbrain. The midbrain Received 01 March 2021; Accepted 15 March 2021; Published 22 March 2021 (too known as the mesencephalon) is the foremost prevalent of the three districts of the brainstem. It acts as a conduit between the forebrain over and the pons and cerebellum underneath.
    [Show full text]
  • The Superior and Inferior Colliculi of the Mole (Scalopus Aquaticus Machxinus)
    THE SUPERIOR AND INFERIOR COLLICULI OF THE MOLE (SCALOPUS AQUATICUS MACHXINUS) THOMAS N. JOHNSON' Laboratory of Comparative Neurology, Departmmt of Amtomy, Un&versity of hfiehigan, Ann Arbor INTRODUCTION This investigation is a study of the afferent and efferent connections of the tectum of the midbrain in the mole (Scalo- pus aquaticus machrinus). An attempt is made to correlate these findings with the known habits of the animal. A subterranean animal of the middle western portion of the United States, Scalopus aquaticus machrinus is the largest of the genus Scalopus and its habits have been more thor- oughly studied than those of others of this genus according to Jackson ('15) and Hamilton ('43). This animal prefers a well-drained, loose soil. It usually frequents open fields and pastures but also is found in thin woods and meadows. Following a rain, new superficial burrows just below the surface of the ground are pushed in all directions to facili- tate the capture of worms and other soil life. Ten inches or more below the surface the regular permanent highway is constructed; the mole retreats here during long periods of dry weather or when frost is in the ground. The principal food is earthworms although, under some circumstances, larvae and adult insects are the more usual fare. It has been demonstrated conclusively that, under normal conditions, moles will eat vegetable matter. It seems not improbable that they may take considerable quantities of it at times. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University of Michigan.
    [Show full text]
  • Imaging of the Confused Patient: Toxic Metabolic Disorders Dara G
    Imaging of the Confused Patient: Toxic Metabolic Disorders Dara G. Jamieson, M.D. Weill Cornell Medicine, New York, NY The patient who presents with either acute or subacute confusion, in the absence of a clearly defined speech disorder and focality on neurological examination that would indicate an underlying mass lesion, needs to be evaluated for a multitude of neurological conditions. Many of the conditions that produce the recent onset of alteration in mental status, that ranges from mild confusion to florid delirium, may be due to infectious or inflammatory conditions that warrant acute intervention such as antimicrobial drugs, steroids or plasma exchange. However, some patients with recent onset of confusion have an underlying toxic-metabolic disorders indicating a specific diagnosis with need for appropriate treatment. The clinical presentations of some patients may indicate the diagnosis (e.g. hypoglycemia, chronic alcoholism) while the imaging patterns must be recognized to make the diagnosis in other patients. Toxic-metabolic disorders constitute a group of diseases and syndromes with diverse causes and clinical presentations. Many toxic-metabolic disorders have no specific neuroimaging correlates, either at early clinical stages or when florid symptoms develop. However, some toxic-metabolic disorders have characteristic abnormalities on neuroimaging, as certain areas of the central nervous system appear particularly vulnerable to specific toxins and metabolic perturbations. Areas of particular vulnerability in the brain include: 1) areas of high-oxygen demand (e.g. basal ganglia, cerebellum, hippocampus), 2) the cerebral white matter and 3) the mid-brain. Brain areas of high-oxygen demand are particularly vulnerable to toxins that interfere with cellular respiratory metabolism.
    [Show full text]
  • Efficacy And/Or Effectiveness of Portable Neuromodulation Stimulator (Pons®) As Treatment for Traumatic Brain Injury (TBI)”
    Evidence-Based Practice Group Answers to Clinical Questions “Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI)” A Rapid Systematic Review By WorkSafeBC Evidence-Based Practice Group Dr. Craig Martin Manager, Clinical Services Chair, Evidence-Based Practice Group October 2019 Clinical Services – Worker and Employer Services Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI) i About this report Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI) Published: October 2019 About the Evidence-Based Practice Group The Evidence-Based Practice Group was established to address the many medical and policy issues that WorkSafeBC officers deal with on a regular basis. Members apply established techniques of critical appraisal and evidence-based review of topics solicited from both WorkSafeBC staff and other interested parties such as surgeons, medical specialists, and rehabilitation providers. Suggested Citation WorkSafeBC Evidence-Based Practice Group, Martin CW. Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI). Richmond, BC: WorksafeBC Evidence- Based Practice Group; October 2019. Contact Information Evidence-Based Practice Group WorkSafeBC PO Box 5350 Stn Terminal Vancouver BC V6B 5L5 Email [email protected] Phone 604 279-7417 Toll-free 1 888 967-5377
    [Show full text]
  • Overview of the Reticular Formation (RF)
    TeachSheet Reticular Formation & Diffuse modulatory system Overview of the Reticular Formation (RF) The term reticular formation refers to the neuronal network within the brainstem, although it continues rostrally into the thalamus and hypothalamus and caudally into the propriospinal network of the spinal cord. A “coordinating system” (like the Limbic system) with “connections” to sensory, somatic motor and visceral motor systems Organization can be subdivided into two neuronal cell “columns” (medial to lateral) as well as on the basis of their neurotransmitter release Neuronal columns (many nuclei and names, but these are some of the major ones): o “Medial tegmental field” (large-celled nuclei) . Origin of the reticulospinal pathway . Role in coordinating posture, eye and head movements. o “Lateral tegmental field” (smaller and fewer cells, shorter local projections) . Extends from the medulla to the pons . Coordinate autonomic and limbic functions (e.g. micturition, swallowing, mastication and vocalization) The functions of the reticular formation include their ability to coordinate motor and sensory brainstem nuclei: o Pattern generator . Eye movements; horizontal (PPRF) and vertical (riMLF) . Rhythmical chewing movements (pons) . Posture and locomotion (midbrain and pons) . Swallowing, vomiting, coughing and sneezing (medulla) . Micturition (pons) o Respiratory control (medulla); expiratory, inspiratory, apneustic and pneumotaxic o Cardiovascular control (medulla); vasomotor pressor/depressor, cardioacceleratory and inhibitory. Afferents arise from baroreceptors (carotid sinus and aortic arch), chemoreceptors (carotid sinus, lateral reticular formation chemosensitive area in the medulla) and stretch receptors (lung and respiratory muscles) . Efferents arise from reticular formation neurons within the pons and medulla o Sensory modulation or “gate” control . The term “gating” refers to “modulation” of synaptic transmission from one set of neurons to the next.
    [Show full text]
  • White Matter Hyperintensity Accumulation During Treatment of Late-Life Depression
    Neuropsychopharmacology (2015) 40, 3027–3035 © 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15 www.neuropsychopharmacology.org White Matter Hyperintensity Accumulation During Treatment of Late-Life Depression 1 1 1 1 1 Alexander Khalaf , Kathryn Edelman , Dana Tudorascu , Carmen Andreescu , Charles F Reynolds and ,1 Howard Aizenstein* 1 Western Psychiatric Institute and Clinic, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA White matter hyperintensities (WMHs) have been shown to be associated with the development of late-life depression (LLD) and eventual treatment outcomes. This study sought to investigate longitudinal WMH changes in patients with LLD during a 12-week antidepressant treatment course. Forty-seven depressed elderly patients were included in this analysis. All depressed subjects started pharmacological treatment for depression shortly after a baseline magnetic resonance imaging (MRI) scan. At 12 weeks, patients = = underwent a follow-up MRI scan, and were categorized as either treatment remitters (n 23) or non-remitters (n 24). Among all patients, there was as a significant increase in WMHs over 12 weeks (t(46) = 2.36, P = 0.02). When patients were stratified by remission status, non-remitters demonstrated a significant increase in WMHs (t(23) = 2.17, P = 0.04), but this was not observed in remitters (t(22) = 1.09, P = 0.29). Other markers of brain integrity were also investigated including whole brain gray matter volume, hippocampal volume, and fractional anisotropy. No significant differences were observed in any of these markers during treatment, including when patients were stratified based on remission status. These results add to existing literature showing the association between WMH accumulation and LLD treatment outcomes.
    [Show full text]
  • ON-LINE FIG 1. Selected Images of the Caudal Midbrain (Upper Row
    ON-LINE FIG 1. Selected images of the caudal midbrain (upper row) and middle pons (lower row) from 4 of 13 total postmortem brains illustrate excellent anatomic contrast reproducibility across individual datasets. Subtle variations are present. Note differences in the shape of cerebral peduncles (24), decussation of superior cerebellar peduncles (25), and spinothalamic tract (12) in the midbrain of subject D (top right). These can be attributed to individual anatomic variation, some mild distortion of the brain stem during procurement at postmortem examination, and/or differences in the axial imaging plane not easily discernable during its prescription parallel to the anterior/posterior commissure plane. The numbers in parentheses in the on-line legends refer to structures in the On-line Table. AJNR Am J Neuroradiol ●:●●2019 www.ajnr.org E1 ON-LINE FIG 3. Demonstration of the dentatorubrothalamic tract within the superior cerebellar peduncle (asterisk) and rostral brain stem. A, Axial caudal midbrain image angled 10° anterosuperior to posteroinferior relative to the ACPC plane demonstrates the tract traveling the midbrain to reach the decussation (25). B, Coronal oblique image that is perpendicular to the long axis of the hippocam- pus (structure not shown) at the level of the ventral superior cerebel- lar decussation shows a component of the dentatorubrothalamic tract arising from the cerebellar dentate nucleus (63), ascending via the superior cerebellar peduncle to the decussation (25), and then enveloping the contralateral red nucleus (3). C, Parasagittal image shows the relatively long anteroposterior dimension of this tract, which becomes less compact and distinct as it ascends toward the thalamus. ON-LINE FIG 2.
    [Show full text]