BIOE127 - Winter 2018 – Midterm

Total Page:16

File Type:pdf, Size:1020Kb

BIOE127 - Winter 2018 – Midterm BIOE127 - Winter 2018 – Midterm 1. What are Meristics? a: Counts of morphological characteristics such as fin rays and dorsal spines b: Linear measurements of morphological characteristics such as eye width c: A combination of counts and measurements of morphological characteristics d: A genetic method of phylogenetic reconstruction 2. What are Morphometrics? a: Counts of morphological characteristics such as fin rays and dorsal spines b: Linear measurements of morphological characteristics such as eye width c: A combination of counts and measurements of morphological characteristics d: A genetic method of phylogenetic reconstruction 3. There are roughly as many fish species as tetrapod species a. true b. false 4. While there are thousands of fish species, the 7 largest families of fishes comprise more than 60% of all fish species a. True b. False 5. Homoplasies are traits that arose due to a. convergence b. divergence c. chance d. none of the above 6. Molecular clocks used in combination with phylogenetic trees allow to: a. date timings of evolutionary events b. tease out alternative hypotheses c. identify the time of invasion in ancient lakes d. all of the above e. none of the above 7. Conodonts are a. regarded by some as the earliest fishes b. denticle-like structures used to date specific geological strata c. organisms that swam in ancient oceans, around 500 million years ago d. all of the above e. none of the above 8. Ancient extinct jawless fishes are called a. Agnatha b. Placoderms c. Ostracoderms d. Acanthodii. 9. Jawless vertebrates lack paired fins a. true b. false 10. Hagfish are the oldest jawless vertebrate representative a. true b. false 11. A synapomorphy for the Chondrichtyans is: a. Skull with no sutures b. presence of claspers c. cartilaginous skeleton d. all of the above e. none of the above 12. sawsharks and sawfishes look the same due to convergent evolution a. true b. false 13. Large filter feeding sharks form a monophyletic group a. true b. false 14. Skates are the largest group of rays a. true b. false 15. Sarcopterygian fishes include a. gars and bowfins b. bowfins and bichirs c. bowfins and lungfish d. coelacanths and lungfish 16. Sarcopterygian fishes are more closely related to tetrapods than to other fishes a. true b. false 17. Chondrostei are sharks with a bony skeleton a. true b. false 18. Actinopterygians include three subclasses a. Acanthodii, Sarcopterygii, Teleostomi b. Cladistia, Chondrostei, Neopterygii c. Osteoglossomorpha, Elopomorpha, Neopterygii d. Sacropterygii, Teleostomi, Neopterygii 19. Pterygiophores are a synapomorphy for the following group a. Chondrostei b. Elopomorphs c. Cladistia d. Neopterygii 20. The body of gars is covered in a. placoid scales b. ganoid scales c. cycloid scales d. ctenoid scales 21. the synapomorphy for the Osteoglossiformes is a. a spiral valve b. a bony tongue c. a leptocephalous larva d. all of the above 22. the synapomorphy for the ostariophysi is a. a spiral valve b. the schekstoff c. weberian ossicles d. all of the above 23. the synapomorphy for the otophysi is a. a spiral valve b. the schekstoff c. weberian ossicles d. all of the above 24. The retractor dorsalis is a. a muscle that is attached to the upper pharyngeal jaw b. the synapomorphy for the Euteleostei c. a major evolutionary innovation in fishes d. all of the above e. none of the above 25. Paracanthopterygii include a. cod and midshipman b. salmon and trout c. cod and salmon d midshipman and trout 26. Clupeomorphs show one major ecological innovation a. they include a large number of mouthbrooders b. they include a large number of substrate spawners c. they include a large number of unisexual species d. they include a large number of schooling fishes 27. Elopomorphs have a. leptocephalous larvae b. spiral valves c. use lures to attract prey d. very small bodies. 28. Acanthodii are a. small freshwater fishes b. large freshwater fishes c. extinct bony fishes d. extant cartilaginous fishes 29. The majority of freshwater and marine fishes are included in the a. Elopomorphs and Clupeomorphs, respectively b. Anotophysi and Otophysi, respectively c. Ostariophysi and Perciformes, respectively d. Chondrichthyes and Osteichthyes, respectively 30. the majority of freshwater and marine fishes are found in a. the Amazon Basin and coral reefs, respectively b. the Great Lakes and the Mediterranean c. the Great Lakes and the Caribbean d. Lake Baikal and California Fish tree 31) label1. a. Elopomorpha b. Gnathostomata c. Acanthodii d. Chondrichthyes 32) label 2 a. Elopomorpha b. Gnathostomata c. Acanthodii d. Chondrichthyes 33) label 3 a. Elopomorpha b. Gnathostomata c. Acanthodii d. Osteoglossomorpha 34) label 4 a. Osteoglossomorpha b. Gnathostomata c. Actinopterygii d. Chondrostei 35) label 5 a. Chondrostei b. Gnathostomata c. Chondrichthyes d. Acanthodii 36) label 6 a. Ostariophysi b. Osteoglossomorpha c. Chondrostei d. Ostarioclupeomorpha 37) label 7 a. Osteoglossomorpha b. Elopomorpha c. Ostarioclupeomorpha d. Chondrostei 38) label 8 a. Ostariophysi b. Ostarioclupeomorpha c. Acanthopterygii d. Elopomorpha 39) label 9 a. Ostariophysi b. Elopomorpha c. Acanthopterygii d. Ostarioclupeomorpha 40 label 10 a. Ostarioclupeomorpha b. Gnathostomata c. Ostariophysi d. Acanthopterygii .
Recommended publications
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • B. Quantitative Characters Morphometric & Meristics Laboratory
    Lab. No. 2 B. Quantitative Characters Morphometric & Meristics laboratory Taxonomic Characters The first step in successfully working with fishes is correct identification. Similar species require in depth examination to discern the few differentiating characteristics. Many times these examinations require accurate measurements and counts of fin ray elements. Objectives: The purpose of this lab is to introduce students to these characters. Quantitative Characters Quantitative characters are usually expressed as numbers, these include a measurable and countable characters. Morphometrics are measurable characters or length-based measures of specific body parts, such as total length of the body or diameter of the eye. These characters are usually measured in the millimeter scale. Meristics are counts of things which occur more than once, but a variable number of times between species (and sometimes within species). These include counts of fin elements, i.e.: the number of dorsal fin spines and rays. NOTICE Spines are hard, pinlike projections, while rays are soft and brush-like Occasionally, fins will be a mix of both spines and rays; however, spines are ALWAYS the most forward structures (closest to the head) on the fin. The table below helps you to differentiate between a spine and a ray Spines Rays Hard and pointed Segmented Unsegmented Sometimes branched Unbranched Bilateral with left and right halves Solid Because they are already dimensionless, meristic measurements can be compared directly. 8 Lab. No. 2 Laboratory exercise In this exercise we will be making various measurements and counts on several species of fish. Record the appropriate information in the attached table. Procedure—Morphology • Each group is equipped with: • Dissecting microscope • Needle probe • Dissecting tray • Scissors • Petri dish • Scalpel • Calipers • Slides and coverslips • Forceps (fine tip and blunt tip) • Latex gloves (optional) Each team should get a fish.
    [Show full text]
  • Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha
    Research in Zoology 2014, 4(2): 29-42 DOI: 10.5923/j.zoology.20140402.01 Comparative Osteology of the Jaws in Representatives of the Eurypterygian Fishes Yazdan Keivany Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran Abstract The osteology of the jaws in representatives of 49 genera in 40 families of eurypterygian fishes, including: Aulopiformes, Myctophiformes, Lampridiformes, Polymixiiformes, Percopsiformes, Mugiliformes, Atheriniformes, Beloniformes, Cyprinodontiformes, Stephanoberyciformes, Beryciformes, Zeiformes, Gasterosteiformes, Synbranchiformes, Scorpaeniformes (including Dactylopteridae), and Perciformes (including Elassomatidae) were studied. Generally, in this group, the upper jaw consists of the premaxilla, maxilla, and supramaxilla. The lower jaw consists of the dentary, anguloarticular, retroarticular, and sesamoid articular. In higher taxa, the premaxilla bears ascending, articular, and postmaxillary processes. The maxilla usually bears a ventral and a dorsal articular process. The supramaxilla is present only in some taxa. The dentary is usually toothed and bears coronoid and posteroventral processes. The retroarticular is small and located at the posteroventral corner of the anguloarticular. Keywords Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha following method for clearing and staining bone and 1. Introduction cartilage provided in reference [18]. A camera lucida attached to a Wild M5 dissecting stereomicroscope was used Despite the introduction of modern techniques such as to prepare the drawings. The bones in the first figure of each DNA sequencing and barcoding, osteology, due to its anatomical section are arbitrarily shaded and labeled and in reliability, still plays an important role in the systematic the others are shaded in a consistent manner (dark, medium, study of fishes and comprises a major percent of today’s and clear) to facilitate comparison among the taxa.
    [Show full text]
  • The Genetic Basis of Morphometric and Meristic Traits in Rainbow Trout (Oncorhynchus Mykiss)
    Central Annals of Aquaculture and Research Research Article *Corresponding author Domitilla Pulcini, Department of Biology, “Tor Vergata” University of Rome, Consiglio per la Ricerca in The Genetic Basis of Agricoltura e l’Analisi dell’Economia Agraria, Via Salaria 31, 00016, Monterotondo (Rome), Italy, Tel: 39-06- 90090263; Email: Morphometric and Meristic Submitted: 30 September 2016 Accepted: 18 October 2016 Traits in Rainbow Trout Published: 21 October 2016 ISSN: 2379-0881 (Oncorhynchus mykiss) Copyright © 2016 Pulcini et al. Domitilla Pulcini1,2*, Kristofer Christensen3, Paul A. Wheeler3, OPEN ACCESS Tommaso Russo2, and Gary H. Thorgaard3 1,2Department of Biology, “Tor Vergata” University of Rome, Italy Keywords 3School of Biological Sciences and Center for Reproductive Biology, Washington State • Domestication University, USA • Geometric morphometrics • QTL • Meristics Abstract • Salmonids In fishes, body shape, is a complex trait involving several genetic and environmental • Shape factors. Understanding the genetic basis of phenotypic variation in body form could lead to breeding strategies aimed at adapting body shape to captive environments. In the present study, QTLs associated with morphometric and meristic traits in rainbow trout were identified using a genetic linkage map created from a cross of two clonal lines divergent for morphology and life history (wild steelhead trout and domesticated rainbow trout). Genome regions associated with differences in morphological (body depth, mouth orientation, caudal peduncle shape, anal and dorsal fin length) and meristic (number of skeletal elements of median and paired fins and of caudal fin) characters were identified. The identification of genomic locations influencing body morphology, even if only at a gross level, could be of pivotal importance to direct breeding strategies in commercial hatcheries towards the production of more desirable body types.
    [Show full text]
  • Variation of the Spotted Sunfish, Lepomis Punctatus Complex
    Variation of the Spotted Sunfish, Lepomis punctatus Complex (Centrarehidae): Meristies, Morphometries, Pigmentation and Species Limits BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY The scientific publication of the Alabama Museum of Natural History. Richard L. Mayden, Editor, John C. Hall, Managing Editor. BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY is published by the Alabama Museum of Natural History, a unit of The University of Alabama. The BULLETIN succeeds its predecessor, the MUSEUM PAPERS, which was terminated in 1961 upon the transfer of the Museum to the University from its parent organization, the Geological Survey of Alabama. The BULLETIN is devoted primarily to scholarship and research concerning the natural history of Alabama and the midsouth. It appears irregularly in consecutively numbered issues. Communication concerning manuscripts, style, and editorial policy should be addressed to: Editor, BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY, The University of Alabama, Box 870340, Tuscaloosa, AL 35487-0340; Telephone (205) 348-7550. Prospective authors should examine the Notice to Authors inside the back cover. Orders and requests for general information should be addressed to Managing Editor, BULLETIN ALABAMA MUSEUM OF NATURAL HISTORY, at the above address. Numbers may be purchased individually; standing orders are accepted. Remittances should accompany orders for individual numbers and be payable to The University of Alabama. The BULLETIN will invoice standing orders. Library exchanges may be handled through: Exchange Librarian, The University of Alabama, Box 870266, Tuscaloosa, AL 35487-0340. When citing this publication, authors are requested to use the following abbreviation: Bull. Alabama Mus. Nat. Hist. ISSN: 0196-1039 Copyright 1991 by The Alabama Museum of Natural History Price this number: $6.00 })Il{ -w-~ '{(iI1 .....~" _--.
    [Show full text]
  • Morphometric and Meristic Variation in Two
    Simon et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol) 2010 11(11):871-879 871 Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) ISSN 1673-1581 (Print); ISSN 1862-1783 (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: [email protected] Morphometric and meristic variation in two congeneric archer fishes Toxotes chatareus (Hamilton 1822) and Toxotes jaculatrix * (Pallas 1767) inhabiting Malaysian coastal waters K. D. SIMON†1, Y. BAKAR2, S. E. TEMPLE3, A. G. MAZLAN†‡4 (1Marine Science Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia) (2Biology Programme, School of Biological Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia) (3School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia) (4Marine Ecosystem Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia) †E-mail: [email protected]; [email protected] Received Feb. 18, 2010; Revision accepted Aug. 3, 2010; Crosschecked Oct. 8, 2010 Abstract: A simple yet useful criterion based on external markings and/or number of dorsal spines is currently used to differentiate two congeneric archer fish species Toxotes chatareus and Toxotes jaculatrix. Here we investigate other morphometric and meristic characters that can also be used to differentiate these two species. Principal component and/or discriminant functions revealed that meristic characters were highly correlated with pectoral fin ray count, number of lateral line scales, as well as number of anal fin rays. The results indicate that T. chatareus can be distin- guished from T.
    [Show full text]
  • Development of the Muscles Associated with the Mandibular and Hyoid Arches in the Siberian Sturgeon, Acipenser Baerii (Acipenseriformes: Acipenseridae)
    Received: 31 May 2017 | Revised: 24 September 2017 | Accepted: 29 September 2017 DOI: 10.1002/jmor.20761 RESEARCH ARTICLE Development of the muscles associated with the mandibular and hyoid arches in the Siberian sturgeon, Acipenser baerii (Acipenseriformes: Acipenseridae) Peter Warth1 | Eric J. Hilton2 | Benjamin Naumann1 | Lennart Olsson1 | Peter Konstantinidis3 1Institut fur€ Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Abstract Museum, Friedrich-Schiller-Universität Jena, The skeleton of the jaws and neurocranium of sturgeons (Acipenseridae) are connected only Germany through the hyoid arch. This arrangement allows considerable protrusion and retraction of the 2 Department of Fisheries Science, Virginia jaws and is highly specialized among ray-finned fishes (Actinopterygii). To better understand the Institute of Marine Science, College of unique morphology and the evolution of the jaw apparatus in Acipenseridae, we investigated the William & Mary, Gloucester Point, Virginia development of the muscles of the mandibular and hyoid arches of the Siberian sturgeon, Aci- 3Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon penser baerii. We used a combination of antibody staining and formalin-induced fluorescence of tissues imaged with confocal microscopy and subsequent three-dimensional reconstruction. These Correspondence data were analyzed to address the identity of previously controversial and newly discovered mus- Peter Warth, Institut fur€ Spezielle Zoologie cle portions. Our results indicate that the anlagen of the muscles in A. baerii develop similarly to und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, those of other actinopterygians, although they differ by not differentiating into distinct muscles. Erbertstr. 1, 07743 Jena, Germany. This is exemplified by the subpartitioning of the m. adductor mandibulae as well as the massive m.
    [Show full text]
  • Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
    click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night.
    [Show full text]
  • Highly Diversified Late Cretaceous Fish Assemblage Revealed by Otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, Usa)
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 126(1): 111-155. March 2020 HIGHLY DIVERSIFIED LATE CRETACEOUS FISH ASSEMBLAGE REVEALED BY OTOLITHS (RIPLEY FORMATION AND OWL CREEK FORMATION, NORTHEAST MISSISSIPPI, USA) GARY L. STRINGER1, WERNER SCHWARZHANS*2 , GEORGE PHILLIPS3 & ROGER LAMBERT4 1Museum of Natural History, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA. E-mail: [email protected] 2Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK-2100, Copenhagen, Denmark. E-mail: [email protected] 3Mississippi Museum of Natural Science, 2148 Riverside Drive, Jackson, Mississippi 39202, USA. E-mail: [email protected] 4North Mississippi Gem and Mineral Society, 1817 CR 700, Corinth, Mississippi, 38834, USA. E-mail: [email protected] *Corresponding author To cite this article: Stringer G.L., Schwarzhans W., Phillips G. & Lambert R. (2020) - Highly diversified Late Cretaceous fish assemblage revealed by otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, USA). Riv. It. Paleontol. Strat., 126(1): 111-155. Keywords: Beryciformes; Holocentriformes; Aulopiformes; otolith; evolutionary implications; paleoecology. Abstract. Bulk sampling and extensive, systematic surface collecting of the Coon Creek Member of the Ripley Formation (early Maastrichtian) at the Blue Springs locality and primarily bulk sampling of the Owl Creek Formation (late Maastrichtian) at the Owl Creek type locality, both in northeast Mississippi, USA, have produced the largest and most highly diversified actinopterygian otolith (ear stone) assemblage described from the Mesozoic of North America. The 3,802 otoliths represent 30 taxa of bony fishes representing at least 22 families. In addition, there were two different morphological types of lapilli, which were not identifiable to species level.
    [Show full text]
  • Percomorph Phylogeny: a Survey of Acanthomorphs and a New Proposal
    BULLETIN OF MARINE SCIENCE, 52(1): 554-626, 1993 PERCOMORPH PHYLOGENY: A SURVEY OF ACANTHOMORPHS AND A NEW PROPOSAL G. David Johnson and Colin Patterson ABSTRACT The interrelationships of acanthomorph fishes are reviewed. We recognize seven mono- phyletic terminal taxa among acanthomorphs: Lampridiformes, Polymixiiformes, Paracan- thopterygii, Stephanoberyciformes, Beryciformes, Zeiformes, and a new taxon named Smeg- mamorpha. The Percomorpha, as currently constituted, are polyphyletic, and the Perciformes are probably paraphyletic. The smegmamorphs comprise five subgroups: Synbranchiformes (Synbranchoidei and Mastacembeloidei), Mugilomorpha (Mugiloidei), Elassomatidae (Elas- soma), Gasterosteiformes, and Atherinomorpha. Monophyly of Lampridiformes is justified elsewhere; we have found no new characters to substantiate the monophyly of Polymixi- iformes (which is not in doubt) or Paracanthopterygii. Stephanoberyciformes uniquely share a modification of the extrascapular, and Beryciformes a modification of the anterior part of the supraorbital and infraorbital sensory canals, here named Jakubowski's organ. Our Zei- formes excludes the Caproidae, and characters are proposed to justify the monophyly of the group in that restricted sense. The Smegmamorpha are thought to be monophyletic principally because of the configuration of the first vertebra and its intermuscular bone. Within the Smegmamorpha, the Atherinomorpha and Mugilomorpha are shown to be monophyletic elsewhere. Our Gasterosteiformes includes the syngnathoids and the Pegasiformes
    [Show full text]
  • Evolution of the Nitric Oxide Synthase Family in Vertebrates and Novel
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Evolution of the nitric oxide synthase family in vertebrates 2 and novel insights in gill development 3 4 Giovanni Annona1, Iori Sato2, Juan Pascual-Anaya3,†, Ingo Braasch4, Randal Voss5, 5 Jan Stundl6,7,8, Vladimir Soukup6, Shigeru Kuratani2,3, 6 John H. Postlethwait9, Salvatore D’Aniello1,* 7 8 1 Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, 9 Napoli, Italy 10 2 Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics 11 Research (BDR), Kobe, 650-0047, Japan 12 3 Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2- 13 3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan 14 4 Department of Integrative Biology and Program in Ecology, Evolution & Behavior (EEB), 15 Michigan State University, East Lansing, MI 48824, USA 16 5 Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and 17 Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky, USA 18 6 Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech 19 Republic 20 7 Division of Biology and Biological Engineering, California Institute of Technology, 21 Pasadena, CA, USA 22 8 South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 23 Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske 24 Budejovice, Vodnany, Czech Republic 25 9 Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA 26 † Present address: Department of Animal Biology, Faculty of Sciences, University of 27 Málaga; and Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), 28 Málaga, Spain 29 30 * Correspondence: [email protected] 31 32 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021.
    [Show full text]
  • History of Fishes - Structural Patterns and Trends in Diversification
    History of fishes - Structural Patterns and Trends in Diversification AGNATHANS = Jawless • Class – Pteraspidomorphi • Class – Myxini?? (living) • Class – Cephalaspidomorphi – Osteostraci – Anaspidiformes – Petromyzontiformes (living) Major Groups of Agnathans • 1. Osteostracida 2. Anaspida 3. Pteraspidomorphida • Hagfish and Lamprey = traditionally together in cyclostomata Jaws = GNATHOSTOMES • Gnathostomes: the jawed fishes -good evidence for gnathostome monophyly. • 4 major groups of jawed vertebrates: Extinct Acanthodii and Placodermi (know) Living Chondrichthyes and Osteichthyes • Living Chondrichthyans - usually divided into Selachii or Elasmobranchi (sharks and rays) and Holocephali (chimeroids). • • Living Osteichthyans commonly regarded as forming two major groups ‑ – Actinopterygii – Ray finned fish – Sarcopterygii (coelacanths, lungfish, Tetrapods). • SARCOPTERYGII = Coelacanths + (Dipnoi = Lung-fish) + Rhipidistian (Osteolepimorphi) = Tetrapod Ancestors (Eusthenopteron) Close to tetrapods Lungfish - Dipnoi • Three genera, Africa+Australian+South American ACTINOPTERYGII Bichirs – Cladistia = POLYPTERIFORMES Notable exception = Cladistia – Polypterus (bichirs) - Represented by 10 FW species - tropical Africa and one species - Erpetoichthys calabaricus – reedfish. Highly aberrant Cladistia - numerous uniquely derived features – long, independent evolution: – Strange dorsal finlets, Series spiracular ossicles, Peculiar urohyal bone and parasphenoid • But retain # primitive Actinopterygian features = heavy ganoid scales (external
    [Show full text]