3.5 Dimensions of the Four Subspaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
THE DIMENSION of a VECTOR SPACE 1. Introduction This Handout
THE DIMENSION OF A VECTOR SPACE KEITH CONRAD 1. Introduction This handout is a supplementary discussion leading up to the definition of dimension of a vector space and some of its properties. We start by defining the span of a finite set of vectors and linear independence of a finite set of vectors, which are combined to define the all-important concept of a basis. Definition 1.1. Let V be a vector space over a field F . For any finite subset fv1; : : : ; vng of V , its span is the set of all of its linear combinations: Span(v1; : : : ; vn) = fc1v1 + ··· + cnvn : ci 2 F g: Example 1.2. In F 3, Span((1; 0; 0); (0; 1; 0)) is the xy-plane in F 3. Example 1.3. If v is a single vector in V then Span(v) = fcv : c 2 F g = F v is the set of scalar multiples of v, which for nonzero v should be thought of geometrically as a line (through the origin, since it includes 0 · v = 0). Since sums of linear combinations are linear combinations and the scalar multiple of a linear combination is a linear combination, Span(v1; : : : ; vn) is a subspace of V . It may not be all of V , of course. Definition 1.4. If fv1; : : : ; vng satisfies Span(fv1; : : : ; vng) = V , that is, if every vector in V is a linear combination from fv1; : : : ; vng, then we say this set spans V or it is a spanning set for V . Example 1.5. In F 2, the set f(1; 0); (0; 1); (1; 1)g is a spanning set of F 2. -
18.06 Linear Algebra, Problem Set 5 Solutions
18.06 Problem Set 5 Solution Total: points Section 4.1. Problem 7. Every system with no solution is like the one in problem 6. There are numbers y1; : : : ; ym that multiply the m equations so they add up to 0 = 1. This is called Fredholm’s Alternative: T Exactly one of these problems has a solution: Ax = b OR A y = 0 with T y b = 1. T If b is not in the column space of A it is not orthogonal to the nullspace of A . Multiply the equations x1 − x2 = 1 and x2 − x3 = 1 and x1 − x3 = 1 by numbers y1; y2; y3 chosen so that the equations add up to 0 = 1. Solution (4 points) Let y1 = 1, y2 = 1 and y3 = −1. Then the left-hand side of the sum of the equations is (x1 − x2) + (x2 − x3) − (x1 − x3) = x1 − x2 + x2 − x3 + x3 − x1 = 0 and the right-hand side is 1 + 1 − 1 = 1: Problem 9. If AT Ax = 0 then Ax = 0. Reason: Ax is inthe nullspace of AT and also in the of A and those spaces are . Conclusion: AT A has the same nullspace as A. This key fact is repeated in the next section. Solution (4 points) Ax is in the nullspace of AT and also in the column space of A and those spaces are orthogonal. Problem 31. The command N=null(A) will produce a basis for the nullspace of A. Then the command B=null(N') will produce a basis for the of A. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
Span, Linear Independence and Basis Rank and Nullity
Remarks for Exam 2 in Linear Algebra Span, linear independence and basis The span of a set of vectors is the set of all linear combinations of the vectors. A set of vectors is linearly independent if the only solution to c1v1 + ::: + ckvk = 0 is ci = 0 for all i. Given a set of vectors, you can determine if they are linearly independent by writing the vectors as the columns of the matrix A, and solving Ax = 0. If there are any non-zero solutions, then the vectors are linearly dependent. If the only solution is x = 0, then they are linearly independent. A basis for a subspace S of Rn is a set of vectors that spans S and is linearly independent. There are many bases, but every basis must have exactly k = dim(S) vectors. A spanning set in S must contain at least k vectors, and a linearly independent set in S can contain at most k vectors. A spanning set in S with exactly k vectors is a basis. A linearly independent set in S with exactly k vectors is a basis. Rank and nullity The span of the rows of matrix A is the row space of A. The span of the columns of A is the column space C(A). The row and column spaces always have the same dimension, called the rank of A. Let r = rank(A). Then r is the maximal number of linearly independent row vectors, and the maximal number of linearly independent column vectors. So if r < n then the columns are linearly dependent; if r < m then the rows are linearly dependent. -
Inner Product Spaces
CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn. -
Math 102 -- Linear Algebra I -- Study Guide
Math 102 Linear Algebra I Stefan Martynkiw These notes are adapted from lecture notes taught by Dr.Alan Thompson and from “Elementary Linear Algebra: 10th Edition” :Howard Anton. Picture above sourced from (http://i.imgur.com/RgmnA.gif) 1/52 Table of Contents Chapter 3 – Euclidean Vector Spaces.........................................................................................................7 3.1 – Vectors in 2-space, 3-space, and n-space......................................................................................7 Theorem 3.1.1 – Algebraic Vector Operations without components...........................................7 Theorem 3.1.2 .............................................................................................................................7 3.2 – Norm, Dot Product, and Distance................................................................................................7 Definition 1 – Norm of a Vector..................................................................................................7 Definition 2 – Distance in Rn......................................................................................................7 Dot Product.......................................................................................................................................8 Definition 3 – Dot Product...........................................................................................................8 Definition 4 – Dot Product, Component by component..............................................................8 -
Linear Algebra Review
Linear Algebra Review Kaiyu Zheng October 2017 Linear algebra is fundamental for many areas in computer science. This document aims at providing a reference (mostly for myself) when I need to remember some concepts or examples. Instead of a collection of facts as the Matrix Cookbook, this document is more gentle like a tutorial. Most of the content come from my notes while taking the undergraduate linear algebra course (Math 308) at the University of Washington. Contents on more advanced topics are collected from reading different sources on the Internet. Contents 3.8 Exponential and 7 Special Matrices 19 Logarithm...... 11 7.1 Block Matrix.... 19 1 Linear System of Equa- 3.9 Conversion Be- 7.2 Orthogonal..... 20 tions2 tween Matrix Nota- 7.3 Diagonal....... 20 tion and Summation 12 7.4 Diagonalizable... 20 2 Vectors3 7.5 Symmetric...... 21 2.1 Linear independence5 4 Vector Spaces 13 7.6 Positive-Definite.. 21 2.2 Linear dependence.5 4.1 Determinant..... 13 7.7 Singular Value De- 2.3 Linear transforma- 4.2 Kernel........ 15 composition..... 22 tion.........5 4.3 Basis......... 15 7.8 Similar........ 22 7.9 Jordan Normal Form 23 4.4 Change of Basis... 16 3 Matrix Algebra6 7.10 Hermitian...... 23 4.5 Dimension, Row & 7.11 Discrete Fourier 3.1 Addition.......6 Column Space, and Transform...... 24 3.2 Scalar Multiplication6 Rank......... 17 3.3 Matrix Multiplication6 8 Matrix Calculus 24 3.4 Transpose......8 5 Eigen 17 8.1 Differentiation... 24 3.4.1 Conjugate 5.1 Multiplicity of 8.2 Jacobian...... -
Vector Space Theory
Vector Space Theory A course for second year students by Robert Howlett typesetting by TEX Contents Copyright University of Sydney Chapter 1: Preliminaries 1 §1a Logic and commonSchool sense of Mathematics and Statistics 1 §1b Sets and functions 3 §1c Relations 7 §1d Fields 10 Chapter 2: Matrices, row vectors and column vectors 18 §2a Matrix operations 18 §2b Simultaneous equations 24 §2c Partial pivoting 29 §2d Elementary matrices 32 §2e Determinants 35 §2f Introduction to eigenvalues 38 Chapter 3: Introduction to vector spaces 49 §3a Linearity 49 §3b Vector axioms 52 §3c Trivial consequences of the axioms 61 §3d Subspaces 63 §3e Linear combinations 71 Chapter 4: The structure of abstract vector spaces 81 §4a Preliminary lemmas 81 §4b Basis theorems 85 §4c The Replacement Lemma 86 §4d Two properties of linear transformations 91 §4e Coordinates relative to a basis 93 Chapter 5: Inner Product Spaces 99 §5a The inner product axioms 99 §5b Orthogonal projection 106 §5c Orthogonal and unitary transformations 116 §5d Quadratic forms 121 iii Chapter 6: Relationships between spaces 129 §6a Isomorphism 129 §6b Direct sums Copyright University of Sydney 134 §6c Quotient spaces 139 §6d The dual spaceSchool of Mathematics and Statistics 142 Chapter 7: Matrices and Linear Transformations 148 §7a The matrix of a linear transformation 148 §7b Multiplication of transformations and matrices 153 §7c The Main Theorem on Linear Transformations 157 §7d Rank and nullity of matrices 161 Chapter 8: Permutations and determinants 171 §8a Permutations 171 §8b Determinants -
Lecture 11: Graphs and Their Adjacency Matrices
Lecture 11: Graphs and their Adjacency Matrices Vidit Nanda The class should, by now, be relatively comfortable with Gaussian elimination. We have also successfully extracted bases for null and column spaces using Reduced Row Echelon Form (RREF). Since these spaces are defined for the transpose of a matrix as well, we have four fundamental subspaces associated to each matrix. Today we will see an interpretation of all four towards understanding graphs and networks. 1. Recap n m Here are the four fundamental subspaces associated to each m × n matrix A : R ! R : n (1) The null space N(A) is the subspace of R sent to the zero vector by A, m (2) The column space C(A) is the subspace of R produced by taking all linear combinations of columns of A, T n (3) The row space C(A ) is the subspace of R consisting of linear combinations of rows of A, or the columns of its transpose AT , and finally, T m T (4) The left nullspace N(A ) is the subspace of R consisting of all vectors which A sends to the zero vector. By the Fundamental Theorem of Linear Algebra from Lecture 9 it turns out that knowing the dimension of one of these spaces immediately tells us about the dimensions of the other three. So, if the rank { or dim C(A) { is some number r, then immediately we know: • dim N(A) = n - r, • dim C(AT ) = r, and • dim N(AT ) = m - r. And more: we can actually extract bases for each of these subspaces by using the RREF as seen in Lecture 10. -
Linear Algebra I: Vector Spaces A
Linear Algebra I: Vector Spaces A 1 Vector spaces and subspaces 1.1 Let F be a field (in this book, it will always be either the field of reals R or the field of complex numbers C). A vector space V D .V; C; o;˛./.˛2 F// over F is a set V with a binary operation C, a constant o and a collection of unary operations (i.e. maps) ˛ W V ! V labelled by the elements of F, satisfying (V1) .x C y/ C z D x C .y C z/, (V2) x C y D y C x, (V3) 0 x D o, (V4) ˛ .ˇ x/ D .˛ˇ/ x, (V5) 1 x D x, (V6) .˛ C ˇ/ x D ˛ x C ˇ x,and (V7) ˛ .x C y/ D ˛ x C ˛ y. Here, we write ˛ x and we will write also ˛x for the result ˛.x/ of the unary operation ˛ in x. Often, one uses the expression “multiplication of x by ˛”; but it is useful to keep in mind that what we really have is a collection of unary operations (see also 5.1 below). The elements of a vector space are often referred to as vectors. In contrast, the elements of the field F are then often referred to as scalars. In view of this, it is useful to reflect for a moment on the true meaning of the axioms (equalities) above. For instance, (V4), often referred to as the “associative law” in fact states that the composition of the functions V ! V labelled by ˇ; ˛ is labelled by the product ˛ˇ in F, the “distributive law” (V6) states that the (pointwise) sum of the mappings labelled by ˛ and ˇ is labelled by the sum ˛ C ˇ in F, and (V7) states that each of the maps ˛ preserves the sum C. -
Hilbert Spaces
CHAPTER 3 Hilbert spaces There are really three `types' of Hilbert spaces (over C): The finite dimen- sional ones, essentially just Cn; for different integer values of n; with which you are pretty familiar, and two infinite dimensional types corresponding to being separa- ble (having a countable dense subset) or not. As we shall see, there is really only one separable infinite-dimensional Hilbert space (no doubt you realize that the Cn are separable) and that is what we are mostly interested in. Nevertheless we try to state results in general and then give proofs (usually they are the nicest ones) which work in the non-separable cases too. I will first discuss the definition of pre-Hilbert and Hilbert spaces and prove Cauchy's inequality and the parallelogram law. This material can be found in many other places, so the discussion here will be kept succinct. One nice source is the book of G.F. Simmons, \Introduction to topology and modern analysis" [5]. I like it { but I think it is long out of print. RBM:Add description of con- tents when complete and 1. pre-Hilbert spaces mention problems A pre-Hilbert space, H; is a vector space (usually over the complex numbers but there is a real version as well) with a Hermitian inner product h; i : H × H −! C; (3.1) hλ1v1 + λ2v2; wi = λ1hv1; wi + λ2hv2; wi; hw; vi = hv; wi for any v1; v2; v and w 2 H and λ1; λ2 2 C which is positive-definite (3.2) hv; vi ≥ 0; hv; vi = 0 =) v = 0: Note that the reality of hv; vi follows from the `Hermitian symmetry' condition in (3.1), the positivity is an additional assumption as is the positive-definiteness.