Evolution of the Nitric Oxide Synthase Family in Vertebrates and Novel

Total Page:16

File Type:pdf, Size:1020Kb

Evolution of the Nitric Oxide Synthase Family in Vertebrates and Novel bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Evolution of the nitric oxide synthase family in vertebrates 2 and novel insights in gill development 3 4 Giovanni Annona1, Iori Sato2, Juan Pascual-Anaya3,†, Ingo Braasch4, Randal Voss5, 5 Jan Stundl6,7,8, Vladimir Soukup6, Shigeru Kuratani2,3, 6 John H. Postlethwait9, Salvatore D’Aniello1,* 7 8 1 Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, 9 Napoli, Italy 10 2 Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics 11 Research (BDR), Kobe, 650-0047, Japan 12 3 Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2- 13 3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan 14 4 Department of Integrative Biology and Program in Ecology, Evolution & Behavior (EEB), 15 Michigan State University, East Lansing, MI 48824, USA 16 5 Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and 17 Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky, USA 18 6 Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech 19 Republic 20 7 Division of Biology and Biological Engineering, California Institute of Technology, 21 Pasadena, CA, USA 22 8 South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 23 Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske 24 Budejovice, Vodnany, Czech Republic 25 9 Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA 26 † Present address: Department of Animal Biology, Faculty of Sciences, University of 27 Málaga; and Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), 28 Málaga, Spain 29 30 * Correspondence: [email protected] 31 32 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 33 ORCID 34 GA: 0000-0001-7806-6761 35 JPA: 0000-0003-3429-9453 36 IB: 0000-0003-4766-611X 37 JS: 0000-0002-3740-3378 38 VS: 0000-0002-1914-283X 39 SK: 0000-0001-9717-7221 40 JHP: 0000-0002-5476-2137 41 SDA: 0000-0001-7294-1465 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 58 Abstract 59 Nitric oxide (NO) is an ancestral key signaling molecule essential for life and has 60 enormous versatility in biological systems, including cardiovascular homeostasis, 61 neurotransmission, and immunity. Although our knowledge of nitric oxide synthases (Nos), 62 the enzymes that synthesize NO in vivo, is substantial, the origin of a large and diversified 63 repertoire of nos gene orthologs in fish with respect to tetrapods remains a puzzle. The 64 recent identification of nos3 in the ray-finned fish spotted gar, which was considered lost in 65 the ray-finned fish lineage, changed this perspective. This prompted us to explore nos 66 gene evolution and expression in depth, surveying vertebrate species representing key 67 evolutionary nodes. This study provides noteworthy findings: first, nos2 experienced 68 several lineage-specific gene duplications and losses. Second, nos3 was found to be lost 69 independently in two different teleost lineages, Elopomorpha and Clupeocephala. Third, 70 the expression of at least one nos paralog in the gills of developing shark, bichir, sturgeon, 71 and gar but not in arctic lamprey, suggest that nos expression in this organ likely arose in 72 the last common ancestor of gnathostomes. These results provide a framework for 73 continuing research on nos genes’ roles, highlighting subfunctionalization and reciprocal 74 loss of function that occurred in different lineages during vertebrate genome duplications. 75 76 77 78 79 80 81 Keywords: Vertebrate evolution; Genome duplication; Gene duplication and loss; NOS; 82 Phylogenomics; Synteny. 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 83 Introduction 84 Originally classified as a pollutant, nitric oxide (NO) was recognized as “Molecule of the 85 Year" in 1992 [1] when its important role as a cellular signaling molecule was recognized. 86 NO plays a role in a myriad of physiological processes, such as cardiovascular 87 homeostasis [2], neurotransmission [3], immune response [4], and in pathological 88 conditions such as neurodegenerative diseases [5] and cancer [6]. 89 Nitric oxide synthase (Nos), the enzyme catalysing the biosynthesis of NO in vivo, is 90 ubiquitous among organisms, including protists and bacteria [7,8]. Three nos gene 91 paralogs have been described in vertebrates: two constitutively expressed genes, 92 including nos1 (also known as neuronal nos, or nNos), which represents the predominant 93 source of NO involved in neurogenesis and neurotransmission [9,10], and nos3 94 (endothelial nos or eNos) implicated in angiogenesis and blood pressure control in 95 vascular endothelial cells [11,12]. In addition, nos2 (inducible nos or iNos), which 96 expression is instead evoked by proinflammatory cytokines, is promptly activated in a 97 range of acute stress responses [13]. 98 Although the availability of current genomic data covers all major ray-finned fish lineages, 99 the evolutionary history of their nos gene repertoire remains puzzling. Previous studies 100 reported a variable number of nos genes in teleost fishes: nos1 is always present in a 101 single copy; nos2 either in one or two copies, probably due to the additional teleost- 102 specific whole-genome duplication (TGD) [14–17], or absent as observed in several 103 species. On the other hand, nos3 has been reported as missing in the genomes of ray- 104 finned fish. This apparent gene loss contrasts with literature describing a putative Nos3- 105 like protein localized by antibody stains in gills and vascular endothelium of several teleost 106 species [18,19]. The discovery of a nos3 ortholog in the spotted gar Lepisosteus oculatus, 107 a holostean fish (the sister group of teleosts within the ray-finned lineage) [20], and the 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 108 variable number of teleost nos2 genes raises new questions about the evolution of this 109 important gene family, including: i. is our current view on the origin and evolution of nos 110 gene family in vertebrates accurate?; and ii. can further investigation of nos expression 111 pattern in fish retaining a nos3 copy reveal novel functional insights? In an attempt to 112 answer these questions, we have studied the Nos family repertoire at unprecented 113 phylogenetic resolution, investigated conserved syntenies in fish genomes, and studied 114 the expression pattern of all three nos genes during development in multiple species 115 representing key nodes in vertebrate evolution. 116 117 Results 118 Revised evolutionary history of Nos2 and Nos3 119 Gaps in our current knowledge of Nos family evolution include the time of origin of the 120 three distinct paralogous nos genes and when some of them were secondarily lost in 121 specific lineages. Using sequences retrieved from public genomic and transcriptomic 122 databases, we reconstructed a Nos phylogeny using 108 protein sequences from 53 123 species (see Supplementary Table 1). Species were chosen to provide a broad 124 representation of aquatic vertebrates: cyclostomes (modern jawless fish), chondrichthyans 125 (cartilaginous fish), and osteichthyes (bony fish) including ray- and lobe-finned fishes. 126 Lobe-finned fishes include coelacanths, lungfishes, and tetrapods; Ray-finned fishes 127 comprise the non-teleost lineages of polypteriformes (e.g. bichir), acipenseriformes (e.g. 128 sterlet sturgeon), holosteans (lepisosteiformes, e.g. spotted gar, and amiiformes, e.g. 129 bowfin), and the teleosts, subdivided into three major living lineages: osteoglossomorphs 130 (e.g. arowana, mooneyes, and the freshwater elephantfish), elopomorphs (e.g. eels and 131 relatives) and clupeocephalans (e.g. zebrafish and medaka) (see [21] for a recent 132 phylogeny of ray-finned fishes). 5 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 133 Our phylogenetic analysis confirmed that Nos1 is present in all species of jawed 134 vertebrates examined (Fig. 1a, green shading). In contrast, most fish lineages retained 135 Nos2, including chondrichthyans (Callorhinchus milii, Rhincodon typus, Chiloscyllium 136 punctatum, and Scyliorhinus torazame), polypteriformes (Polypterus senegalus, 137 Erpetoichthys
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi
    Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 (http://www.accessscience.com/) Article by: Boschung, Herbert Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama. Gardiner, Brian Linnean Society of London, Burlington House, Piccadilly, London, United Kingdom. Publication year: 2014 DOI: http://dx.doi.org/10.1036/1097-8542.680400 (http://dx.doi.org/10.1036/1097-8542.680400) Content Morphology Euteleostei Bibliography Phylogeny Classification Additional Readings Clupeomorpha and Ostariophysi The most recent group of actinopterygians (rayfin fishes), first appearing in the Upper Triassic (Fig. 1). About 26,840 species are contained within the Teleostei, accounting for more than half of all living vertebrates and over 96% of all living fishes. Teleosts comprise 517 families, of which 69 are extinct, leaving 448 extant families; of these, about 43% have no fossil record. See also: Actinopterygii (/content/actinopterygii/009100); Osteichthyes (/content/osteichthyes/478500) Fig. 1 Cladogram showing the relationships of the extant teleosts with the other extant actinopterygians. (J. S. Nelson, Fishes of the World, 4th ed., Wiley, New York, 2006) 1 of 9 10/7/2015 1:07 PM Teleostei - AccessScience from McGraw-Hill Education http://www.accessscience.com/content/teleostei/680400 Morphology Much of the evidence for teleost monophyly (evolving from a common ancestral form) and relationships comes from the caudal skeleton and concomitant acquisition of a homocercal tail (upper and lower lobes of the caudal fin are symmetrical). This type of tail primitively results from an ontogenetic fusion of centra (bodies of vertebrae) and the possession of paired bracing bones located bilaterally along the dorsal region of the caudal skeleton, derived ontogenetically from the neural arches (uroneurals) of the ural (tail) centra.
    [Show full text]
  • Fish Inventory at Stones River National Battlefield
    Fish Inventory at Stones River National Battlefield Submitted to: Department of the Interior National Park Service Cumberland Piedmont Network By Dennis Mullen Professor of Biology Department of Biology Middle Tennessee State University Murfreesboro, TN 37132 September 2006 Striped Shiner (Luxilus chrysocephalus) – nuptial male From Lytle Creek at Fortress Rosecrans Photograph by D. Mullen Table of Contents List of Tables……………………………………………………………………….iii List of Figures………………………………………………………………………iv List of Appendices…………………………………………………………………..v Executive Summary…………………………………………………………………1 Introduction…………………………………………………………………...……..2 Methods……………………………………………………………………………...3 Results……………………………………………………………………………….7 Discussion………………………………………………………………………….10 Conclusions………………………………………………………………………...14 Literature Cited…………………………………………………………………….15 ii List of Tables Table1: Location and physical characteristics (during September 2006, and only for the riverine sites) of sample sites for the STRI fish inventory………………………………17 Table 2: Biotic Integrity classes used in assessing fish communities along with general descriptions of their attributes (Karr et al. 1986) ………………………………………18 Table 3: List of fishes potentially occurring in aquatic habitats in and around Stones River National Battlefield………………………………………………………………..19 Table 4: Fish species list (by site) of aquatic habitats at STRI (October 2004 – August 2006). MF = McFadden’s Ford, KP = King Pond, RB = Redoubt Brannan, UP = Unnamed Pond at Redoubt Brannan, LC = Lytle Creek at Fortress Rosecrans……...….22 Table 5: Fish Species Richness estimates for the 3 riverine reaches of STRI and a composite estimate for STRI as a whole…………………………………………………24 Table 6: Index of Biotic Integrity (IBI) scores for three stream reaches at Stones River National Battlefield during August 2005………………………………………………...25 Table 7: Temperature and water chemistry of four of the STRI sample sites for each sampling date…………………………………………………………………………….26 Table 8 : Total length estimates of specific habitat types at each riverine sample site.
    [Show full text]
  • Hemiscyllium Ocellatum), with Emphasis on Branchial Circulation Kåre-Olav Stensløkken*,1, Lena Sundin2, Gillian M
    The Journal of Experimental Biology 207, 4451-4461 4451 Published by The Company of Biologists 2004 doi:10.1242/jeb.01291 Adenosinergic and cholinergic control mechanisms during hypoxia in the epaulette shark (Hemiscyllium ocellatum), with emphasis on branchial circulation Kåre-Olav Stensløkken*,1, Lena Sundin2, Gillian M. C. Renshaw3 and Göran E. Nilsson1 1Physiology Programme, Department of Molecular Biosciences, University of Oslo, PO Box 1041, NO-0316 Oslo Norway and 2Department of Zoophysiology, Göteborg University, SE-405 30 Göteborg, Sweden and 3Hypoxia and Ischemia Research Unit, School of Physiotherapy and Exercise Science, Griffith University, PMB 50 Gold coast Mail Centre, Queensland, 9726 Australia *Author for correspondence (e-mail: [email protected]) Accepted 17 September 2004 Summary Coral reef platforms may become hypoxic at night flow in the longitudinal vessels during hypoxia. In the during low tide. One animal in that habitat, the epaulette second part of the study, we examined the cholinergic shark (Hemiscyllium ocellatum), survives hours of severe influence on the cardiovascular circulation during severe hypoxia and at least one hour of anoxia. Here, we examine hypoxia (<0.3·mg·l–1) using antagonists against muscarinic the branchial effects of severe hypoxia (<0.3·mg·oxygen·l–1 (atropine 2·mg·kg–1) and nicotinic (tubocurarine for 20·min in anaesthetized epaulette shark), by measuring 5·mg·kg–1) receptors. Injection of acetylcholine (ACh; –1 ventral and dorsal aortic blood pressure (PVA and PDA), 1·µmol·kg ) into the ventral aorta caused a marked fall in heart rate (fH), and observing gill microcirculation using fH, a large increase in PVA, but small changes in PDA epi-illumination microscopy.
    [Show full text]
  • Tennessee Fish Species
    The Angler’s Guide To TennesseeIncluding Aquatic Nuisance SpeciesFish Published by the Tennessee Wildlife Resources Agency Cover photograph Paul Shaw Graphics Designer Raleigh Holtam Thanks to the TWRA Fisheries Staff for their review and contributions to this publication. Special thanks to those that provided pictures for use in this publication. Partial funding of this publication was provided by a grant from the United States Fish & Wildlife Service through the Aquatic Nuisance Species Task Force. Tennessee Wildlife Resources Agency Authorization No. 328898, 58,500 copies, January, 2012. This public document was promulgated at a cost of $.42 per copy. Equal opportunity to participate in and benefit from programs of the Tennessee Wildlife Resources Agency is available to all persons without regard to their race, color, national origin, sex, age, dis- ability, or military service. TWRA is also an equal opportunity/equal access employer. Questions should be directed to TWRA, Human Resources Office, P.O. Box 40747, Nashville, TN 37204, (615) 781-6594 (TDD 781-6691), or to the U.S. Fish and Wildlife Service, Office for Human Resources, 4401 N. Fairfax Dr., Arlington, VA 22203. Contents Introduction ...............................................................................1 About Fish ..................................................................................2 Black Bass ...................................................................................3 Crappie ........................................................................................7
    [Show full text]
  • A SUMMARY of the LIFE HISTORY and DISTRIBUTION of the SPRING CAVEFISH, Chologaster ]Gassizi, PUTNAM, with POPULATION ESTIMATES for the SPECIES in SOUTHERN ILLINOIS
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Illinois Digital Environment for Access to Learning and Scholarship Repository A SUMMARY OF THE LIFE HISTORY AND DISTRIBUTION OF THE SPRING CAVEFISH, Chologaster ]gassizi, PUTNAM, WITH POPULATION ESTIMATES FOR THE SPECIES IN SOUTHERN ILLINOIS PHILIP W. SMITH -NORBERT M. WELCH Biological Notes No.104 Illinois Natural History Survey Urbana, Illinois • May 1978 State of Illinois Department of Registration and Education Natural History Survey Division A Summary of the life History and Distribution of the Spring Cavefish~ Chologasfer agassizi Putnam~ with Population Estimates for the Species in Southern Illinois Philip W. Smith and Norbert M. Welch The genus Chologaster, which means mutilated belly various adaptations and comparative metabolic rates of in reference to the absence of pelvic fins, was proposed all known amblyopsids. The next major contribution to by Agassiz ( 1853: 134) for a new fish found in ditches our knowledge was a series of papers by Hill, who worked and rice fields of South Carolina and described by him with the Warren County, Kentucky, population of spring as C. cornutus. Putnam (1872:30) described a second cave fish and described oxygen preferences ( 1968), food species of the genus found in a well at Lebanon, Tennes­ and feeding habits ( 1969a), effects of isolation upon see, naming it C. agassizi for the author of the generic meristic characters ( 1969b ), and the development of name. Forbes ( 1881:232) reported one specimen of squamation in the young ( 1971). Whittaker & Hill Chologaster from a spring in western Union County, ( 1968) described a new species of cestode parasite, nam­ Illinois, and noted that it differed from known specimens ing it Proteocephalus chologasteri.
    [Show full text]
  • The Cyphomyrus Myers 1960 (Osteoglossiformes: Mormyridae) of the Lufira Basin (Upper Lualaba: DR Congo): a Generic Reassignment and the Description of a New Species
    Received: 9 January 2019 Accepted: 15 December 2019 DOI: 10.1111/jfb.14237 SPECIAL ISSUE REGULAR PAPER FISH The Cyphomyrus Myers 1960 (Osteoglossiformes: Mormyridae) of the Lufira basin (Upper Lualaba: DR Congo): A generic reassignment and the description of a new species Christian Mukweze Mulelenu1,2,3,4 | Bauchet Katemo Manda2,3,4 | Eva Decru3,4 | Auguste Chocha Manda2 | Emmanuel Vreven3,4 1Département de Zootechnie, Faculté des Sciences Agronomiques, Université de Abstract Kolwezi, Kolwezi, Democratic Republic of the Within a comparative morphological framework, Hippopotamyrus aelsbroecki, only Congo known from the holotype originating from Lubumbashi, most probably the Lubumbashi 2Département de Gestion des Ressources Naturelles Renouvelables, Unité de recherche River, a left bank subaffluent of the Luapula River, is reallocated to the genus en Biodiversité et Exploitation durable des Cyphomyrus. This transfer is motivated by the fact that H. aelsbroecki possesses a Zones Humides, Université de Lubumbashi, Lubumbashi, Democratic Republic of the rounded or vaulted predorsal profile, an insertion of the dorsal fin far anterior to the Congo level of the insertion of the anal fin, and a compact, laterally compressed and deep 3Vertebrate Section, Ichthyology, Royal Museum for Central Africa, Tervuren, Belgium body. In addition, a new species of Cyphomyrus is described from the Lufira basin, 4Laboratory of Biodiversity and Evolutionary Cyphomyrus lufirae. Cyphomyrus lufirae was collected in large parts of the Middle Lufira, Genomics, KU Leuven, Leuven, Belgium upstream of the Kyubo Falls and just downstream of these falls in the lower Lufira and Correspondence its nearby left bank affluent, the Luvilombo River. The new species is distinguished Emmanuel Vreven, Curator of Fishes from all its congeners, that is, firstly, from C.
    [Show full text]
  • Respiratory Disorders of Fish
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Disorders of the Respiratory System in Pet and Ornamental Fish a, b Helen E. Roberts, DVM *, Stephen A. Smith, DVM, PhD KEYWORDS Pet fish Ornamental fish Branchitis Gill Wet mount cytology Hypoxia Respiratory disorders Pathology Living in an aquatic environment where oxygen is in less supply and harder to extract than in a terrestrial one, fish have developed a respiratory system that is much more efficient than terrestrial vertebrates. The gills of fish are a unique organ system and serve several functions including respiration, osmoregulation, excretion of nitroge- nous wastes, and acid-base regulation.1 The gills are the primary site of oxygen exchange in fish and are in intimate contact with the aquatic environment. In most cases, the separation between the water and the tissues of the fish is only a few cell layers thick. Gills are a common target for assault by infectious and noninfectious disease processes.2 Nonlethal diagnostic biopsy of the gills can identify pathologic changes, provide samples for bacterial culture/identification/sensitivity testing, aid in fungal element identification, provide samples for viral testing, and provide parasitic organisms for identification.3–6 This diagnostic test is so important that it should be included as part of every diagnostic workup performed on a fish.
    [Show full text]
  • Gill Morphometrics of the Thresher Sharks (Genus Alopias): Correlation of Gill Dimensions with Aerobic Demand and Environmental Oxygen
    JOURNAL OF MORPHOLOGY :1–12 (2015) Gill Morphometrics of the Thresher Sharks (Genus Alopias): Correlation of Gill Dimensions with Aerobic Demand and Environmental Oxygen Thomas P. Wootton,1 Chugey A. Sepulveda,2 and Nicholas C. Wegner1,3* 1Center for Marine Biotechnology and Biomedicine, Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093 2Pfleger Institute of Environmental Research, Oceanside, CA 92054 3Fisheries Resource Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, CA 92037 ABSTRACT Gill morphometrics of the three thresher related species that inhabit similar environments shark species (genus Alopias) were determined to or have comparable metabolic requirements. As examine how metabolism and habitat correlate with such, in reviews of gill morphology (e.g., Gray, respiratory specialization for increased gas exchange. 1954; Hughes, 1984a; Wegner, 2011), fishes are Thresher sharks have large gill surface areas, short often categorized into morphological ecotypes water–blood barrier distances, and thin lamellae. Their large gill areas are derived from long total filament based on the respiratory dimensions of the gills, lengths and large lamellae, a morphometric configura- namely gill surface area and the thickness of the tion documented for other active elasmobranchs (i.e., gill epithelium (the water–blood barrier distance), lamnid sharks, Lamnidae) that augments respiratory which both reflect a species’ capacity for oxygen surface area while
    [Show full text]
  • Spiracular Air Breathing in Polypterid Fishes and Its Implications for Aerial
    ARTICLE Received 1 May 2013 | Accepted 27 Nov 2013 | Published 23 Jan 2014 DOI: 10.1038/ncomms4022 Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods Jeffrey B. Graham1, Nicholas C. Wegner1,2, Lauren A. Miller1, Corey J. Jew1, N Chin Lai1,3, Rachel M. Berquist4, Lawrence R. Frank4 & John A. Long5,6 The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land. 1 Marine Biology Research Division, Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, USA. 2 Fisheries Resource Division, Southwest Fisheries Science Center, NOAA Fisheries, La Jolla, California 92037, USA. 3 VA San Diego Healthcare System, San Diego, California 92161, USA.
    [Show full text]
  • Evidence for Rapid Phenotypic and Behavioural Shifts in a Recently Established Cavefish Population
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2020, 129, 143–161. With 5 figures. Downloaded from https://academic.oup.com/biolinnean/article-abstract/129/1/143/5637080 by University of Minnesota Libraries - Twin Cities user on 13 January 2020 Evidence for rapid phenotypic and behavioural shifts in a recently established cavefish population SUZANNE E. McGAUGH1*, SAM WEAVER1, ERIN N. GILBERTSON1, BRIANNA GARRETT1, MELISSA L. RUDEEN1, STEPHANIE GRIEB1, JENNIFER ROBERTS1, ALEXANDRA DONNY1, PETER MARCHETTO2 and ANDREW G. GLUESENKAMP3 1Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave, Saint Paul, MN 55108, USA 2Department of Bioproducts and Biosystems Engineering, University of Minnesota, 218 BAE, 1390 Eckles Ave., Saint Paul, MN 55108, USA 3Center for Conservation and Research, San Antonio Zoo, 3903 N St Mary’s St., San Antonio, TX 78212, USA Received 25 August 2019; revised 16 September 2019; accepted for publication 17 September 2019 Cave colonization offers a natural laboratory to study an extreme environmental shift, and diverse cave species from around the world often have converged on robust morphological, physiological and behavioural traits. The Mexican tetra (Astyanax mexicanus) has repeatedly colonized caves in the Sierra de El Abra and Sierra de Guatemala regions of north-east Mexico ~0.20–1 Mya, indicating an ability to adapt to the cave environment. The time frame for the evolution of these traits in any cave animal, however, is poorly understood. Astyanax mexicanus from the Río Grande in South Texas were brought to Central Texas beginning in the early 1900s and colonized underground environments.
    [Show full text]
  • Gar (Lepisosteidae)
    Indiana Division of Fish and Wildlife’s Animal Information Series Gar (Lepisosteidae) Gar species found in Indiana waters: -Longnose Gar (Lepisosteus osseus) -Shortnose Gar (Lepisosteus platostomus) -Spotted Gar (Lepisosteus oculatus) -Alligator Gar* (Atractosteus spatula) *Alligator Gar (Atractosteus spatula) Alligator gar were extirpated in many states due to habitat destruction, but now they have been reintroduced to their old native habitat in the states of Illinois, Missouri, Arkansas, and Kentucky. Because they have been stocked into the Ohio River, there is a possibility that alligator gar are either already in Indiana or will be found here in the future. Alligator gar are one of the largest freshwater fishes of North America and can reach up to 10 feet long and weigh 300 pounds. Alligator gar are passive, solitary fishes that live in large rivers, swamps, bayous, and lakes. They have a short, wide snout and a double row of teeth on the upper jaw. They are ambush predators that eat mainly fish but have also been seen to eat waterfowl. They are not, however, harmful to humans, as they will only attack an animal that they can swallow whole. Photo Credit: Duane Raver, USFWS Other Names -garpike, billy gar -Shortnose gar: shortbill gar, stubnose gar -Longnose gar: needlenose gar, billfish Why are they called gar? The Anglo-Saxon word gar means spear, which describes the fishes’ long spear-like appearance. The genus name Lepisosteus contains the Greek words lepis which means “scale” and osteon which means “bone.” What do they look like? Gar are slender, cylindrical fishes with hard, diamond-shaped and non-overlapping scales.
    [Show full text]