Metal Ion Catalysis of the Transamination Reaction. a Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Metal Ion Catalysis of the Transamination Reaction. a Thesis Metal Ion Catalysis of the Transamination Reaction. A thesis submitted to the University of London for the degree of Doctor of Philosophy, • by Trevor Matthews Chemistry Department, Bedford College, December 1$66. University of London, •» 1 ProQuest Number: 10098138 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10098138 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 ' , Abstract Part I of the thesis deals with the formation and transamination of Schiff's base complexes of copper, pyridoxal phosphate and glutamate, and the transamination of reaction mixtures containing copper, pyridoxamine phosphate and a-ketoglutaric acid. The formation of the complex of copper,, pyridoxal phosphate and glutamate was found to be first order in both pyridoxal phosphate and glutamate and zero order in copper. Spectrophotometric studies showed isosbestiv points when reaction mixtures were scanned over the range 20,000-35f000 cm*"^ indicating that only one step is involved. At high concentrations of copper (^l6 mî-l) the initial reaction rate became slig h tly dependent upon the copper concentration, and the i n i t i a l optical density of the reaction mixture departed from that of pyridoxal phosphate. These deviations are explained by the postulation of an intermediate carbinolamine complex. ' The complex formed from copper, pyridoxal phosphate and glutamate transaminated to give pyridoxamine phosphate and a-ketoglutaric acid, • The presence of metal ions appears to catalyse the transamination reaction, copper being the most active. If account was taken of the fact that in the absence of metal ions the Schiff’s base of pyridoxal phosphate and glutanate is largely hydrolysed, however, the rate of transamination was found to be less in the presence of metal ions than in their absence. The transamination 6f reaction mixtures containing copper, pyridoxamine phosphate and a-ketoglutaric acid took place without significant formation of the Schiff’s base complex, due to the unfavourable 2a •" equilibrium constant for the formation of the Schiff's base in this system. Transamination was found to be very much more rapid than in the case of the copper complexes of the Schiff's base of pyridoxal phosphate and glutamate. The transamination of pyridoxamine phosphate and a-ketoglutaric acid is first"order in a-ketoglutaric acid (tailing off at higher concentrations of ..aKG) and exhibits a rate maximum at a copper concentration of tifice that of pyridoxamine phosphate. This maximum is justified mathematically by assuming th a t the concentration of a complex of copper and the Schiff's base from pyridoxamine phosphate and a-ketoglutarate + is very low, and that the complex accepts a further Cu ion2 at high concentrations of copper. The transamination of pyridoxamine phosphate was found to be ■ preceded by what at first appeared to be an induction period, further study of which indicated that the very small change in absorbance was caused by a rate limiting dehydration of the carbinolamine of pyridoxamine phosphate and cL-ketoglutarate. Low concentrations of carbinolamine; Schiff's base complex ; S c h iff's base and carbinolamine complex account fo r the f i r s t order nature of the reaction. The non-zero values of these concentrations probably cause the deviation from first order. Part II of the thesis is concerned ifith the evaluation.of the stability constants of the simple and mixed complexes of pyridoxal phosphate, pyridoxamine phosphate, glutamate and u-ketoglutarate. The pK values of pyridoxal.phosphate, pyridoxamine phosphate and CL-ketoglutaric acid (necessary for stability constant determinations) — 2b — were found by means of a potentlornetric titration method. The stability constants of copper and nickel with pyridoxal phosphate; copper, nickel, cobalt and zinc with pyridoxamine phosphate phosphate; and copper, nickel, cobalt and zinc with a-ketoglutaric acid were"also determined by a similar method. The stability constants as normally defined are shown to be meaningless where the compleit can accept protons at. p[ligand anion] valües of 0,5 and 1.5 and results obtained by the usual procedures have been converted to more meaningful re s u lts when the pK values of the complex are knovm. A graphical method of determining the stability constants of the complexes of the Schiff's base of pyridoxal phosphate and glutamate has been developed. The method, relies on absorbance readings taken at one wavelength o&ly. A graph is plotted of Log(Stability Constant) against assumed values of the extinction coefficient of the complexThe intersection of these lines for several sets of experimental conditions gives the required value of the stability constant. The equilibrium constant for the formation of the Schiff' s base of pyridoxal phosphate and glutamate, required in the above, was found by the usual graphical method at several pH values. A potentiometric titration ipethod was used to evaluate the stability constants of complexes of the type where P and G. represent pyridoxal (or pyridoxamine) phosphate and glutamate (or a-ketoglutarate) respectively, and where p and g can take values up to 2. A computer was used to solve the complex equations which were derived to describe the systen. - 2c - A cknovrl ed g em ent s The author wishes to thank the Medical Research Council, for the award of the Research Assistantship which made this work possible. He would also like to thank his supervisor, Dr. M.E.Farago, for her invaluable help and criticism during the production of this thesis. - 3 - Contents p 5 Introduction, 24 Reaction between pyridoxal phosphate, Ra glutamate and M(U), 42 Transamination of the complexes of pyridoxal phosphate and glutamate, 60 Reaction between pyridoxamine phosphate, a-ketoglutaric acid and M (ll). 82 Further reaction of pyridoxamine phosphate and a-ketoglutaric acid, 90 Stability constants of the complexes of pyridoxal phosphate, pyridoxamine phosphate and a-ketoglutarate vrith several metals. 97 Relationship between concentration and activity of the hydrogen ion. 102 The pK values of pyridoxal phosphate, pyridoxamine phosphate and a-ketoglutaric acid. ; 107 Results of stability•constant determinations. 123 The stability constants of the metal-Schiff's base complexes. 141 The equilibrium constant for Schiff Is base formation. 145 The mixed stability constants of Schiff's bases with several metals. 179 General discussion 181 Appendix I - Preparation of Schiff's base complexes. 187 Appendix I I - A bbreviations. 189 Appendix I I I - Buffers used in present work. 191 Appendix IV - Reagents used in the present yjork 192 Appendix V *• Program used to determine the mixed s ta b ility constants. - 4 - Introduction Transamination is one of a large group of reactions of amino acids (I) which are catalysed by pyridoxal phosphate (II) containing enzymes*(l,2). H T H I I I R—C-C~C~CO.,H 0= P— 0—CH I I I 2 X H RKo (I) (II) These include’ ( i) Elimination and replacement of substituents on the a-carboh, as in ' (a) Transamination (b) Dissociation of the a-hydrogen (c) Racémisation of a-amino acids (d) Oxydative deamination (e) Decarboxylation of a-amino acids (f) a,p clevage of p-hydroxyamino acids (g) Condensation of glycine (or serine) ^ An enzyme is defined as a protein with catalytic propertities due to its powers of specific activation, - 5 - and ( i i ) Elimination and replacement of substituents* on (3 and j'-carbon atoms. These apparently unrelated reactions have been rationalised by Metzler*s mechanism (p 12). Most of these enzymatic reactions have been duplicated in non-enzymatic 'model' systems (3-13)» in which pyridoxal^(usually non-phosphorylated) or other appropriate aldehyde (4,8,1?) and a suitable metal salt (6) serve as catalyst. Snell (4) has suggested that the catalytic potentialities of pyridoxal phosphate containing enzymes are those of their prosthetic groups*, and that enzymatic and non-enzymatic reactions proceed by closely similar mechanisms. Transamination is defined as the interchange of the functional groups =00 of an u-amino and an a-keto acid, as in equation (i). R-CH-NHg ^ . R'-CO ^ R-ÇO + R'-CH-NH^ ' CO^H ' CO^H ' CO^H COgH Biological transamination has been shown to require the presence of pyridoxal (14) or pyridoxal phosphate (15,16) which are knoim to + For abbreviations of these terms see Appendix II ^ The reactive groups attached to the enzyme, e.g. pyridoxal phosphate in transaminases. form Schiff's bases vrith a variety of amino acids. (18-22), It seemed probable, therefore, that transamination involved the steps:- f°2 R—CH— ;=GH R—CH—H=CH P OCH, .OH -H.0 P OCH_ 2 -CH, (III) ( i i ) CO R—C=0 m^CH^ R' i=K —CH 2 ■ P OCH;s..^::Ss_^H ' -H^O P OCH .OH -CH, (IV) and by a sim ilar mechanism f z R'—C=0 KH^— CHg Ri__CH— o=QH P OCH OH P OCH: .OH ( i i i ) •CH, CH, ^ 5 ' H ■ H Addition of equations (ii) and (iii) gives (i), the position of the • ■ ' . •I' equilibrium being decided by the thermodynamics of the individual - 7 - steps. (The is not shorn in the above equations but is believed to be attached to the phosphate group and the ring nitrogen (2) ). Hon-en7,yr'.r’cic transamination of pyridoxal by an a-amino acid was first shovn.
Recommended publications
  • WO 2016/049398 Al 31 March 2016 (31.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/049398 Al 31 March 2016 (31.03.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 8/35 (2006.01) CUB 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 15/052094 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 25 September 2015 (25.09.201 5) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/055,844 26 September 2014 (26.09.2014) US (84) Designated States (unless otherwise indicated, for every 62/143,862 7 April 2015 (07.04.2015) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: THE PROCTER & GAMBLE COMPANY TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, [US/US]; One Procter & Gamble Plaza, Cincinnati, Ohio TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, 45202 (US).
    [Show full text]
  • Chemical Substances Exempt from Notification of Manufacturing/Import Amount
    Chemical Substances Exempt from Notification of Manufacturing/Import Amount A list under Chemical Substance Control Law (Japan) 2014-3-24 Official issuance: Joint Notice No.1 of MHLW, METI and MOE English source: Chemical Risk Information Platform (CHRIP) Edited by: https://ChemLinked.com ChemLinked Team, REACH24H Consulting Group| http://chemlinked.com 6 Floor, Building 2, Hesheng Trade Centre, No.327 Tianmu Mountain Road, Hangzhou, China. PC: 310023 Tel: +86 571 8700 7545 Fax: +86 571 8700 7566 Email: [email protected] 1 / 1 Specification: In Japan, all existing chemical substances and notified substances are given register numbers by Ministry of International Trade and Industry (MITI Number) as a chemical identifier. The Japanese Chemical Management Center continuously works on confirming the mapping relationships between MITI Numbers and CAS Registry Numbers. Please enter CHRIP to find if there are corresponding CAS Numbers by searching the substances’ names or MITI Numbers. The first digit of a MITI number is a category code. Those adopted in this List are as follows: 1: Inorganic compounds 2: Chained organic low-molecular-weight compounds 3: Mono-carbocyclic organic low-molecular-weight compounds 5: Heterocyclic organic low-molecular-weight compounds 6: Organic compounds of addition polymerization 7: Organic compounds of condensation polymerization 8: Organic compounds of modified starch, and processed fats and oils 9: Compounds of pharmaceutical active ingredients, etc. This document is provided by ChemLinked, a division of REACH24H Consulting Group. ChemLinked is a unique portal to must-know EHS issues in China, and essential regulatory database to keep all EHS & Regulatory Affairs managers well-equipped. You may subscribe and download this document from ChemLinked.com.
    [Show full text]
  • Lab 6. Who Cut the Cheese? Acid-Base Properties of Milk
    Lab 6. Who Cut the Cheese? Acid-Base Properties of Milk How do I make cheese? Should I drink milk if I have an upset stomach? Can I make milk from cheese? Objectives (i) apply equilibrium principles to acid-base and solubility reactions (ii) separate the protein from milk and make cheese (iii) determine the pI and buffer capacity of milk Introduction According to the milk industry, “Milk does a body good”. Milk is one of the more complete foods that are found in nature. Whole milk contains vitamins (mainly thiamine, riboflavin, pantothenic acid, and vitamins A, D, and K), minerals (calcium, potassium, sodium, phosphorus, and trace metals), proteins (which include all the essential amino acids), carbohydrates (mainly lactose), and lipids (fats). The only important elements that milk does not have are iron and Vitamin C. The fat in non-skim milk is dispersed in milk as very small (5-10 microns in diameter) globules. Since the fat is so finely dispersed, it is digested more easily than fat from any other source. Milk is homogenized by forcing it through a small hole. This breaks up the fat globules into smaller ones about 1- 2 microns in diameter. The fat in homogenized milk will not separate. There are three kinds of proteins in milk: caseins, lactalbumins, and lactoglobulins. Casein is the most abundant protein in milk and exists in milk as the calcium salt, calcium caseinate, which forms a micelle. Lactalbumins are the second most abundant protein in milk and are denatured and coagulated by heat. Lactose is the principal carbohydrate in milk and is the only carbohydrate that mammals synthesize.
    [Show full text]
  • Safety Assessment of Amino Acid Alkyl Amides As Used in Cosmetics
    PINK Safety Assessment of Amino Acid Alkyl Amides as Used in Cosmetics Status: Draft Tentative Report for Panel Review Release Date: August 16, 2013 Panel Meeting Date: September 9-10, 2013 The 2013 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, DPA. This report was prepared by Christina Burnett, Scientific Analyst/Writer, and Bart Heldreth, Ph.D., Chemist CIR. Cosmetic Ingredient Review 1101 17th Street, NW, Suite 412 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Christina L. Burnett Scientific Writer/Analyst Date: August 16, 2013 Subject: Draft Tentative Report on Amino Acid Alkyl Amides At the June 2013 CIR Expert Panel Meeting, the Panel issued an insufficient data announcement on the safety assessment of amino acid alkyl amides ingredients. The data needs included: (1) dermal irritation and sensitization data for lauroyl lysine at the highest use concentration reported (45%); and (2) dermal irritation and sensitization data for sodium lauroyl glutamate at the highest use concentration reported (40%). Since the announcement, we have received HRIPT data on sodium lauryl glutamate in products at concentrations of 22% and 30% (tested at 1% and 10% dilutions, respectively).
    [Show full text]
  • DISSERTATION SENSORY and FUNCTIONAL PROPERTIES of MONOSODIUM GLUTAMATE Submitted by Maria Elizabeth Giovanni Department of Food
    DISSERTATION SENSORY AND FUNCTIONAL PROPERTIES OF MONOSODIUM GLUTAMATE Submitted by Maria Elizabeth Giovanni Department of Food Science and Human Nutrition In partial fulfillment of the requirements For the degree of Doctor ofPhilosophy Colorado State University Fort Collins, Colorado Summer2002 1111111111111111 U18402 4973681 Qr S(Od- ,65 (;40; zoc)Z \"'".\~5 COLORADO STATE UNIVERSITY ~/1 November 2, 2001 WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR SUPERVISION BY MARIA ELIZABETH GIOVANNI ENTITLED SENSORY AND FUNCTIONAL PROPERTIES OF MONOSODIUM GLUTAMATE BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PIDLOSOPHY. Committee on Graduate Work A~ vr;~,fi2 ~/ Co-Advisor Department~ev&JC~) · ead COLORADO STAT~!JNIV. UBRAR:ES ABSTRACT OF DISSERTATION Sensory and Functional Properties of Flavor Potentiators Flavor potentiators have been used for centuries to improve food flavor. However, neither the taste transduction mechanisms nor the behavior of flavor potentiators in food are fully understood. The objectives of this research were: 1. To determine the relationship between salivary glutamate and perception ofMSG and NaCl; 2. To characterize the time-intensity profiles (TI) of flavor potentiators; and, 3. To determine the effects of heat treatment and pH on levels ofL-glutamic acid in simple food systems. The first study consisted of collecting whole mouth saliva and determining thresholds to and perceived intensities ofMSG and NaCl. A preliminary experiment indicated that perception ofMSG may be influenced by salivary glutamate, gender, and ethnicity. The principal study with 60 subjects found no effect of ethnicity or gender on salivary glutamate or sodium levels. Female Asians had higher salivary sodium and rated the lower concentrations ofNaCl as more intense.
    [Show full text]
  • United States Patent 0 Patented Oct
    ._ 3,278,572 United States Patent 0 Patented Oct. -11, 1966 1 2 alternatively, other known processes can be substituted to 3,278,572 further recover glutamic acid or sodium glutamate from IMPROVEMENT IN PRODUCING ZINC zinc glutamate. ' ' GLUTAMATE In order to form zinc glutamate particles of a size and John A. Frump, Terre Haute, Ind., assignor to Commer weight large enough to permit separation thereof from eta! Solvents Corporation, a corporation of Maryland No Drawing. Filed Sept. 5, 1963, Ser. No. 306,717 the fermentation medium including other insoluble mate 13 Claims. (Cl. 260-4299) rials. the zinc salt is added to the whole fermentation medium and the agitation is controlled in such a manner The present invention is a continuation-in-part applica as to avoid shearing of the zinc glutamate particles pro tion of application Serial Number 128,364, ?led August 10 duced. In adjusting the pH to precipitate zinc glutamate, 1, 1961, now abandoned, and entitled Recovery of Glu the pH adjustment is made rapidly to prevent the forma tamic Acid From Whole Beer. tion of ?nes. A residence time su?icient to permit the The present invention relates to the production of zinc glutamate particles to grow to their proper size is zinc glutamate, especially for the recovery of glutamic employed. acid or sodium glutamate; and more particularly the More speci?cally, a water-soluble zinc salt can be added present invention relates to the recovery of glutamic acid to the fermentation medium in the form of zinc chloride, produced by the fermentation of glutamic acid-producing zinc sulfate, zinc nitrate, etc., in amounts sufficient to organisms.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.260,817 B2 Williams Et Al
    US0092.60817B2 (12) United States Patent (10) Patent No.: US 9.260,817 B2 Williams et al. (45) Date of Patent: *Feb. 16, 2016 (54) FRESHENING COMPOSITIONS A61L 9/14: D06M 13/005; D06M 15/61; COMPRISING MALODOR BINDING D06M 13/192: D06M 13/203: D06M 13/127; POLYMERS AND MALODOR D06M 13/148: D06M 13/256: D06M 13/402; COUNTERACTANTS D06M 23/06: D06M23/02: D06M 16/00 (75) Inventors: Kristin Rhedrick Williams, West USPC ...................................... 424/400, 76.1, 76.21 Chester, OH (US); Carla Jean Colina, See application file for complete search history. Cincinnati, OH (US); Cahit Eylem, West Chester, OH (US); Lon Montgomery (56) References Cited Gray, Florence, KY (US); Shih-Chuan U.S. PATENT DOCUMENTS Liou, Cincinnati, OH (US); Christine Marie Readnour, Fort Mitchell, KY 5,578,563 A 11/1996 Trinh et al. (US); Ricky Ah-Man Woo, Hamilton, 6,001,342 A 12/1999 Forestier et al. OH (US) (Continued) (73) Assignee: The Procter & Gamble Company, FOREIGN PATENT DOCUMENTS Cincinnati, OH (US) JP WO 82O1993 6, 1982 (*) Notice: Subject to any disclaimer, the term of this JP O3146.064 6, 1991 patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 474 days. OTHER PUBLICATIONS This patent is Subject to a terminal dis “Methyl dihydrojasmonate’ CASEN 24851-98-7: http://www. claimer. chemicalbook.com/CASEN 24.851-98-7.htm. (21) Appl. No.: 12/562,534 (Continued) (22) Filed: Sep. 18, 2009 Primary Examiner — Sean Basquill (65) Prior Publication Data Assistant Examiner — Miriam A Levin (74) Attorney, Agent, or Firm — Abbey A.
    [Show full text]
  • Safety Assessment of Amino Acid Alkyl Amides As Used in Cosmetics
    Safety Assessment of Amino Acid Alkyl Amides as Used in Cosmetics Status: Scientific Literature Review for Public Comment Release Date: February 11, 2013 Panel Meeting Date: June 10-11, 2013 The 2013 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is F. Alan Andersen, Ph.D. This report was prepared by Christina Burnett, Scientific Analyst/Writer, and Bart Heldreth, Ph.D., Chemist CIR. Cosmetic Ingredient Review 1101 17th Street, NW, Suite 412 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Table of Contents Introduction ................................................................................................................................................................................. 1 Chemistry ..................................................................................................................................................................................... 1 Physical and Chemical Properties ........................................................................................................................................... 1 Method of Manufacturing ......................................................................................................................................................
    [Show full text]
  • Aqueous Solution Containing N-Long-Chain Acyl Acidic Amino Acid And/Or Salt Thereof, and Method for Producing Same
    (19) TZZ¥Z_T (11) EP 3 064 487 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 07.09.2016 Bulletin 2016/36 C07C 231/02 (2006.01) B01F 17/28 (2006.01) C07C 233/47 (2006.01) C07C 233/49 (2006.01) (2006.01) (2006.01) (21) Application number: 14857866.9 C11D 1/04 C11D 1/10 C11D 17/04 (2006.01) A61K 8/44 (2006.01) (2006.01) (2006.01) (22) Date of filing: 30.10.2014 A61Q 5/02 A61Q 19/10 (86) International application number: PCT/JP2014/078856 (87) International publication number: WO 2015/064678 (07.05.2015 Gazette 2015/18) (84) Designated Contracting States: • ISHII, Hiroji AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Kawasaki-shi GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Kanagawa 210-8681 (JP) PL PT RO RS SE SI SK SM TR • INO, Masahiro Designated Extension States: Kawasaki-shi BA ME Kanagawa 210-8681 (JP) (30) Priority: 31.10.2013 JP 2013226965 (74) Representative: Nicholls, Kathryn Margaret Mewburn Ellis LLP (71) Applicant: Ajinomoto Co., Inc. City Tower Tokyo 104-8315 (JP) 40 Basinghall Street London EC2V 5DE (GB) (72) Inventors: • HATTORI, Gaku Kawasaki-shi Kanagawa 210-8681 (JP) (54) AQUEOUS SOLUTION CONTAINING N-LONG-CHAIN ACYL ACIDIC AMINO ACID AND/OR SALT THEREOF, AND METHOD FOR PRODUCING SAME (57) The present invention provides a method of pro- in a water solvent at pH 10 - 13 to form an N-C8-22 acyl ducing an aqueous solution containing an N-C8-22 acyl acidic amino acid salt, and the second step for adjusting acidic amino acid and/or a salt thereof and having pH 8.4 the pH of the aqueous solution after the first step to 8.4 - 9.5, including the first step for reacting an acidic amino - 9.5.
    [Show full text]
  • United States Patent Office
    - 3,278,572 United States Patent Office Patented Oct. 11, 1966 2 alternatively, other known processes can be substituted to 3,278,572 further recover glutamic acid or sodium glutamate from IMPROVEMENT IN PRODUCING ZNC Zinc glutamate. GLUTAMATE In order to form zinc glutamate particles of a size and John A. Frump, Terre Haute, Ind., assignor to Commer Weight large enough to permit separation thereof from cial Solvents Corporation, a corporation of Maryland the fermentation medium including other insoluble mate No Drawing. Fided Sept. 5, 1963, Ser. No. 306,717 rials, the zinc salt is added to the whole fermentation 13 Claims. (CI. 260-429.9) medium and the agitation is controlled in such a manner The present invention is a continuation-in-part applica as to avoid shearing of the zinc glutamate particles pro tion of application Serial Number 128,364, filed August 0. duced. In adjusting the pH to precipitate zinc glutamate, 1, 1961, now abandoned, and entitled Recovery of Glu the pH adjustment is made rapidly to prevent the forma tamic Acid From Whole Beer. tion of fines. A residence time sufficient to permit the The present invention relates to the production of Zinc glutamate particles to grow to their proper size is zinc glutamate, especially for the recovery of glutamic employed. acid or sodium glutamate; and more particularly the More specifically, a water-soluble zinc salt can be added present invention relates to the recovery of glutamic acid to the fermentation medium in the form of zinc chloride, produced by the fermentation of glutamic acid-producing Zinc sulfate, zinc nitrate, etc., in amounts sufficient to organism.S.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.487,474 B2 Abou-Khalil Et Al
    USOO948.7474B2 (12) United States Patent (10) Patent No.: US 9.487,474 B2 Abou-Khalil et al. (45) Date of Patent: Nov. 8, 2016 (54) IMINO COMPOUNDS AS PROTECTING 24I/38 (2013.01); C07D 241/44 (2013.01); AGENTS AGAINSTULTRAVIOLET C07D 265/36 (2013.01); C07D 279/16 RADATIONS (2013.01); C07D 309/32 (2013.01); C07D (71) Applicant: Elkimia, Inc., Rosemere (CA) 471/04 (2013.01); C07D 491/052 (2013.01); C07D 498/04 (2013.01); C07D 513/04 (72) Inventors: Elie Abou-Khalil, Rosemere (CA); (2013.01); C08K 3/22 (2013.01); C08K 3/34 Stephane Raeppel, Saint-Lazare (CA); (2013.01); C08K 3/346 (2013.01); C08K 5/01 Franck Raeppel, Montreal (CA) (2013.01); C08K 5/06 (2013.01); C08K 5/175 (73) Assignee: Elkimia, Inc., Rosemere, Quebec (CA) (2013.01); C08K 5/3432 (2013.01); C08K (*) Notice: Subject to any disclaimer, the term of this 5/5419 (2013.01); C09D 101/00 (2013.01); patent is extended or adjusted under 35 C09D 103/00 (2013.01); C09D 105/00 U.S.C. 154(b) by 0 days. (2013.01); C09D 177/00 (2013.01); C09D (21) Appl. No.: 14/405,757 "'E, S.K.), (22) PCT Filed: May 31, 2013 (20301). Coof 7700 (303.01). Coof 191/06 (2013.01); C07C 2101/14 (2013.01); (86). PCT No.: PCT/CA2O13/OOO536 C07C 2101/16 (2013.01); C08K 2003/2296 S 371 (c)(1), (2013.01) (2) Date: Dec. 4, 2014 (58) Field of Classification Search CPC ........................... C07D 279/16; C07D 241/38 (87) PCT Pub.
    [Show full text]
  • Set-A FT Inspage.P65
    AAA Booklet No. : SET FT - 16 Food Technology Duration of Test : 2 Hours Max. Marks : 120 Hall Ticket No. Name of the Candidate : Date of Examination : OMR Answer Sheet No. : Signature of the Candidate Signature of the Invigilator INSTRUCTIONS 1. This Question Booklet consists of 120 multiple choice objective type questions to be answered in 120 minutes. 2. Every question in this booklet has 4 choices marked (A), (B), (C) and (D) for its answer. 3. Each question carries one mark. There are no negative marks for wrong answers. 4. This Booklet consists of 16 pages. Any discrepancy or any defect is found, the same may be informed to the Invigilator for replacement of Booklet. 5. Answer all the questions on the OMR Answer Sheet using Blue/Black ball point pen only. 6. Before answering the questions on the OMR Answer Sheet, please read the instructions printed on the OMR sheet carefully. 7. OMR Answer Sheet should be handed over to the Invigilator before leaving the Examination Hall. 8. Calculators, Pagers, Mobile Phones, etc., are not allowed into the Examination Hall. 9. No part of the Booklet should be detached under any circumstances. 10. The seal of the Booklet should be opened only after signal/bell is given. FT-16-A FOOD TECHNOLOGY (FT) 1. The pigment type in brinjal is (A) Carotenoid (B) Anthocyanin (C) Caramel (D) Chlorophyll 2. Phytol chain is present in (A) Carotenoids (B) Chlorophyll (C) Hemoglobin (D) Phycocyanin 3. Which amino acid has an aromatic phenolic side chain ? (A) Histidine (B) Cysteine (C) Tyrosine (D) Tryptophan 4.
    [Show full text]