A SUMMARY of the LIFE HISTORY and DISTRIBUTION of the SPRING CAVEFISH, Chologaster ]Gassizi, PUTNAM, with POPULATION ESTIMATES for the SPECIES in SOUTHERN ILLINOIS

Total Page:16

File Type:pdf, Size:1020Kb

A SUMMARY of the LIFE HISTORY and DISTRIBUTION of the SPRING CAVEFISH, Chologaster ]Gassizi, PUTNAM, with POPULATION ESTIMATES for the SPECIES in SOUTHERN ILLINOIS View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Illinois Digital Environment for Access to Learning and Scholarship Repository A SUMMARY OF THE LIFE HISTORY AND DISTRIBUTION OF THE SPRING CAVEFISH, Chologaster ]gassizi, PUTNAM, WITH POPULATION ESTIMATES FOR THE SPECIES IN SOUTHERN ILLINOIS PHILIP W. SMITH -NORBERT M. WELCH Biological Notes No.104 Illinois Natural History Survey Urbana, Illinois • May 1978 State of Illinois Department of Registration and Education Natural History Survey Division A Summary of the life History and Distribution of the Spring Cavefish~ Chologasfer agassizi Putnam~ with Population Estimates for the Species in Southern Illinois Philip W. Smith and Norbert M. Welch The genus Chologaster, which means mutilated belly various adaptations and comparative metabolic rates of in reference to the absence of pelvic fins, was proposed all known amblyopsids. The next major contribution to by Agassiz ( 1853: 134) for a new fish found in ditches our knowledge was a series of papers by Hill, who worked and rice fields of South Carolina and described by him with the Warren County, Kentucky, population of spring as C. cornutus. Putnam (1872:30) described a second cave fish and described oxygen preferences ( 1968), food species of the genus found in a well at Lebanon, Tennes­ and feeding habits ( 1969a), effects of isolation upon see, naming it C. agassizi for the author of the generic meristic characters ( 1969b ), and the development of name. Forbes ( 1881:232) reported one specimen of squamation in the young ( 1971). Whittaker & Hill Chologaster from a spring in western Union County, ( 1968) described a new species of cestode parasite, nam­ Illinois, and noted that it differed from known specimens ing it Proteocephalus chologasteri. of the two described species but did not assign a specific In the early 1970's, H. E. McReynolds of the U. S. name to the Illinois population. After acquiring addi­ Forest Service, became concerned about the status of the tional specimens, Forbes ( 1882: 1) described it on the spring cavefish on the Shawnee National Forest in south­ basis of color differences as a new species, C. papilliferus. ern Illinois. He appointed a technical advisory committee Jordan & Gilbert ([1883]: 325, 890) recognized all three to direct research designed to ascertain population size species and noted that the two spring cavefishes ( agassizi of the species in the LaRue-Pine Hills Ecological Area in and papilliferus) occurred in Tennessee, Kentucky, and Union County, lllinois, and hired one of us (Welch) to southern Illinois. Jordan & Evermann (1927:503) be­ conduct censusing studies throughout 1973. In 1974 per­ lieved the different way of life between the epigean C. sonnel from the Section of Faunistic Surveys and Insect cornutus and the hypogean (subterranean) C. papilliferus Identification of the Illinois Natural History Survey, un­ warranted erection of a new genus for the latter and der contract with the Forest Service, investigated the proposed Forbesella, but Jordan (1929:68) noted that status of several unusual fishes, including the spring cave­ Forbesella was preoccupied and suggested Forbesichthys fish, on the Shawnee National Forest and prepared a as a substitute name. report. Since that time Jeffrey J. Webb of Anna, Illinois, Woods & Inger (1957 ) revised all species in the has independently censused spring cavefish in Cave family Amblyopsidae and synonymized C. papilliferus Spring Cave, about 5\12 miles northeast of Pine Hills, and under the earlier C. agassizi, although they pointed out kindly gave his population estimates to us. that minor differences were observed from population to This paper presents the population estimates and population. Their arrangement has been generally fol­ other data taken directly from the three recent reports lowed by subsequent authors, including Hill ( 1969b ) who and brief summaries of other aspects of the life history studied the effects of isolation upon meristic characters. of the spring cavefish reported in the literature. Only Clay (1975:240) has maintained that C. agassizi and C. papilliferus are specifically distinct. Rosen ( 1962 ) ACKNOWLEDGMENTS discussed in detail the anatomy of amblyopsid fishes (in­ The U. S. Department of Agriculture Forest Service cluding Chologaster) and their relationships to other fish initiated and supported most of the investigations upon families but did not concern himself with the validity of which this paper is based and paid for its printing. the described species. Special thanks are due to H. E. McReynolds, Zone Fish­ Except for some studies of eye structure by Eigen­ eries Biologist, and to the personnel of the Harrisburg mann (summarized in Eigenmann 1909), the nonsystem­ Forest Supervisor's Office and the Jonesboro Ranger, atic literature on the spring cavefish consists mostly of District of the Shawnee National Forest, for their interest new locality records and brief incidental accounts of and cooperation. Acknowledgment is also due to the behavior, habitat, food, and size classes (Forbes & Rich­ Chologaster Technical Advisory Committee under the ardson 1908, 1920; Layne & Thompson 1952; Gunning chairmanship of H. E. McReynolds. For aid with field & Lewis 1955 ) . Weise ( 195 7) summarized the prior work work we are indebted to Larry M. Page, Brooks M. Burr, on the species and described in detail the habitat, photo­ John A. Boyd, and Michael A. Morris of the Illinois taxis, thigmotaxis, rheotaxis, temperature tolerance, in­ Natural History Survey, and to the Survey for partial vertebrate and vertebrate species associates, and sexual support of field work and for various administrative dimorphism in a life-history study of the species at Pine services. Marvin E. Braasch of Belleville, Illinois, sup­ Hills in Union County, Illinois. Poulson ( 1963 ) discussed plied new records for Kentucky and Tennessee. Bernice This paper is published by authority of the State of Illinois, IRS Ch. P. Sweeney typed the manuscript, Craig W. Ronto pre­ 127, Par. 58.12. Its printing was paid for by the U.S. Department of Agriculture Forest Service. Dr. Smith is a Taxonomist and Head of the pared the drawings, and Larry M. Page and Larry Far- Section of Faunistic Surveys and Insect Identification of the Illinois Natural History Survey. Dr. Welch is a physician on the staff of Parkland Hospital, Dallas, Texas. Cover Illustration. - Spring cavefish. Drawing by Craig Ron to. 2 3 low took the photographs. Assistant Technical Editor Shirley McClellan edited the manuscript, and John E. Cooper of the North Carolina Museum of Natural His­ tory served as guest reviewer. Larry M. Page and Brooks M. Burr kindly copied records of spring cavefish in sev­ eral museum collections that they visited, and officials in charge of these collections made their holdings freely Fig. 1. - Adult spring cavefish from spring along Big Creek available. David H. Snyder of Austin Peay University in Hardin County, Illinois. (Tennessee) advised us of several collections. The col­ lections include the Illinois Natural History Survey (INHS), Eastern Kentucky University (EKU) , Ken­ better known from springs, spring runs, and spring seeps tucky Fish and Wildlife Department (KFW), Murray (Fig. 2- 4) . It is subterranean, emerging at dusk and State University (MSU), University of Michigan Mu­ usually retreating underground an hour or two before seum of Zoology (UMMZ), U.S. National Museum of dawn. It has eyes that appear functional but serve only Natural History (USNM), UniversityofLouisville (UL ), to distinguish light and darkness (Hill 1969a). In south­ University of Oklahoma (UO ), University of Tennessee ern Illinois its appearance above ground is strongly cor­ (UT), University of Tulsa (UTULSAC), University of related with the amount of flow emerging from the Alabama (UA), and Northeastern Louisiana University springs and with the season. During dry seasons, some (NLU) . Jeffrey J. Webb of Anna, Illinois, supplied a springs have no flow; others continue to flow but have population estimate for Cave Spring Cave, and Claude only a few spring cavefish or none at all. Fish were found D. Baker of the University of Illinois Dixon Springs Acr­ throughout the year in the LaRue-Pine Hills Ecological ricultural Station performed some water chemistry ana l~ ­ Area, but in fewer numbers in January, February, and ses for us. Finally, the Illinois Department of Conserva­ March, and no gravid females were seen from January tion Division of Fisheries granted permission to collect through May. specimens for these studies. Fish from different springs were marked with various colors of tatoo ink so that when recaptured they could be identified with the spring in which they were initially HABITAT AND BEHAVIOR found. The color coding was done deliberately to see if The spring cavefish (Fig. 1) bridges the gap between there was any mixing or exchange underground of indi­ an epigean and hypogean existence. It is known to occur viduals from adjacent springs. None was observed. in caves throughout most of its range, but it is much In tiles where spring water collected to form pools, Fig. 2.- Spring along Big Creek in Hardin County, Illinois. This spring at the base of a large tree ceases to flow when the water table IS very low. The first spring cavefish in Hardin County were discovered here. 4 fish were usually not visible during daylight hours, and The well-developed negative phototaxis noted above at night they usually disappeared into crevices and holes is overshadowed by a strong thigmotaxis. Weise ( 195 7: when the water was disturbed or when a strong light 197) found that in the absence of other forms of conceal­ was directed at the fish. During the day, fish could be ment the fish would float at the surface with the tops of found in spring runs by turning over rocks, but they their heads in contact with floating corks, and that if quickly buried in gravel interstices and under other only lighted places of concealment were present they stones when uncovered.
Recommended publications
  • Amblyopsidae, Amblyopsis)
    A peer-reviewed open-access journal ZooKeys 412:The 41–57 Hoosier(2014) cavefish, a new and endangered species( Amblyopsidae, Amblyopsis)... 41 doi: 10.3897/zookeys.412.7245 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana Prosanta Chakrabarty1,†, Jacques A. Prejean1,‡, Matthew L. Niemiller1,2,§ 1 Museum of Natural Science, Ichthyology Section, 119 Foster Hall, Department of Biological Sciences, Loui- siana State University, Baton Rouge, Louisiana 70803, USA 2 University of Kentucky, Department of Biology, 200 Thomas Hunt Morgan Building, Lexington, KY 40506, USA † http://zoobank.org/0983DBAB-2F7E-477E-9138-63CED74455D3 ‡ http://zoobank.org/C71C7313-142D-4A34-AA9F-16F6757F15D1 § http://zoobank.org/8A0C3B1F-7D0A-4801-8299-D03B6C22AD34 Corresponding author: Prosanta Chakrabarty ([email protected]) Academic editor: C. Baldwin | Received 12 February 2014 | Accepted 13 May 2014 | Published 29 May 2014 http://zoobank.org/C618D622-395E-4FB7-B2DE-16C65053762F Citation: Chakrabarty P, Prejean JA, Niemiller ML (2014) The Hoosier cavefish, a new and endangered species (Amblyopsidae, Amblyopsis) from the caves of southern Indiana. ZooKeys 412: 41–57. doi: 10.3897/zookeys.412.7245 Abstract We describe a new species of amblyopsid cavefish (Percopsiformes: Amblyopsidae) in the genus Amblyopsis from subterranean habitats of southern Indiana, USA. The Hoosier Cavefish, Amblyopsis hoosieri sp. n., is distinguished from A. spelaea, its only congener, based on genetic, geographic, and morphological evi- dence. Several morphological features distinguish the new species, including a much plumper, Bibendum- like wrinkled body with rounded fins, and the absence of a premature stop codon in the gene rhodopsin.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • ECOLOGY of NORTH AMERICAN FRESHWATER FISHES
    ECOLOGY of NORTH AMERICAN FRESHWATER FISHES Tables STEPHEN T. ROSS University of California Press Berkeley Los Angeles London © 2013 by The Regents of the University of California ISBN 978-0-520-24945-5 uucp-ross-book-color.indbcp-ross-book-color.indb 1 44/5/13/5/13 88:34:34 AAMM uucp-ross-book-color.indbcp-ross-book-color.indb 2 44/5/13/5/13 88:34:34 AAMM TABLE 1.1 Families Composing 95% of North American Freshwater Fish Species Ranked by the Number of Native Species Number Cumulative Family of species percent Cyprinidae 297 28 Percidae 186 45 Catostomidae 71 51 Poeciliidae 69 58 Ictaluridae 46 62 Goodeidae 45 66 Atherinopsidae 39 70 Salmonidae 38 74 Cyprinodontidae 35 77 Fundulidae 34 80 Centrarchidae 31 83 Cottidae 30 86 Petromyzontidae 21 88 Cichlidae 16 89 Clupeidae 10 90 Eleotridae 10 91 Acipenseridae 8 92 Osmeridae 6 92 Elassomatidae 6 93 Gobiidae 6 93 Amblyopsidae 6 94 Pimelodidae 6 94 Gasterosteidae 5 95 source: Compiled primarily from Mayden (1992), Nelson et al. (2004), and Miller and Norris (2005). uucp-ross-book-color.indbcp-ross-book-color.indb 3 44/5/13/5/13 88:34:34 AAMM TABLE 3.1 Biogeographic Relationships of Species from a Sample of Fishes from the Ouachita River, Arkansas, at the Confl uence with the Little Missouri River (Ross, pers. observ.) Origin/ Pre- Pleistocene Taxa distribution Source Highland Stoneroller, Campostoma spadiceum 2 Mayden 1987a; Blum et al. 2008; Cashner et al. 2010 Blacktail Shiner, Cyprinella venusta 3 Mayden 1987a Steelcolor Shiner, Cyprinella whipplei 1 Mayden 1987a Redfi n Shiner, Lythrurus umbratilis 4 Mayden 1987a Bigeye Shiner, Notropis boops 1 Wiley and Mayden 1985; Mayden 1987a Bullhead Minnow, Pimephales vigilax 4 Mayden 1987a Mountain Madtom, Noturus eleutherus 2a Mayden 1985, 1987a Creole Darter, Etheostoma collettei 2a Mayden 1985 Orangebelly Darter, Etheostoma radiosum 2a Page 1983; Mayden 1985, 1987a Speckled Darter, Etheostoma stigmaeum 3 Page 1983; Simon 1997 Redspot Darter, Etheostoma artesiae 3 Mayden 1985; Piller et al.
    [Show full text]
  • Evidence for Rapid Phenotypic and Behavioural Shifts in a Recently Established Cavefish Population
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2020, 129, 143–161. With 5 figures. Downloaded from https://academic.oup.com/biolinnean/article-abstract/129/1/143/5637080 by University of Minnesota Libraries - Twin Cities user on 13 January 2020 Evidence for rapid phenotypic and behavioural shifts in a recently established cavefish population SUZANNE E. McGAUGH1*, SAM WEAVER1, ERIN N. GILBERTSON1, BRIANNA GARRETT1, MELISSA L. RUDEEN1, STEPHANIE GRIEB1, JENNIFER ROBERTS1, ALEXANDRA DONNY1, PETER MARCHETTO2 and ANDREW G. GLUESENKAMP3 1Ecology, Evolution, and Behavior, University of Minnesota, 140 Gortner Lab, 1479 Gortner Ave, Saint Paul, MN 55108, USA 2Department of Bioproducts and Biosystems Engineering, University of Minnesota, 218 BAE, 1390 Eckles Ave., Saint Paul, MN 55108, USA 3Center for Conservation and Research, San Antonio Zoo, 3903 N St Mary’s St., San Antonio, TX 78212, USA Received 25 August 2019; revised 16 September 2019; accepted for publication 17 September 2019 Cave colonization offers a natural laboratory to study an extreme environmental shift, and diverse cave species from around the world often have converged on robust morphological, physiological and behavioural traits. The Mexican tetra (Astyanax mexicanus) has repeatedly colonized caves in the Sierra de El Abra and Sierra de Guatemala regions of north-east Mexico ~0.20–1 Mya, indicating an ability to adapt to the cave environment. The time frame for the evolution of these traits in any cave animal, however, is poorly understood. Astyanax mexicanus from the Río Grande in South Texas were brought to Central Texas beginning in the early 1900s and colonized underground environments.
    [Show full text]
  • Cave Biodiversity of the Southern Cumberland Plateau Kirk S
    b-3-guidebook_Guidebook3 6/18/2014 10:01 PM Page 159 Cave Biodiversity of the Southern Cumberland Plateau Kirk S. Zigler, NSS 62696; Matthew L. Niemiller, NSS 53235; and Danté B. Fenolio The South Cumberland Region of Tennessee, Alabama, and Georgia (Figure 1) is known for its tremendous diversity of caves, including huge pits, massive stream passages, and tight crawls. Less well known is that the region also supports tremendous cave biodiversity (Niemiller, Zigler, and Fenolio, 2013). Here we discuss many of the species that inhabit caves of the region, focusing on the southern Cumberland Plateau. Cave Biodiversity Four ecological classes of organisms can be found in caves: trogloxenes, subtroglophiles, eutroglophiles, and troglobionts (Culver and Pipan, 2009). Trogloxenes are not typically found in caves and cannot persist there for long periods of time. They must either find their way back to the surface or ultimately perish. Subtroglophiles are commonly found in caves but are associated with surface habitats for at least part of their life cycle. Some are seasonal inhabitants of caves and others move back and forth from cave to surface habitats for feeding, such as cave-roosting bats, cave crickets, and Allegheny Woodrats (Neotoma magister). Eutroglophiles are commonly found underground but can be found in surface habitats. Unlike trogloxenes and subtroglophiles, eutroglophiles can complete their entire life cycle Figure 1 - The South Cumberland Region at the junction of underground. Examples include the Cave Salamander Tennessee, Alabama, and Georgia. Figure courtesy of Nick Hollingshead. (Eurycea lucifuga) and the Cave Orbweaver (Meta ovalis). Troglobionts are obligate, permanent residents of subterranean habitats.
    [Show full text]
  • Evolution of the Nitric Oxide Synthase Family in Vertebrates and Novel
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Evolution of the nitric oxide synthase family in vertebrates 2 and novel insights in gill development 3 4 Giovanni Annona1, Iori Sato2, Juan Pascual-Anaya3,†, Ingo Braasch4, Randal Voss5, 5 Jan Stundl6,7,8, Vladimir Soukup6, Shigeru Kuratani2,3, 6 John H. Postlethwait9, Salvatore D’Aniello1,* 7 8 1 Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121, 9 Napoli, Italy 10 2 Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics 11 Research (BDR), Kobe, 650-0047, Japan 12 3 Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), 2-2- 13 3 Minatojima-minami, Chuo-ku, Kobe, Hyogo, 650-0047, Japan 14 4 Department of Integrative Biology and Program in Ecology, Evolution & Behavior (EEB), 15 Michigan State University, East Lansing, MI 48824, USA 16 5 Department of Neuroscience, Spinal Cord and Brain Injury Research Center, and 17 Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky, USA 18 6 Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech 19 Republic 20 7 Division of Biology and Biological Engineering, California Institute of Technology, 21 Pasadena, CA, USA 22 8 South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, 23 Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske 24 Budejovice, Vodnany, Czech Republic 25 9 Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA 26 † Present address: Department of Animal Biology, Faculty of Sciences, University of 27 Málaga; and Andalusian Centre for Nanomedicine and Biotechnology (BIONAND), 28 Málaga, Spain 29 30 * Correspondence: [email protected] 31 32 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.14.448362; this version posted June 14, 2021.
    [Show full text]
  • THE CONTRIBUTION of HEADWATER STREAMS to BIODIVERSITY in RIVER Networksl
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION Vol. 43, No.1 AMERICAN WATER RESOURCES ASSOCIATION February 2007 THE CONTRIBUTION OF HEADWATER STREAMS TO BIODIVERSITY IN RIVER NETWORKSl Judy L. Meyer, David L. Strayer, J. Bruce Wallace, Sue L. Eggert, Gene S. Helfman, and Norman E. Leonard2 ABSTRACT: The diversity of life in headwater streams (intermittent, first and second order) contributes to the biodiversity of a river system and its riparian network. Small streams differ widely in physical, chemical, and biotic attributes, thus providing habitats for a range of unique species. Headwater species include permanent residents as well as migrants that travel to headwaters at particular seasons or life stages. Movement by migrants links headwaters with downstream and terrestrial ecosystems, as do exports such as emerging and drifting insects. We review the diversity of taxa dependent on headwaters. Exemplifying this diversity are three unmapped headwaters that support over 290 taxa. Even intermittent streams may support rich and distinctive biological communities, in part because of the predictability of dry periods. The influence of headwaters on downstream systems emerges from their attributes that meet unique habitat requirements of residents and migrants by: offering a refuge from temperature and flow extremes, competitors, predators, and introduced spe­ cies; serving as a source of colonists; providing spawning sites and rearing areas; being a rich source of food; and creating migration corridors throughout the landscape. Degradation and loss of headwaters and their con­ nectivity to ecosystems downstream threaten the biological integrity of entire river networks. (KEY TERMS: biotic integrity; intermittent; first-order streams; small streams; invertebrates; fish.) Meyer, Judy L., David L.
    [Show full text]
  • Making a Big Splash with Louisiana Fishes
    Making a Big Splash with Louisiana Fishes Written and Designed by Prosanta Chakrabarty, Ph.D., Sophie Warny, Ph.D., and Valerie Derouen LSU Museum of Natural Science To those young people still discovering their love of nature... Note to parents, teachers, instructors, activity coordinators and to all the fishermen in us: This book is a companion piece to Making a Big Splash with Louisiana Fishes, an exhibit at Louisiana State Universi- ty’s Museum of Natural Science (MNS). Located in Foster Hall on the main campus of LSU, this exhibit created in 2012 contains many of the elements discussed in this book. The MNS exhibit hall is open weekdays, from 8 am to 4 pm, when the LSU campus is open. The MNS visits are free of charge, but call our main office at 225-578-2855 to schedule a visit if your group includes 10 or more students. Of course the book can also be enjoyed on its own and we hope that you will enjoy it on your own or with your children or students. The book and exhibit was funded by the Louisiana Board Of Regents, Traditional Enhancement Grant - Education: Mak- ing a Big Splash with Louisiana Fishes: A Three-tiered Education Program and Museum Exhibit. Funding was obtained by LSUMNS Curators’ Sophie Warny and Prosanta Chakrabarty who designed the exhibit with Southwest Museum Services who built it in 2012. The oarfish in the exhibit was created by Carolyn Thome of the Smithsonian, and images exhibited here are from Curator Chakrabarty unless noted elsewhere (see Appendix II).
    [Show full text]
  • Distribution Changes of Small Fishes in Streams of Missouri from The
    Distribution Changes of Small Fishes in Streams of Missouri from the 1940s to the 1990s by MATTHEW R. WINSTON Missouri Department of Conservation, Columbia, MO 65201 February 2003 CONTENTS Page Abstract……………………………………………………………………………….. 8 Introduction…………………………………………………………………………… 10 Methods……………………………………………………………………………….. 17 The Data Used………………………………………………………………… 17 General Patterns in Species Change…………………………………………... 23 Conservation Status of Species……………………………………………….. 26 Results………………………………………………………………………………… 34 General Patterns in Species Change………………………………………….. 30 Conservation Status of Species……………………………………………….. 46 Discussion…………………………………………………………………………….. 63 General Patterns in Species Change………………………………………….. 53 Conservation Status of Species………………………………………………. 63 Acknowledgments……………………………………………………………………. 66 Literature Cited……………………………………………………………………….. 66 Appendix……………………………………………………………………………… 72 FIGURES 1. Distribution of samples by principal investigator…………………………. 20 2. Areas of greatest average decline…………………………………………. 33 3. Areas of greatest average expansion………………………………………. 34 4. The relationship between number of basins and ……………………….. 39 5. The distribution of for each reproductive group………………………... 40 2 6. The distribution of for each family……………………………………… 41 7. The distribution of for each trophic group……………...………………. 42 8. The distribution of for each faunal region………………………………. 43 9. The distribution of for each stream type………………………………… 44 10. The distribution of for each range edge…………………………………. 45 11. Modified
    [Show full text]
  • Biology of Subterranean Fishes
    CHAPTER 7 Subterranean Fishes of North America: Amblyopsidae Matthew L. Niemiller1 and Thomas L. Poulson2 1Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996, USA E-mail: [email protected] 2Emeritus Professor, University of Illinois-Chicago E-mail: [email protected] INTRODUCTION The Amblyopsid cavefi shes, family Amblyopsidae, have been viewed as a model system for studying the ecological and evolutionary processes of cave adaptation because the four cave-restricted species in the family represent a range of troglomorphy that refl ect variable durations of isolation in caves (Poulson 1963, Poulson and White 1969). This group has both intrigued and excited biologists since the discovery and description of Amblyopsis spelaea, the fi rst troglobitic fi sh ever described, in the early 1840s. Other than the Mexican cavefi sh (Astyanax fasciatus), cave Amblyopsids are the most comprehensively studied troglobitic fi shes (Poulson, this volume). The Amblyopsidae (Fig. 1) includes species with some unique features for all cavefi sh. Typhlichthys subterraneus is the most widely distributed of any cavefi sh species. Its distribution spans more than 5° of latitude and 1 million km2 (Proudlove 2006). Amblyopsis spelaea is the only cavefi sh known to incubate eggs in its gill chamber. In fact, this species is the only one of the approximately 1100 species in North America with this behavior. The Amblyopsidae is the most specious family of subterranean fi shes in the United States containing four of the eight species recognized. Two other © 2010 by Science Publishers 170 Biology of Subterranean Fishes Fig. 1 Members of the Amblyopsidae. The family includes (A) the surface- dwelling swampfi sh (Chologaster cornuta), (B) the troglophile spring cavefi sh (Forbesichthys agassizii), and four troglobites: (C) the southern cavefi sh (Typhlichthys subterraneus), (D) the northern cavefi sh (Amblyopsis spelaea), (E) the Ozark cavefi sh (A.
    [Show full text]
  • Fish Overview
    The Toledo Zoo/ThinkingWorks Teacher Overview for the Fish Lessons Ó2003 Teacher Overview: Fish Fish have many traits that are unique to this particular class of animals. Below is a list of general fish traits to help you and your students complete the ThinkingWorks menu. This lesson focuses on typical fish that most people are familiar with, not on atypical fish such as seahorses. Fish are divided into three groups or classes, each with its own set of features. These classes include the bony fish (e.g., tuna and bass), cartilaginous fish (e.g., sharks and rays) and jawless fish (e.g., lampreys). We have included a list of the different fish found at The Toledo Zoo. Most of the fish are found in the Aquarium but there are also fish in the Diversity of Life. Note that animals move constantly in and out of the Zoo so the list below may be inaccurate. Please call the Zoo for a current list of fish that are on exhibit and their locations. Typical Fish Traits Lightweight, strong scales Lateral line for detecting for protection changes in turbulence along a fish as well as changes in water pressure Gas bladder for buoyancy, stability (internal) Symmetrical tail for Most fish have a well powerful swimming developed eye for locating prey, detecting predators and finding a mate. Flexible “lips” for picking up food Gills for extracting oxygen from the water Maneuverable, paired fins for Lightweight, strong moving forward and controlling skeleton for support roll, pitch and yaw q Fish are cold-blooded, obtaining heat from the surrounding water.
    [Show full text]
  • Status Report for the Southern Cavefish, Typhlichthys Subterraneus in Arkansas
    City University of New York (CUNY) CUNY Academic Works Publications and Research Baruch College 2007 Status Report for the Southern Cavefish, yphlichthysT subterraneus in Arkansas Aldemaro Romero Jr. CUNY Bernard M Baruch College Michel Conner How does access to this work benefit ou?y Let us know! More information about this work at: https://academicworks.cuny.edu/bb_pubs/296 Discover additional works at: https://academicworks.cuny.edu This work is made publicly available by the City University of New York (CUNY). Contact: [email protected] Status Report for the Southern Cavefish, Typhlichthys subterraneus in Arkansas Final Report By Aldemaro Romero, Ph.D.* and Michel Conner Department of Biological Sciences Arkansas State University State University, AR 72467, USA *[email protected] Submitted to the Arkansas Game and Fish Commission 22 July 2007 2 Executive Summary This preliminary report summarizes the results of our study on the status of the southern cavefish (Typhlichthys subterraneus) in Arkansas. Its presence in the state represents the western- southern limits of its distribution. Three localities have been confirmed that contain individuals of this species: Richardson Cave (Fulton County), Alexander Cave/ Clark Spring (Stone County) and Ennis Cave (Stone County). A fourth locality has been cited as a well in Randolph County, but because the exact location is unknown, its presence has not been confirmed. There are a number of unconfirmed localities for “cavefishes” in the region which are listed in this report. Populations of this species in Arkansas seem to be small (less than 100 individuals) which is common among populations of hypogean amblyopsids elsewhere. All the confirmed localities are in areas either under controlled access by the private owners or by the federal government.
    [Show full text]