Imaging of the Confused Patient: Toxic Metabolic Disorders Dara G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basal Ganglia & Cerebellum
1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte. -
Cerebral White Matter Lesions on Diffusion-Weighted Images
diagnostics Article Cerebral White Matter Lesions on Diffusion-Weighted Images and Delayed Neurological Sequelae after Carbon Monoxide Poisoning: A Prospective Observational Study Sangun Nah 1 , Sungwoo Choi 1, Han Bit Kim 1, Jungbin Lee 2, Sun-Uk Lee 3 , Young Hwan Lee 1, Gi Woon Kim 1 and Sangsoo Han 1,* 1 Department of Emergency Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea; [email protected] (S.N.); [email protected] (S.C.); [email protected] (H.B.K.); [email protected] (Y.H.L.); [email protected] (G.W.K.) 2 Department of Radiology, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea; [email protected] 3 Department of Neurology, Korea University Medical Center, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-32-621-5116 Received: 29 August 2020; Accepted: 14 September 2020; Published: 16 September 2020 Abstract: Introduction: Carbon monoxide (CO) poisoning can result in delayed neurological sequelae (DNS). Factors predicting DNS are still controversial. This study aims to determine whether acute brain lesions observed using diffusion-weighted magnetic resonance imaging (MRI) following acute CO poisoning are related to the subsequent development of DNS. Methods: This prospective study was conducted on patients with CO poisoning treated at a university hospital in Bucheon, Korea. From August 2016 to July 2019, a total of 283 patients visited the hospital because of CO poisoning. Exclusion criteria included age under 18 years, refusing hyperbaric oxygen therapy, refusing MRI, being discharged against medical advice, being lost to follow-up, having persistent neurological symptoms at discharge, and being transferred from another hospital 24 h after exposure. -
On-Line Table: MRI Imaging Recommendation and Summary Of
On-line Table: MRI imaging recommendation and summary of key features Sequence Pathologies Visible Key Features T1 volumetric high-resolution Lewy body dementia Less consistent pattern of cerebral volume loss; a pattern of whole-brain reformatted in relatively focused atrophy of the midbrain, hypothalamus, axial, coronal, and sagittal planes and substantia innominata, with a relative sparing of the hippocampus and temporoparietal cortex; relatively little cortical atrophy Posterior cortical atrophy Bilateral parieto-occipital and temporo-occipital atrophy Pituitary region Pituitary macroadenoma: mass lesion intrinsic to pituitary Ͼ10 mm; T1 hypointense to gray matter (may be heterogeneous if hemorrhage present), T2 isointense, enhancing solid components; may extend into suprasellar region to distort optic chiasm; laterally may invade cavernous sinus FLAIR, volumetric whole-brain Focal cortical dysplasia T2 hyperintense cortical lesions Seizure (posterior cortical) Blurring of gray-white matter junction Focal white matter abnormal signal Transmantle increased signal and abnormal gyral pattern Mesial temporal sclerosis, possibly others Primary brain tumors Both low- and high-grade gliomas usually have associated FLAIR abnormality, involving cortex and white matter Enhancement, diffusion restriction, elevated cerebral blood volume in higher grade lesions Metastases Location at gray-white matter junction Multiplicity Heterogeneous, depending on primary lesion, hemorrhage Enhancement, variable pattern Edema out of proportion to size of lesion -
Brainstem Exclusive of the Pyramids Themselves, Which Were Blood-Supplied Through the Intact Basilar Artery
NOTE ON CONVERGENCE OF PYRAMIDAL AND PRIMARY AFFERENT IMPULSES IN THE SPINAL CORD OF THE CAT BY DAVID P. C. LLOYD THE ROCKEFELLER UNIVERSITY Communicated December 20, 1967 The burden of this note is to present an example of observations long since made but not previously published. The immediate stimulus for presenting them now was provided by the paper by R. Porter' in which a combination of im- pulses of cortical and of lingual nerve origin was shown by convergence to facilitate the response of interneurons in or near the spinal trigeminal nucleus to a level of activity greater than that of the sum of responses elicited by lingual nerve stimu- lation and corticospinal stimulation, respectively, in isolation. Experiments of the sort now to be described concern the convergence upon interneurons in the lumbar spinal enlargement of pyramidal tract impulses and primary afferent im- pulses engendered by stimulation of the seventh lumbar dorsal root. To an ex- tent these experiments are confirmatory, with respect to another location in the neuraxis, of the observations of Porter,' but they demonstrate, in addition, how one pathway by occlusion may pre-empt the interneuron from service to the other pathway. In a prior paper2 convergence at the internuncial level was im- plied by virtue of pyramidal tract facilitatory influence upon disynaptic (three- neuron-arc) reflexes in the absence of any influence upon monosynaptic (two- neuron-arc) reflexes (ref. 2, Figs. 9 and 10). Preparation and procedure were discussed in the previous publication2 and need not be restated here, except to note that the pyramidal tract impulses were "pure" because the bulbar pyramid was stimulated rostral to a lesion that sev- ered the entire brainstem exclusive of the pyramids themselves, which were blood-supplied through the intact basilar artery. -
Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing
cells Review Dopamine Neuron Diversity: Recent Advances and Current Challenges in Human Stem Cell Models and Single Cell Sequencing Alessandro Fiorenzano * , Edoardo Sozzi, Malin Parmar and Petter Storm Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, and Lund Stem Cell Centre, Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden; [email protected] (E.S.); [email protected] (M.P.); [email protected] (P.S.) * Correspondence: alessandro.fi[email protected]; Tel.: +46-462220549 Abstract: Human midbrain dopamine (DA) neurons are a heterogeneous group of cells that share a common neurotransmitter phenotype and are in close anatomical proximity but display different functions, sensitivity to degeneration, and axonal innervation targets. The A9 DA neuron subtype controls motor function and is primarily degenerated in Parkinson’s disease (PD), whereas A10 neurons are largely unaffected by the condition, and their dysfunction is associated with neuropsy- chiatric disorders. Currently, DA neurons can only be reliably classified on the basis of topographical features, including anatomical location in the midbrain and projection targets in the forebrain. No systematic molecular classification at the genome-wide level has been proposed to date. Although many years of scientific efforts in embryonic and adult mouse brain have positioned us to better understand the complexity of DA neuron biology, many biological phenomena specific to humans are Citation: Fiorenzano, A.; Sozzi, E.; not amenable to being reproduced in animal models. The establishment of human cell-based systems Parmar, M.; Storm, P. Dopamine combined with advanced computational single-cell transcriptomics holds great promise for decoding Neuron Diversity: Recent Advances the mechanisms underlying maturation and diversification of human DA neurons, and linking their and Current Challenges in Human Stem Cell Models and Single Cell molecular heterogeneity to functions in the midbrain. -
Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: a Comparative in Situ Hybridization Analysis
The Journal of Neuroscience, March 1993. 73(3): 1258-1279 Gene Expression of Prohormone and Proprotein Convertases in the Rat CNS: A Comparative in situ Hybridization Analysis Martin K.-H. Schafer,i-a Robert Day,* William E. Cullinan,’ Michel Chri?tien,3 Nabil G. Seidah,* and Stanley J. Watson’ ‘Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109-0720 and J. A. DeSeve Laboratory of *Biochemical and 3Molecular Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada H2W lR7 Posttranslational processing of proproteins and prohor- The participation of neuropeptides in the modulation of a va- mones is an essential step in the formation of bioactive riety of CNS functions is well established. Many neuropeptides peptides, which is of particular importance in the nervous are synthesized as inactive precursor proteins, which undergo system. Following a long search for the enzymes responsible an enzymatic cascade of posttranslational processing and mod- for protein precursor cleavage, a family of Kexin/subtilisin- ification events during their intracellular transport before the like convertases known as PCl, PC2, and furin have recently final bioactive products are secreted and act at either pre- or been characterized in mammalian species. Their presence postsynaptic receptors. Initial endoproteolytic cleavage occurs in endocrine and neuroendocrine tissues has been dem- C-terminal to pairs of basic amino acids such as lysine-arginine onstrated. This study examines the mRNA distribution of (Docherty and Steiner, 1982) and is followed by the removal these convertases in the rat CNS and compares their ex- of the basic residues by exopeptidases. Further modifications pression with the previously characterized processing en- can occur in the form of N-terminal acetylation or C-terminal zymes carboxypeptidase E (CPE) and peptidylglycine a-am- amidation, which is essential for the bioactivity of many neu- idating monooxygenase (PAM) using in situ hybridization ropeptides. -
Efficacy And/Or Effectiveness of Portable Neuromodulation Stimulator (Pons®) As Treatment for Traumatic Brain Injury (TBI)”
Evidence-Based Practice Group Answers to Clinical Questions “Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI)” A Rapid Systematic Review By WorkSafeBC Evidence-Based Practice Group Dr. Craig Martin Manager, Clinical Services Chair, Evidence-Based Practice Group October 2019 Clinical Services – Worker and Employer Services Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI) i About this report Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI) Published: October 2019 About the Evidence-Based Practice Group The Evidence-Based Practice Group was established to address the many medical and policy issues that WorkSafeBC officers deal with on a regular basis. Members apply established techniques of critical appraisal and evidence-based review of topics solicited from both WorkSafeBC staff and other interested parties such as surgeons, medical specialists, and rehabilitation providers. Suggested Citation WorkSafeBC Evidence-Based Practice Group, Martin CW. Efficacy and/or Effectiveness of Portable Neuromodulation Stimulator (PoNS®) as Treatment for Traumatic Brain Injury (TBI). Richmond, BC: WorksafeBC Evidence- Based Practice Group; October 2019. Contact Information Evidence-Based Practice Group WorkSafeBC PO Box 5350 Stn Terminal Vancouver BC V6B 5L5 Email [email protected] Phone 604 279-7417 Toll-free 1 888 967-5377 -
An EM Study of the Dorsal Nucleus of the Lateral Lemniscus: Inhibitory, Commissural, Synaptic Connections Between Ascending Auditory Pathways
The Journal of Neuroscience, March 1989, g(3): 987-982 An EM Study of the Dorsal Nucleus of the Lateral Lemniscus: Inhibitory, Commissural, Synaptic Connections Between Ascending Auditory Pathways Douglas L. Oliver and Amiram Shneiderman Department of Anatomy, The University of Connecticut Health Center, Farmington, Connecticut 06032 The dorsal nucleus of the lateral lemniscus (DNLL) and its tions between the nuclei. Crossed inhibitory connections in connections constitute one of the ascending auditory path- the DNLL pathway may be important in regulating the flow ways to the inferior colliculus. One notable feature of this of ascending auditory information. nucleus is the heavy commissural connections between DNLL on opposite sides of the midbrain. These commissural con- The dorsal nucleus of the lateral lemniscus (DNLL) holds a nections may have a significant impact on the ascending unique position in the auditory system. Astride the fibers of the pathway. In this study, the fine structure of DNLL in the cat lateral lemniscus,DNLL receives most of the sameprojections and its commissural connections were examined. Both an- that ascendto the inferior colliculus (Glendenning et al., 1981; terograde and retrograde transport methods were used si- Shneiderman et al., 1988); and DNLL also projects bilaterally multaneously at the EM level. Injections of 3H-leucine mixed to the inferior colliculus. Thus, the combined inputs and outputs with WGA-HRP were made in one DNLL. After axonal trans- of DNLL form a multisynaptic pathway, parallel to the other port, EM autoradiographic methods were used to identify the ascending pathways to the inferior colliculus (Goldberg and anterogradely labeled axonal endings from the opposite Moore, 1967; van Noort, 1969; Roth et al., 1978; Adams, 1979; DNLL. -
Neuron Numbers Increase in the Human Amygdala from Birth to Adulthood, but Not in Autism
Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism Thomas A. Avinoa, Nicole Bargera, Martha V. Vargasa, Erin L. Carlsona, David G. Amarala,b,c, Melissa D. Baumana,b, and Cynthia M. Schumanna,1 aDepartment of Psychiatry and Behavioral Sciences, UC Davis MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA 95817; bCalifornia National Primate Research Center, University of California, Davis, CA 95616; and cCenter for Neuroscience, University of California, Davis, CA 95618 Edited by Joseph E. LeDoux, New York University, New York, NY, and approved March 1, 2018 (received for review February 12, 2018) Remarkably little is known about the postnatal cellular develop- process, however, may also make the amygdala more susceptible ment of the human amygdala. It plays a central role in mediating to developmental or environmental insults. emotional behavior and has an unusually protracted development ASD is characterized by impairments in social communication well into adulthood, increasing in size by 40% from youth to combined with restricted interests and behaviors. Alterations in adulthood. Variation from this typical neurodevelopmental trajec- amygdala growth can be detected as early as 2 y of age (23–26) tory could have profound implications on normal emotional devel- and persist into late childhood (5, 27). The severity of the indi- vidual’s social and communicative symptoms positively correlates opment. We report the results of a stereological analysis of the – number of neurons in amygdala nuclei of 52 human brains ranging with amygdala enlargement, suggesting a potential structure from 2 to 48 years of age [24 neurotypical and 28 autism spectrum function relationship (23). -
Spinal Cord Organization
Lecture 4 Spinal Cord Organization The spinal cord . Afferent tract • connects with spinal nerves, through afferent BRAIN neuron & efferent axons in spinal roots; reflex receptor interneuron • communicates with the brain, by means of cell ascending and descending pathways that body form tracts in spinal white matter; and white matter muscle • gives rise to spinal reflexes, pre-determined gray matter Efferent neuron by interneuronal circuits. Spinal Cord Section Gross anatomy of the spinal cord: The spinal cord is a cylinder of CNS. The spinal cord exhibits subtle cervical and lumbar (lumbosacral) enlargements produced by extra neurons in segments that innervate limbs. The region of spinal cord caudal to the lumbar enlargement is conus medullaris. Caudal to this, a terminal filament of (nonfunctional) glial tissue extends into the tail. terminal filament lumbar enlargement conus medullaris cervical enlargement A spinal cord segment = a portion of spinal cord that spinal ganglion gives rise to a pair (right & left) of spinal nerves. Each spinal dorsal nerve is attached to the spinal cord by means of dorsal and spinal ventral roots composed of rootlets. Spinal segments, spinal root (rootlets) nerve roots, and spinal nerves are all identified numerically by th region, e.g., 6 cervical (C6) spinal segment. ventral Sacral and caudal spinal roots (surrounding the conus root medullaris and terminal filament and streaming caudally to (rootlets) reach corresponding intervertebral foramina) collectively constitute the cauda equina. Both the spinal cord (CNS) and spinal roots (PNS) are enveloped by meninges within the vertebral canal. Spinal nerves (which are formed in intervertebral foramina) are covered by connective tissue (epineurium, perineurium, & endoneurium) rather than meninges. -
CT of Subinsular Infarction and Ischemia
221 CT of Subinsular Infarction and Ischemia Steven R. Cobb 1 A number of CT head scans, covering a 2-year period and showing a variety of distinct C. Mark Mehringer1 curvilinear subinsular lucent lesions, were collected and reviewed. Variations in extent Hideo H. Itabashi2 of involvement, tendency toward bilateral symmetry, and clinical background allowed Henry Pribram3 the lesions to be grouped into four general patterns, most of which, to our knowledge, have not been specifically described in the radiologic literature. This project was undertaken first to bring to the attention of those involved in interpretation of cranial CT images several patterns of injury they may not heretofore have been aware of and second to attempt to derive a specific etiology for each of the patterns described. Pattern 1, which appears as a distinct curvilinear lesion (sometimes cystic) apparently limited to the lateral aspect of the putamen, is thought to represent the residua of previous lateral striatal hemorrhage. Pattern 2, occurring in a markedly younger age group appears as relatively symmetrical bilateral subinsular lucencies, which in one case completely resolved. A specific etiology for this pattern remains uncertain. Acute demyelination, either secondary to a variant of anoxic leukoencephalopathy or to a limited form of diffuse encephalomyelitis, is postulated. A third pattern, which extends from generalized deep frontal white-matter lucency across the anterior limb of the internal capsule and tapering posteriorly in the subinsular area is thought to be on the basis of chronic ischemia similar to subcortical arteriosclerotic encephalopathy. The fourth pattern, occurring as a broad band of lucency extending from the frontal horn of the lateral ventricle and also tapering posteriorly is due to relatively proximal occlusion of the lateral lenticulostriate arteries. -
Auditory and Vestibular Systems Objective • to Learn the Functional
Auditory and Vestibular Systems Objective • To learn the functional organization of the auditory and vestibular systems • To understand how one can use changes in auditory function following injury to localize the site of a lesion • To begin to learn the vestibular pathways, as a prelude to studying motor pathways controlling balance in a later lab. Ch 7 Key Figs: 7-1; 7-2; 7-4; 7-5 Clinical Case #2 Hearing loss and dizziness; CC4-1 Self evaluation • Be able to identify all structures listed in key terms and describe briefly their principal functions • Use neuroanatomy on the web to test your understanding ************************************************************************************** List of media F-5 Vestibular efferent connections The first order neurons of the vestibular system are bipolar cells whose cell bodies are located in the vestibular ganglion in the internal ear (NTA Fig. 7-3). The distal processes of these cells contact the receptor hair cells located within the ampulae of the semicircular canals and the utricle and saccule. The central processes of the bipolar cells constitute the vestibular portion of the vestibulocochlear (VIIIth cranial) nerve. Most of these primary vestibular afferents enter the ipsilateral brain stem inferior to the inferior cerebellar peduncle to terminate in the vestibular nuclear complex, which is located in the medulla and caudal pons. The vestibular nuclear complex (NTA Figs, 7-2, 7-3), which lies in the floor of the fourth ventricle, contains four nuclei: 1) the superior vestibular nucleus; 2) the inferior vestibular nucleus; 3) the lateral vestibular nucleus; and 4) the medial vestibular nucleus. Vestibular nuclei give rise to secondary fibers that project to the cerebellum, certain motor cranial nerve nuclei, the reticular formation, all spinal levels, and the thalamus.