Vector Spaces

Total Page:16

File Type:pdf, Size:1020Kb

Vector Spaces Vector Spaces Math 240 Definition Properties Set notation Subspaces Vector Spaces Math 240 | Calculus III Summer 2013, Session II Wednesday, July 17, 2013 Vector Spaces Agenda Math 240 Definition Properties Set notation Subspaces 1. Definition 2. Properties of vector spaces 3. Set notation 4. Subspaces Vector Spaces Motivation Math 240 Definition Properties Set notation Subspaces We know a lot about Euclidean space. There is a larger class of n objects that behave like vectors in R . What do all of these objects have in common? Vector addition a way of combining two vectors, u and v, into the single vector u + v Scalar multiplication a way of combining a scalar, k, with a vector, v, to end up with the vector kv A vector space is any set of objects with a notion of addition n and scalar multiplication that behave like vectors in R . Vector Spaces Examples of vector spaces Math 240 Definition Real vector spaces Properties n Set notation I R (the archetype of a vector space) Subspaces I R | the set of real numbers I Mm×n(R) | the set of all m × n matrices with real entries for fixed m and n. If m = n, just write Mn(R). I Pn | the set of polynomials with real coefficients of degree at most n I P | the set of all polynomials with real coefficients k I C (I) | the set of all real-valued functions on the interval I having k continuous derivatives Complex vector spaces n I C, C I Mm×n(C) Vector Spaces Definition Math 240 Definition Properties Definition Set notation A vector space consists of a set of scalars, a nonempty set, V , Subspaces whose elements are called vectors, and the operations of vector addition and scalar multiplication satisfying 1. Closure under addition: For each pair of vectors u and v, the sum u + v is an element of V . 2. Closure under scalar multiplication: For each vector v and scalar k, the scalar multiple kv is an element of V . 3. Commutativity of addition: For all u; v 2 V , we have u + v = v + u. 4. Associativity of addition: For all u; v; w 2 V , we have (u + v) + w = u + (v + w). 5. Existence of a zero vector: There is a vector 0 2 V satisfying v + 0 = v for all v 2 V . Vector Spaces Definition Math 240 Definition Properties Definition Set notation A vector space consists of a set of scalars, a nonempty set, V , Subspaces whose elements are called vectors, and the operations of vector addition and scalar multiplication satisfying 6. Existence of additive inverses: For each v 2 V , there is a vector −v 2 V such that v + (−v) = 0. 7. Unit property: For all vectors v, we have 1v = v. 8. Associativity of scalar multiplication: For all vectors v and scalars r; s, we have (rs)v = r(sv). 9. Distributive property of scalar multiplication over vector addition: For all vectors u and v and scalars r, we have r(u + v) = ru + rv. 10. Disributive property of scalar multiplication over scalar addition: For all vectors v and scalars r and s, we have (r + s)v = rv + sv. Vector Spaces Example Math 240 Definition Let's verify that M2(R) is a vector space. Properties 1. From the definition of matrix addition, we know that the Set notation sum of two 2 × 2 matrices is also a 2 × 2 matrix. Subspaces 2. From the definition of scalar-matrix multiplication, we know that multiplying a 2 × 2 matrix by a scalar results in a 2 × 2 matrix. 3. Given two 2 × 2 matrices a a b b A = 1 2 and B = 1 2 ; a3 a4 b3 b4 their sum is a + b a + b A + B = 1 1 2 2 a3 + b3 a4 + b4 b + a b + a = 1 1 2 2 = B + A: b3 + a3 b4 + a4 Vector Spaces Example Math 240 Definition Let's verify that M2(R) is a vector space. Properties 4. Given three 2 × 2 matrices Set notation Subspaces a a b b c c A = 1 2 ;B = 1 2 ;C = 1 2 ; a3 a4 b3 b4 c3 c4 we have (a + b ) + c (a + b ) + c (A + B) + C = 1 1 1 2 2 2 (a3 + b3) + c3 (a4 + b4) + c4 a + (b + c ) a + (b + c ) = 1 1 1 2 2 2 a3 + (b3 + c3) a4 + (b4 + c4) = A + (B + C): 0 0 5. If A 2 M ( ) then A + = A, so the zero vector in 2 R 0 0 0 0 M ( ) is 0 = . 2 R 0 0 Vector Spaces Example Math 240 Definition Let's verify that M2(R) is a vector space. Properties a b −a −b Set notation 6. The additive inverse of A = is −A = c d −c −d Subspaces because a + (−a) b + (−b) 0 0 A + (−A) = = = 0: c + (−c) d + (−d) 0 0 7. If A is any matrix, then obviously 1A = A. a b 8. Given a matrix A = and scalars r and s, we have c d (rs)a (rs)b r(sa) r(sb) (rs)A = = (rs)c (rs)d r(sc) r(sd) sa sb = r = r(sA): sc sd Vector Spaces Example Math 240 Definition Let's verify that M2(R) is a vector space. Properties a1 a2 b1 b2 Set notation 9. Given matrices A = and B = and a a a b b Subspaces 3 4 3 4 scalar r, we have r(a + b ) r(a + b ) r(A + B) = 1 1 2 2 r(a3 + b3) r(a4 + b4) ra + rb ra + rb = 1 1 2 2 = rA + rB: ra3 + rb3 ra4 + rb4 a b 10. Given a matrix A = and scalars r and s, we have c d (r + s)a (r + s)b (r + s)A = (r + s)c (r + s)d ra + sa rb + sb = = rA + sA: rc + sc rd + sd Vector Spaces Additional properties of vector spaces Math 240 Definition Properties Set notation Subspaces The following properties are consequences of the vector space axioms. I The zero vector is unique. I 0u = 0 for all u 2 V . I k0 = 0 for all scalar k. I The additive inverse of a vector is unique. I For all u 2 V , its additive inverse is given by −u = (−1)u. I If k is a scalar and u 2 V such that ku = 0 then either k = 0 or u = 0. Vector Spaces Aside: set notation Math 240 Definition Definition Properties Let V be a set. We write the subset of V satisfying some Set notation conditions as Subspaces S = fv 2 V : conditions on vg : Examples 1. The plane −3x + 2y + z = 4 can be written 3 (x; y; z) 2 R : −3x + 2y + z = 4 : 2. The line perpendicular to this plane passing through the point (1; 0; 0) can be written 3 x 2 R : x = (1 − 3r; 2r; r); r 2 R or 3 (1 − 3r; 2r; r) 2 R : r 2 R : Vector Spaces Practice problem Math 240 Definition Properties Set notation If A is an m × n matrix, verify that Subspaces n V = fx 2 R : Ax = 0g is a vector space. n n R is a vector space. V is a subset of R and also a vector space. One vector space inside another?!? What about n W = fx 2 R : Ax = bg where b 6= 0? Vector Spaces Definition Math 240 Definition Definition Properties Suppose V is a vector space and S is a nonempty subset of V . Set notation Subspaces We say that S is a subspace of V if S is a vector space under the same addition and scalar multiplication as V . Examples 1. Any vector space has two improper subspaces: f0g and the vector space itself. Other subspaces are called proper. 2. The solution set of a homogeneous linear system is a n subspace of R . This includes all lines, planes, and hyperplanes through the origin. 3. The set of polynomials in P2 with no linear term forms a subspace of P2. In turn, P2 is a subspace of P . 4. Ck(I) is a subspace of C`(I) for all intervals I and all k ≥ `. Vector Spaces Criteria for subspaces Math 240 Definition Properties Set notation Subspaces Checking all 10 axioms for a subspace is a lot of work. Fortunately, it's not necessary. Theorem If V is a vector space and S is a nonempty subset of V then S is a subspace of V if and only if S is closed under the addition and scalar multiplication in V . Remark Don't forget the \nonempty." It's often quicker and easier to just check that 0 2 S. Vector Spaces Example Math 240 Definition Let S denote the set of real symmetric n × n matrices. Let's Properties check that S is a subspace of Mn( ). Set notation R Subspaces First, write S as T S = A 2 Mn(R): A = A : Now, check three things: 1. 0 2 S: Obvious. 2. If A; B 2 S then A + B 2 S: (A + B)T = AT + BT = A + B 3. If A 2 S and k is a scalar then kA 2 S: (kA)T = kAT = kA It's a subspace! Vector Spaces The null space of a matrix Math 240 Definition Properties Definition Set notation If A is an m × n matrix, the solution space of the homogeneous Subspaces linear system Ax = 0 is called the null space of A.
Recommended publications
  • On the Bicoset of a Bivector Space
    International J.Math. Combin. Vol.4 (2009), 01-08 On the Bicoset of a Bivector Space Agboola A.A.A.† and Akinola L.S.‡ † Department of Mathematics, University of Agriculture, Abeokuta, Nigeria ‡ Department of Mathematics and computer Science, Fountain University, Osogbo, Nigeria E-mail: [email protected], [email protected] Abstract: The study of bivector spaces was first intiated by Vasantha Kandasamy in [1]. The objective of this paper is to present the concept of bicoset of a bivector space and obtain some of its elementary properties. Key Words: bigroup, bivector space, bicoset, bisum, direct bisum, inner biproduct space, biprojection. AMS(2000): 20Kxx, 20L05. §1. Introduction and Preliminaries The study of bialgebraic structures is a new development in the field of abstract algebra. Some of the bialgebraic structures already developed and studied and now available in several literature include: bigroups, bisemi-groups, biloops, bigroupoids, birings, binear-rings, bisemi- rings, biseminear-rings, bivector spaces and a host of others. Since the concept of bialgebraic structure is pivoted on the union of two non-empty subsets of a given algebraic structure for example a group, the usual problem arising from the union of two substructures of such an algebraic structure which generally do not form any algebraic structure has been resolved. With this new concept, several interesting algebraic properties could be obtained which are not present in the parent algebraic structure. In [1], Vasantha Kandasamy initiated the study of bivector spaces. Further studies on bivector spaces were presented by Vasantha Kandasamy and others in [2], [4] and [5]. In the present work however, we look at the bicoset of a bivector space and obtain some of its elementary properties.
    [Show full text]
  • Db Math Marco Zennaro Ermanno Pietrosemoli Goals
    dB Math Marco Zennaro Ermanno Pietrosemoli Goals ‣ Electromagnetic waves carry power measured in milliwatts. ‣ Decibels (dB) use a relative logarithmic relationship to reduce multiplication to simple addition. ‣ You can simplify common radio calculations by using dBm instead of mW, and dB to represent variations of power. ‣ It is simpler to solve radio calculations in your head by using dB. 2 Power ‣ Any electromagnetic wave carries energy - we can feel that when we enjoy (or suffer from) the warmth of the sun. The amount of energy received in a certain amount of time is called power. ‣ The electric field is measured in V/m (volts per meter), the power contained within it is proportional to the square of the electric field: 2 P ~ E ‣ The unit of power is the watt (W). For wireless work, the milliwatt (mW) is usually a more convenient unit. 3 Gain and Loss ‣ If the amplitude of an electromagnetic wave increases, its power increases. This increase in power is called a gain. ‣ If the amplitude decreases, its power decreases. This decrease in power is called a loss. ‣ When designing communication links, you try to maximize the gains while minimizing any losses. 4 Intro to dB ‣ Decibels are a relative measurement unit unlike the absolute measurement of milliwatts. ‣ The decibel (dB) is 10 times the decimal logarithm of the ratio between two values of a variable. The calculation of decibels uses a logarithm to allow very large or very small relations to be represented with a conveniently small number. ‣ On the logarithmic scale, the reference cannot be zero because the log of zero does not exist! 5 Why do we use dB? ‣ Power does not fade in a linear manner, but inversely as the square of the distance.
    [Show full text]
  • The Five Fundamental Operations of Mathematics: Addition, Subtraction
    The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms Kenneth A. Ribet UC Berkeley Trinity University March 31, 2008 Kenneth A. Ribet Five fundamental operations This talk is about counting, and it’s about solving equations. Counting is a very familiar activity in mathematics. Many universities teach sophomore-level courses on discrete mathematics that turn out to be mostly about counting. For example, we ask our students to find the number of different ways of constituting a bag of a dozen lollipops if there are 5 different flavors. (The answer is 1820, I think.) Kenneth A. Ribet Five fundamental operations Solving equations is even more of a flagship activity for mathematicians. At a mathematics conference at Sundance, Robert Redford told a group of my colleagues “I hope you solve all your equations”! The kind of equations that I like to solve are Diophantine equations. Diophantus of Alexandria (third century AD) was Robert Redford’s kind of mathematician. This “father of algebra” focused on the solution to algebraic equations, especially in contexts where the solutions are constrained to be whole numbers or fractions. Kenneth A. Ribet Five fundamental operations Here’s a typical example. Consider the equation y 2 = x3 + 1. In an algebra or high school class, we might graph this equation in the plane; there’s little challenge. But what if we ask for solutions in integers (i.e., whole numbers)? It is relatively easy to discover the solutions (0; ±1), (−1; 0) and (2; ±3), and Diophantus might have asked if there are any more.
    [Show full text]
  • Arithmetic Equivalence and Isospectrality
    ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY ANDREW V.SUTHERLAND ABSTRACT. In these lecture notes we give an introduction to the theory of arithmetic equivalence, a notion originally introduced in a number theoretic setting to refer to number fields with the same zeta function. Gassmann established a direct relationship between arithmetic equivalence and a purely group theoretic notion of equivalence that has since been exploited in several other areas of mathematics, most notably in the spectral theory of Riemannian manifolds by Sunada. We will explicate these results and discuss some applications and generalizations. 1. AN INTRODUCTION TO ARITHMETIC EQUIVALENCE AND ISOSPECTRALITY Let K be a number field (a finite extension of Q), and let OK be its ring of integers (the integral closure of Z in K). The Dedekind zeta function of K is defined by the Dirichlet series X s Y s 1 ζK (s) := N(I)− = (1 N(p)− )− I OK p − ⊆ where the sum ranges over nonzero OK -ideals, the product ranges over nonzero prime ideals, and N(I) := [OK : I] is the absolute norm. For K = Q the Dedekind zeta function ζQ(s) is simply the : P s Riemann zeta function ζ(s) = n 1 n− . As with the Riemann zeta function, the Dirichlet series (and corresponding Euler product) defining≥ the Dedekind zeta function converges absolutely and uniformly to a nonzero holomorphic function on Re(s) > 1, and ζK (s) extends to a meromorphic function on C and satisfies a functional equation, as shown by Hecke [25]. The Dedekind zeta function encodes many features of the number field K: it has a simple pole at s = 1 whose residue is intimately related to several invariants of K, including its class number, and as with the Riemann zeta function, the zeros of ζK (s) are intimately related to the distribution of prime ideals in OK .
    [Show full text]
  • Introduction to Linear Bialgebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N.
    [Show full text]
  • Lesson 2: the Multiplication of Polynomials
    NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 2 M1 ALGEBRA II Lesson 2: The Multiplication of Polynomials Student Outcomes . Students develop the distributive property for application to polynomial multiplication. Students connect multiplication of polynomials with multiplication of multi-digit integers. Lesson Notes This lesson begins to address standards A-SSE.A.2 and A-APR.C.4 directly and provides opportunities for students to practice MP.7 and MP.8. The work is scaffolded to allow students to discern patterns in repeated calculations, leading to some general polynomial identities that are explored further in the remaining lessons of this module. As in the last lesson, if students struggle with this lesson, they may need to review concepts covered in previous grades, such as: The connection between area properties and the distributive property: Grade 7, Module 6, Lesson 21. Introduction to the table method of multiplying polynomials: Algebra I, Module 1, Lesson 9. Multiplying polynomials (in the context of quadratics): Algebra I, Module 4, Lessons 1 and 2. Since division is the inverse operation of multiplication, it is important to make sure that your students understand how to multiply polynomials before moving on to division of polynomials in Lesson 3 of this module. In Lesson 3, division is explored using the reverse tabular method, so it is important for students to work through the table diagrams in this lesson to prepare them for the upcoming work. There continues to be a sharp distinction in this curriculum between justification and proof, such as justifying the identity (푎 + 푏)2 = 푎2 + 2푎푏 + 푏 using area properties and proving the identity using the distributive property.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • 7.2 Binary Operators Closure
    last edited April 19, 2016 7.2 Binary Operators A precise discussion of symmetry benefits from the development of what math- ematicians call a group, which is a special kind of set we have not yet explicitly considered. However, before we define a group and explore its properties, we reconsider several familiar sets and some of their most basic features. Over the last several sections, we have considered many di↵erent kinds of sets. We have considered sets of integers (natural numbers, even numbers, odd numbers), sets of rational numbers, sets of vertices, edges, colors, polyhedra and many others. In many of these examples – though certainly not in all of them – we are familiar with rules that tell us how to combine two elements to form another element. For example, if we are dealing with the natural numbers, we might considered the rules of addition, or the rules of multiplication, both of which tell us how to take two elements of N and combine them to give us a (possibly distinct) third element. This motivates the following definition. Definition 26. Given a set S,abinary operator ? is a rule that takes two elements a, b S and manipulates them to give us a third, not necessarily distinct, element2 a?b. Although the term binary operator might be new to us, we are already familiar with many examples. As hinted to earlier, the rule for adding two numbers to give us a third number is a binary operator on the set of integers, or on the set of rational numbers, or on the set of real numbers.
    [Show full text]
  • Determinant Notes
    68 UNIT FIVE DETERMINANTS 5.1 INTRODUCTION In unit one the determinant of a 2× 2 matrix was introduced and used in the evaluation of a cross product. In this chapter we extend the definition of a determinant to any size square matrix. The determinant has a variety of applications. The value of the determinant of a square matrix A can be used to determine whether A is invertible or noninvertible. An explicit formula for A–1 exists that involves the determinant of A. Some systems of linear equations have solutions that can be expressed in terms of determinants. 5.2 DEFINITION OF THE DETERMINANT a11 a12 Recall that in chapter one the determinant of the 2× 2 matrix A = was a21 a22 defined to be the number a11a22 − a12 a21 and that the notation det (A) or A was used to represent the determinant of A. For any given n × n matrix A = a , the notation A [ ij ]n×n ij will be used to denote the (n −1)× (n −1) submatrix obtained from A by deleting the ith row and the jth column of A. The determinant of any size square matrix A = a is [ ij ]n×n defined recursively as follows. Definition of the Determinant Let A = a be an n × n matrix. [ ij ]n×n (1) If n = 1, that is A = [a11], then we define det (A) = a11 . n 1k+ (2) If na>=1, we define det(A) ∑(-1)11kk det(A ) k=1 Example If A = []5 , then by part (1) of the definition of the determinant, det (A) = 5.
    [Show full text]
  • Eigenvalues and Eigenvectors
    Jim Lambers MAT 605 Fall Semester 2015-16 Lecture 14 and 15 Notes These notes correspond to Sections 4.4 and 4.5 in the text. Eigenvalues and Eigenvectors In order to compute the matrix exponential eAt for a given matrix A, it is helpful to know the eigenvalues and eigenvectors of A. Definitions and Properties Let A be an n × n matrix. A nonzero vector x is called an eigenvector of A if there exists a scalar λ such that Ax = λx: The scalar λ is called an eigenvalue of A, and we say that x is an eigenvector of A corresponding to λ. We see that an eigenvector of A is a vector for which matrix-vector multiplication with A is equivalent to scalar multiplication by λ. Because x is nonzero, it follows that if x is an eigenvector of A, then the matrix A − λI is singular, where λ is the corresponding eigenvalue. Therefore, λ satisfies the equation det(A − λI) = 0: The expression det(A−λI) is a polynomial of degree n in λ, and therefore is called the characteristic polynomial of A (eigenvalues are sometimes called characteristic values). It follows from the fact that the eigenvalues of A are the roots of the characteristic polynomial that A has n eigenvalues, which can repeat, and can also be complex, even if A is real. However, if A is real, any complex eigenvalues must occur in complex-conjugate pairs. The set of eigenvalues of A is called the spectrum of A, and denoted by λ(A). This terminology explains why the magnitude of the largest eigenvalues is called the spectral radius of A.
    [Show full text]
  • Interval Notation and Linear Inequalities
    CHAPTER 1 Introductory Information and Review Section 1.7: Interval Notation and Linear Inequalities Linear Inequalities Linear Inequalities Rules for Solving Inequalities: 86 University of Houston Department of Mathematics SECTION 1.7 Interval Notation and Linear Inequalities Interval Notation: Example: Solution: MATH 1300 Fundamentals of Mathematics 87 CHAPTER 1 Introductory Information and Review Example: Solution: Example: 88 University of Houston Department of Mathematics SECTION 1.7 Interval Notation and Linear Inequalities Solution: Additional Example 1: Solution: MATH 1300 Fundamentals of Mathematics 89 CHAPTER 1 Introductory Information and Review Additional Example 2: Solution: 90 University of Houston Department of Mathematics SECTION 1.7 Interval Notation and Linear Inequalities Additional Example 3: Solution: Additional Example 4: Solution: MATH 1300 Fundamentals of Mathematics 91 CHAPTER 1 Introductory Information and Review Additional Example 5: Solution: Additional Example 6: Solution: 92 University of Houston Department of Mathematics SECTION 1.7 Interval Notation and Linear Inequalities Additional Example 7: Solution: MATH 1300 Fundamentals of Mathematics 93 Exercise Set 1.7: Interval Notation and Linear Inequalities For each of the following inequalities: Write each of the following inequalities in interval (a) Write the inequality algebraically. notation. (b) Graph the inequality on the real number line. (c) Write the inequality in interval notation. 23. 1. x is greater than 5. 2. x is less than 4. 24. 3. x is less than or equal to 3. 4. x is greater than or equal to 7. 25. 5. x is not equal to 2. 6. x is not equal to 5 . 26. 7. x is less than 1. 8.
    [Show full text]
  • Algebra of Linear Transformations and Matrices Math 130 Linear Algebra
    Then the two compositions are 0 −1 1 0 0 1 BA = = 1 0 0 −1 1 0 Algebra of linear transformations and 1 0 0 −1 0 −1 AB = = matrices 0 −1 1 0 −1 0 Math 130 Linear Algebra D Joyce, Fall 2013 The products aren't the same. You can perform these on physical objects. Take We've looked at the operations of addition and a book. First rotate it 90◦ then flip it over. Start scalar multiplication on linear transformations and again but flip first then rotate 90◦. The book ends used them to define addition and scalar multipli- up in different orientations. cation on matrices. For a given basis β on V and another basis γ on W , we have an isomorphism Matrix multiplication is associative. Al- γ ' φβ : Hom(V; W ) ! Mm×n of vector spaces which though it's not commutative, it is associative. assigns to a linear transformation T : V ! W its That's because it corresponds to composition of γ standard matrix [T ]β. functions, and that's associative. Given any three We also have matrix multiplication which corre- functions f, g, and h, we'll show (f ◦ g) ◦ h = sponds to composition of linear transformations. If f ◦ (g ◦ h) by showing the two sides have the same A is the standard matrix for a transformation S, values for all x. and B is the standard matrix for a transformation T , then we defined multiplication of matrices so ((f ◦ g) ◦ h)(x) = (f ◦ g)(h(x)) = f(g(h(x))) that the product AB is be the standard matrix for S ◦ T .
    [Show full text]