Memory of Activities the Last Ten Years (2003-2012)

Total Page:16

File Type:pdf, Size:1020Kb

Memory of Activities the Last Ten Years (2003-2012) The Ramon Maria Aller Astronomical Observatory The University of Santiago de Compostela Memory of Activities The last ten years (2003-2012) Functions and procedures Research Teaching Scientific Diffusion Meteorology 2 PRESENTATION The Ramon Maria Aller Astronomical Observatory (OARMA) is a unique Center within the University System of Galicia (SUG) not only because there are no other centers in our Community but also because the activities developed include high level scientific research and academic teaching as well as a wide range of diffusion activities. In addition, there is a meteorological center that, as the result of an agreement with the State Agency of Meteorology, has an ample collection of daily data and, without a doubt, possesses the most precise pluviometric records of the capital of Galicia to this day. The numerous activities carried out during the past decade by a small group of university professors, contracted researchers, and collaborators are presented in this Memory. The international prestige achieved in research is indicated by the 64 papers published in SCI journals during this period of time as well as the number of international conferences organized, the international agreements signed with foreign Observatories, the direction of doctoral dissertations, the management of the Catalog of Double Star Orbits, the edition of the Information Circular of Commission 26 of the International Astronomical Union (IAU), and that Galicia was the headquarters of the President of Commission 26 of the IAU for the first time, etc. All of the above is in perfect harmony with the high performance produced by using the magnificent teaching resources of the Center that were obtained with great effort via public calls as is the case of the RC 0.62 m. aperture telescope that is one of the largest in the Spanish university environment as well as the ICCD and the EMCCD speckle interferometry cameras that are unique in Spain. Various university departments have been incorporating the teaching of Astronomy during recent years and those students carry out their practice sessions in the Observatory with a high degree of quality. However, we must also remember the tremendous effort dedicated to diffusion with activities in the City of Culture of Galicia, in the Public Library Ánxel Casal, in multiple school centers all around Galicia via the Itinerant Astronomy program as well as an endless number of initiatives in the Observatory itself. The Observatory activities include: Science Week, the International Year of Astronomy, Astronomy for adults, collaboration programs with the Regional Government of Galicia (the Xunta of Galicia), the Cultural Extension Programs of Astronomy that are now in the 16th edition, the renovation of the emblematic Lalín Observatory, the edition of tri-lingual books, didactic videos, and many more activities that can be found in this publication. In today´s environment in which everything seems to be getting worse, we find that productivity and excellence are constants in the work carried out in Centers such as OARMA of the USC, even in times of scarcity and precariousness. For that reason, in order to maintain today´s level, the administrations must become involved in order to guarantee the existence of multifunction institutions such as ours that have a clear spirit of service to the society to which we are indebted. It is probable that we will successfully come out of the generalized pessimism only by supporting and energizing activities that work. At least, that is the thinking of those of us who work in this institution that was founded with great sacrifice by Father Aller more than 70 years ago. 3 TABLE OF CONTENTS 1. Current Personnel 5 2. Completed research projects 6 3. Acquired research infrastructures 8 4. International conferences organized 12 5. Scientific publications in SCI journals 14 6. Astrometric detection of an exoplanet 19 7. Astronomical observation campaigns 19 8. International agreements 20 9. Visiting researchers 20 10. National conferences organized 22 11. Invited conferences 25 12. Other public support received 26 13. Doctoral dissertations directed 27 14. Advanced Study Diploma projects directed 28 15. Master theses directed 29 16. Conference contributions 30 17. Teaching 37 18. International scientific positions 42 19. Double Star Catalog 42 20. Publication-IAU Com 26: Information Circular 42 21. Other publications 42 21. Agreements with administrations and businesses 49 22. Scientific diffusion programs 51 23. Other diffusion activities 61 24. Collaboration with the Xunta de Galicia regarding teacher training programs 69 25. Books published 69 26. Bolide research 71 27. Scientific instrumentation 72 28. Library 73 29. Meteorological observations 74 30. Media diffusion 75 31. Maintenance and acquisitions - OARMA 76 4 1) CURRENT PERSONNEL. Basic functions José Ángel Docobo Durántez. Director. Full Professor (Senior Lecturer), Astronomy and Astrophysics. Mission: Scientific and administrative management of the Center. Organization of research, teaching, and diffusion activities. Management of funds for staff, instrumentation, and bibliographic support. Responsible for excellence in all of the activities and initiatives of the Center as well as its public projection. Coordination with Departments by means of practical teaching in the Observatory installations. Relations with the Spanish Agency of Meteorology (AEMET). Pedro Pablo Campo Díaz. Master´s degree in Mathematics. Contracted Astronomer and doctoral student. Mission: Responsible for multiple tasks in the day-to-day work of the Observatory including Webmaster, management support, computation and instrumentation expert, supervision of guided tours for groups, assistance during night observations, and preparation of teaching materials. José Tadeo Barcala González. Research technician specialist (USC personnel). Mission: Supervision of scientific instrumentation and Observatory dependencies. Correspondence. Other support activities. Meteorology. Web Page: http://www.usc.es/astro Research Group GI-1565. Acronym: OARMA (Ramon Maria Aller Astronomical Observatory). Dr. José Ángel Docobo Durántez. Coordinator. USC Full Professor (Senior Lecturer) of Astronomy and Astrophysics.* Dr. Josefina F. Ling Ling. Associate Proffesor (Lecturer) of Astronomy and Astrophysics.* * Members of the Department of Applied Mathematics 5 Dr. Vakhtang Tamazian Arzakanian. Associate Proffesor (Lecturer) of Astronomy and Astrophysics.* Dr. Manuel Andrade Baliño. Assistant Professor (Reader) of Astronomy and Astrophysics (Lugo campus).* Dr. Ivan Ferández Pérez. Collaborator. Mr. Pedro Pablo Campo Díaz. Contracted astronomer and doctoral student. 2) COMPLETED RESEARCH PROJECTS. Project title: Multiple star systems with late-type variable components: interferometry, photometry, and spectroscopy (AYA 2001-2003) Financing entity: Ministry of Science and Technology Participating entity: University of Santiago de Compostela Duration: 2001 until 2004 Subsidy total: 36,000 € Principal Researcher: J. A. Docobo Participating researchers: J. A. Docobo, J. F. Ling, V. S. Tamazian, M. Andrade, N. D. Melikyan, Y. Balega, C. Prieto, V. Lanchares Project title: Multiple star systems with variable late-type: interferometry, photometry, and spectroscopy (PGIDIT02 PXIC24301PN) Financing entity: Regional Government of Galicia (Xunta de Galicia) Participating entity: University of Santiago de Compostela Duration: 2001 until 2004 Subsidy total: 13,112 € Principal researcher: J. A. Docobo Participating researchers: J. A. Docobo, J. F. Ling, V. S. Tamazian, M. Andrade, N. D. Melikyan, Y. Balega, C. Prieto, V. Lanchares Project title: An astrometric, photometric, and spectroscopic study of multiple star systems with late-type variable components (AYA2004-07003) Financing entity: Ministry of Science and Technology Participating entity: University of Santiago de Compostela Duration: 2004 until 2007 Subsidy total: 90,000 € Principal researcher: J. A. Docobo Participating researchers: J. A. Docobo, J. F. Ling, V. S. Tamazian, M. Andrade, N. D. Melikyan, Y. Balega, J. F. Lahulla, P. P. Campo 6 Project title: Speckle interferometry, spectroscopy, and photometry of late-type double and multiple stars (PGIDIT06 PXIB243031PR) Financing entity: Regional Government of Galicia (Xunta de Galicia) Participating entity: University of Santiago de Compostela Duration: Dec. 13, 2006 until Dec. 12, 2009 Subsidy total: 80,000 € Principal researcher: J. A. Docobo Participating researchers: J. A. Docobo, J. F. Ling, V. S. Tamazian, M. Andrade, N. D. Melikyan, Y. Balega, J. F. Lahulla, P. P. Campo Project title: Speckle interferometry, differential photometry, spectroscopy, and fundamental astrophysical parameters of double and multiple stars (AYA2007- 67324) Financing entity: Ministry of Education and Culture Participating entity: University of Santiago de Compostela Duration: Oct. 1, 2007 until August 30, 2010 Subsidy total: 100,430 € Principal researcher: J. A. Docobo Participating researchers: J. A. Docobo, J. F. Ling, V. S. Tamazian, M. Andrade, N. D. Melikyan, Y. Balega, J. F. Lahulla, P. P. Campo Project title: XII Meeeting: Celestial Mechanics (AYA2009-06022-E) Financing entity: Ministry of Science and Innovation Participating entity: University of Santiago de Compostela Duration: July 1, 2009 until July 31, 2010 Subsidy total: 7,967.67 € Principal researcher: J. A. Docobo Participating researchers: J. A. Docobo, J. F. Ling, V. S. Tamazian, M. Andrade, P. P. Campo Project title:
Recommended publications
  • Stellar Activity Mimics Planetary Signal in the Habitable Zone of Gliese 832
    UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS MAGÍSTER EN CIENCIAS CON MENCIÓN EN FÍSICA Gliese 832c: ¿Actividad Estelar o Exoplaneta? Gliese 832c: Stellar Activity or Exoplanet? Profesores: Dr. Nicola Astudillo Defru Dr. Ronald Mennickent Cid Dr. Sandro Villanova Tesis para ser presentada a la Dirección de Postgrado de la Universidad de Concepción PAULA GORRINI HUAIQUIMILLA CONCEPCION - CHILE 2020 “... we cannot accept anything as granted, beyond the first mathematical formulae. Question everything else. ” Maria Mitchell iii UNIVERSIDAD DE CONCEPCIÓN Abstract Facultad de Ciencias Físicas y Matemáticas Departmento de Astronomía MSc. Stellar activity mimics planetary signal in the habitable zone of Gliese 832 by Paula GORRINI Exoplanets are planets located outside our Solar System. The search of these objects have grown during the years due to the scientific interest and to the advances on astronomical instrumentation. There are many methods used to detect exoplanets, where one of the most efficient is the radial velocity (RV) method. But this technique accounts false positives as stellar activity can produce RV variation with an ampli- tude of the same order of the one induced by a planetary companion. In this thesis, we study Gliese 832, an M dwarf located 4.96 pc away from us. Two planets orbiting this star were found independently by the RV method: a gas-giant planet in a wide orbit, and a super Earth or mini-Neptune located within the stellar habitable zone. However, the orbital period of this latter planet is close to the stellar rotation period, casting doubts on the planetary origin of this RV signal.
    [Show full text]
  • Orbital Elements of Double Stars: ADS 4376, 12540 and 14783 Marco Scardia, Jean-Louis Prieur, Luigi Pansecchi, Robert Argyle
    Orbital elements of double stars: ADS 4376, 12540 and 14783 Marco Scardia, Jean-Louis Prieur, Luigi Pansecchi, Robert Argyle To cite this version: Marco Scardia, Jean-Louis Prieur, Luigi Pansecchi, Robert Argyle. Orbital elements of double stars: ADS 4376, 12540 and 14783. Information circular - IAU Commission 26. Double stars, IAU, 2007, 162, pp.1. hal-00340023 HAL Id: hal-00340023 https://hal.archives-ouvertes.fr/hal-00340023 Submitted on 23 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INTERNATIONAL ASTRONOMICAL UNION COMMISSION 26 (DOUBLE STARS) INFORMATION CIRCULAR No. 162 (JUNE 2007) NEW ORBITS ADS Name P T e ­(2000) 2007 Author(s) ®2000± n a i ! Last ob. 2008 195 J 868 1089y17 1725.11 0.367 68±9 228±1 500780 NOVAKOVIC 00152+2722 0.3305 800477 75±2 352±8 2006.9575 228.3 5.817 287 BU 1093 471. 1844.26 0.517 132.3 117.2 0.747 LING 00209+1059 0.7643 0.545 42.4 181.6 2005.029 117.4 0.750 822 A 1903 128.43 1956.53 0.154 137.3 13.4 0.351 DOCOBO 00596-0111 2.8031 0.359 34.7 90.1 1999.8175 15.8 0.350 & LING - HDS 211 22.74 1996.99 0.462 68.8 236.6 0.289 DOCOBO 01345+7804 15.8311 0.207 127.7 28.5 2006.9412 232.1 0.283 et al.
    [Show full text]
  • Extrasolar Planets and Their Host Stars
    Kaspar von Braun & Tabetha S. Boyajian Extrasolar Planets and Their Host Stars July 25, 2017 arXiv:1707.07405v1 [astro-ph.EP] 24 Jul 2017 Springer Preface In astronomy or indeed any collaborative environment, it pays to figure out with whom one can work well. From existing projects or simply conversations, research ideas appear, are developed, take shape, sometimes take a detour into some un- expected directions, often need to be refocused, are sometimes divided up and/or distributed among collaborators, and are (hopefully) published. After a number of these cycles repeat, something bigger may be born, all of which one then tries to simultaneously fit into one’s head for what feels like a challenging amount of time. That was certainly the case a long time ago when writing a PhD dissertation. Since then, there have been postdoctoral fellowships and appointments, permanent and adjunct positions, and former, current, and future collaborators. And yet, con- versations spawn research ideas, which take many different turns and may divide up into a multitude of approaches or related or perhaps unrelated subjects. Again, one had better figure out with whom one likes to work. And again, in the process of writing this Brief, one needs create something bigger by focusing the relevant pieces of work into one (hopefully) coherent manuscript. It is an honor, a privi- lege, an amazing experience, and simply a lot of fun to be and have been working with all the people who have had an influence on our work and thereby on this book. To quote the late and great Jim Croce: ”If you dig it, do it.
    [Show full text]
  • Prusaprinters
    Exoplanets scaled one in 120 million 3D MODEL ONLY tato_713 VIEW IN BROWSER updated 5. 3. 2021 | published 5. 3. 2021 Summary Some of the most notable Earth-sized exoplanets scaled (smaller than 2.5 Earth diameter). Learning > Physics & Astronomy trappist1h trappist1g trappist1f trappist1e trappist1d trappist1c trappist1b trappist1 trappist terrestrialplanet space scalemodel scaledmodel scale proximacentauri planets planetas planeta planet oceanworld kepler62b kepler62 kepler22b kepler22 kepler11b icegigant extraterrestrial corot7 chthonianplanet chthonian astronomy astronomia Originally published here: Exoplanets scaled one in 120 million by tato_713 - Thingiverse The concept of this post is to compare the size in the same scale of various Earth sized exoplanets with the Earth itself or other astronomical bodies like Neptune. Although there are thousands exoplanets confirmed, I made only some of the most notorious ones with known diameter, and nearly Earth sized (up to 2.5 its diameter). The models are just spheres scaled one in 120 million, to compare with terrestrial planets; one in 250 million; and one in 500 million for the biggest ones. The file's names explained: name_1_x_10_y.stl is 1 : x* 10^y. So _1_6_10_7 is 1:600000000 or one in 60 million. Proxima Centauri b Proxima b is the closest exoplanet known to the Solar System, the closest within the habitable zone of its star, the only known planet in the nearest star, Proxima Centauri, and the only one confirmed in the Alpha Centauri system. As is it said, the host star for the planet is part of the Alpha Centauri system, orbiting the two main stars Alpha Centauri A (Rigil Kentaurus) and B (Toliman).
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • Frédéric Arenou, Daniel Hestroffer Pas De Deux
    Frédéric Arenou, Daniel Hestroffer Pas de Deux Motivation Sessions Common problems between Presentation by subject SSO/ESP/NSS Photometry Stellar binaries, exoplanets, Spectroscopy binary asteroids need orbits Various methods & techniques Gaia perspective Orbits: hundreds? (SSO), Thanks thousands (ESP) or millions (NSS) Gaia Research for European Astronomy Training (GREAT) Action Spécifique Gaia (INSU/ Meeting Challenge CNRS) Different communities! Observatoire de Paris October 10, 2011 Before the Pas de Deux 2 A short presentation Gaia Summary! • ESA mission building on the Hipparcos heritage! • Astrometry, Photometry and Spectroscopy! • Launch June 2013! • Satellite including the payload by industry (Astrium, Toulouse) data processing by scientists (DPAC)! • Science Alerts early on! www.rssd.esa.int/Gaia! • First intermediate release in about two years into routine operations! Courtesy from T. Prusti, Gaia PS! Science Topics! • Structure and dynamics of the Galaxy! • The star formation history of the Galaxy! • Stellar astrophysics! • Binaries and multiple stars! • Brown dwarfs and planetary systems! • Solar system! • Galaxies, Quasars and the Reference Frame! • Fundamental physics: General relativity! Courtesy from T. Prusti, Gaia PS! Payload and Telescope Figure courtesy Alex Short Focal Plane 104.26cm Blue Photometer Blue Photometer Red Photometer Photometer Red Wave Front Sensor Wave Front Sensor 42.35cm CCDs CCDs Radial-Velocity Spectrometer CCDs Basic Angle Monitor Basic Angle Monitor Star motion in 10 s Sky Mapper
    [Show full text]
  • Open Gettel Thesis Final.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science A SEARCH FOR PLANETS AROUND RED STARS A Dissertation in Astronomy and Astrophysics by Sara Gettel c 2012 Sara Gettel ! Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2012 1 The dissertation of Sara Gettel was reviewed and approved by the following: Alex Wolszczan Evan Pugh Professor of Astronomy and Astrophysics Dissertation Adviser Chair of Committee Lawrence W. Ramsey Distinguished Senior Scholar & Professor of Astronomy and Astrophysics John D. Mathews Professor of Electrical Engineering Mercedes Richards Professor of Astronomy and Astrophysics Kevin Luhman Associate Professor of Astronomy and Astrophysics Jason T. Wright Assistant Professor of Astronomy and Astrophysics Donald P. Schneider Professor of Astronomy and Astrophysics Head of the Department of Astronomy and Astrophysics 1 Signatures on file in the Graduate School. iii Abstract Our knowledge of planets around other stars has expanded drastically in recent years, from a handful Jupiter-mass planets orbiting Sun-like stars, to encompass a wide range of planet masses and stellar host types. In this thesis, I review the development of radial velocity planet searches and present results from projects focusing on the detection of planets around two classes of red stars. The first project is part of the Penn State - Toru´nPlanet Search (PTPS) for substellar companions to K giant stars using the Hobby-Eberly Telescope (HET). The results of this work include the discovery of planetary systems around five evolved stars. These systems illustrate several of the differences between planet detection around giants and Solar-type stars, including increased masses and a lack of short period planets.
    [Show full text]
  • A Survey of Stellar Families: Multiplicity of Solar-Type Stars
    to appear in the Astrophysical Journal A Survey of Stellar Families: Multiplicity of Solar-Type Stars Deepak Raghavan1,2, Harold A. McAlister1, Todd J. Henry1, David W. Latham3, Geoffrey W. Marcy4, Brian D. Mason5, Douglas R. Gies1, Russel J. White1, Theo A. ten Brummelaar6 ABSTRACT We present the results of a comprehensive assessment of companions to solar- type stars. A sample of 454 stars, including the Sun, was selected from the Hipparcos catalog with π > 40 mas, σπ/π < 0.05, 0.5 ≤ B − V ≤ 1.0 (∼ F6– K3), and constrained by absolute magnitude and color to exclude evolved stars. These criteria are equivalent to selecting all dwarf and subdwarf stars within 25 pc with V -band flux between 0.1 and 10 times that of the Sun, giving us a physical basis for the term “solar-type”. New observational aspects of this work include surveys for (1) very close companions with long-baseline interferometry at the Center for High Angular Resolution Astronomy (CHARA) Array, (2) close companions with speckle interferometry, and (3) wide proper motion companions identified by blinking multi-epoch archival images. In addition, we include the re- sults from extensive radial-velocity monitoring programs and evaluate companion information from various catalogs covering many different techniques. The results presented here include four new common proper motion companions discovered by blinking archival images. Additionally, the spectroscopic data searched reveal five new stellar companions. Our synthesis of results from many methods and sources results in a thorough evaluation of stellar and brown dwarf companions to nearby Sun-like stars. 1Center for High Angular Resolution Astronomy, Georgia State University, P.O.
    [Show full text]
  • On the Dynamical Stability of the Very Low-Mass Object Gliese 22 Bb ⇑ Manuel Andrade A,B, , José A
    Icarus 215 (2011) 712–720 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus On the dynamical stability of the very low-mass object Gliese 22 Bb ⇑ Manuel Andrade a,b, , José A. Docobo a,c a Astronomical Observatory R. M. Aller, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galiza, Spain b Departamento de Matemática Aplicada, Escola Politécnica Superior, 27002 Lugo, Galiza, Spain c Departamento de Matemática Aplicada, Facultade de Matemáticas, 15782 Santiago de Compostela, Galiza, Spain article info abstract Article history: Gliese 22 is a hierarchical triple red dwarf system formed by two close components, Aa and Ab, and a dis- Received 1 December 2010 tant component, B, which is moving around the center of mass of the first two. Revised 11 July 2011 The possible existence of a fourth very low-mass object (15 Jupiter mass) orbiting around component B Accepted 12 July 2011 was reported by Docobo et al. (Docobo, J.A. et al. [2007]. IAU Commun. 26, 3–4). In this probable scenario Available online 23 July 2011 with four bodies, component B would be in reality two: star Ba and the new object, Bb. Two full three-dimensional accurate (circular and elliptical) solutions for the orbit of Bb have been Keywords: obtained, along with an improved arrangement of the system masses. In addition, such a multiple system Extrasolar planets is analyzed by means of a (2 + 2)-body model considering its evolution during 10 Myr. In particular, we Orbit determination Planetary dynamics have studied its apsidal motion in order to eventually find any evidence of chaotic behavior.
    [Show full text]
  • Heidelberg-Königstuhl
    Jahresbericht 2003 Mitteilungen der Astronomischen Gesellschaft 87 (2004), 453–494 Heidelberg-Königstuhl Max-Planck-Institut für Astronomie Königstuhl 17, D-69117 Heidelberg Tel.: ++49/(0)6221 528-0, Fax: 06221 528-246 E-Mail: [email protected], Internbet: http://www.mpia.de Außenstelle: Deutsch-Spanisches Astronomisches Zentrum, Calar Alto/Almeria Apartado Correos 511, Almeria/Spanien Tel.: ++34/950-230988, ++34/950-632500, Fax: 0034/950-632504 E-Mail: »name«@caha.es Außenstelle: Arbeitsgruppe „Labor-Astrophysik“ Institut für Festkörperphysik der Friedrich-Schiller-Universität Jena Helmholtzweg 3, D-07743 Jena Tel.: ++49/(0)3641 947354, Fax: ++49/(0)3641 947308 E-Mail: [email protected] 0 Allgemeines Das Max-Planck-Institut für Astronomie (MPIA) besteht aus den beiden wissenschaftli- chen Abteilungen „Stern- und Planetenentstehung“ (Direktor: Th. Henning) und „Galaxien und Kosmologie“ (Direktor: H.-W. Rix). Das Institut wurde im Jahr 1969 gegründet. Es betreibt in Spanien in der Nähe von Almeria das Calar-Alto-Observatorium und ist das Leitinstitut für die deutsche Beteiligung am Large Binocular Telescope (LBT), das sich auf dem Mt. Graham in der Nähe von Tucson, Arizona, im Aufbau befindet. Am Insti- tut existiert eine leistungsfähige Gruppe für IR-Weltraumastronomie, die das ISOPHOT- Datenarchiv betreibt, sich am Bau des PACS-Instruments und am Aufbau des PACS- Instrumentkontrollzentrums für das ESA-Observatorium HERSCHEL beteiligt und we- sentliche Beiträge zu den Kryomechanismen für die Instrumente NIRSPEC und MIRI auf dem James Webb Space Telescope liefert. Das Institut koordiniert innerhalb des deutschen Interferometriezentrums FrInGe (Fron- tiers of Interferometry in Germany) die deutschen Aktivitäten auf dem Gebiet der op- tischen und IR-Interferometrie.
    [Show full text]
  • Download Full-Text
    International Journal of Astronomy 2020, 9(1): 3-11 DOI: 10.5923/j.astronomy.20200901.02 The Processes that Determine the Formation and Chemical Composition of the Atmosphere of the Body in Orbit Weitter Duckss Independent Researcher, Zadar, Croatia Abstract The goal of this article is to analyze the formation of an atmosphere on the orbiting planets and to determine the processes that participate in the formation of an atmospheric chemical composition, as well as in determining it. The research primarily analyzes the formation of atmospheres on the objects of different sizes (masses) and at the same or different orbital distances. This paper analyzes the influence of a star's temperature, the space and the orbit's distance to an object's temperature level, as well as the influence of the operating temperature of atoms and chemical compounds to chemical composition and the representation of elements and compounds in an atmosphere. The objects, which possess different masses and temperatures, are able to create and do create different compositions and sizes of atmospheres in the same or different distances from their main objects (Saturn/Titan or Pluto). The processes that are included in the formation of an atmosphere are the following: operating temperatures of compounds and atoms, migrations of hydrogen, helium and the other elements and compounds towards a superior mass. The lack of oxygen and hydrogen is additionally related to the level of temperature of space, which can be classified into internal (characterized by the lack of hydrogen) and the others (characterized by the lack of oxygen). Keywords Atmosphere, Chemical composition of the atmosphere, Migration of the atmosphere the atmosphere even though they are not in a gaseous state at 1.
    [Show full text]
  • Stellar Parameters and Metallicities of Stars Hosting Jovian and Neptunian Mass Planets: a Possible Dependence of Planetary Mass on Metallicity∗
    The Astrophysical Journal, 720:1290–1302, 2010 September 10 doi:10.1088/0004-637X/720/2/1290 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. STELLAR PARAMETERS AND METALLICITIES OF STARS HOSTING JOVIAN AND NEPTUNIAN MASS PLANETS: A POSSIBLE DEPENDENCE OF PLANETARY MASS ON METALLICITY∗ L. Ghezzi1, K. Cunha1,2,3,V.V.Smith2,F.X.deAraujo´ 1,4, S. C. Schuler2, and R. de la Reza1 1 Observatorio´ Nacional, Rua General Jose´ Cristino, 77, 20921-400, Sao˜ Cristov´ ao,˜ Rio de Janeiro, RJ, Brazil; [email protected] 2 National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719, USA 3 Steward Observatory, University of Arizona, Tucson, AZ 85121, USA Received 2010 May 12; accepted 2010 July 15; published 2010 August 19 ABSTRACT The metal content of planet-hosting stars is an important ingredient that may affect the formation and evolution of planetary systems. Accurate stellar abundances require the determinations of reliable physical parameters, namely, the effective temperature, surface gravity, microturbulent velocity, and metallicity. This work presents the homogeneous derivation of such parameters for a large sample of stars hosting planets (N = 117), as well as a control sample of disk stars not known to harbor giant, closely orbiting planets (N = 145). Stellar parameters and iron abundances are derived from an automated analysis technique developed for this work. As previously found in the literature, the results in this study indicate that the metallicity distribution of planet-hosting stars is more metal rich by ∼0.15 dex when compared to the control sample stars.
    [Show full text]