Physico-Chemical Properties of Clay Minerals and Their Use As a Health Promoting Feed Additive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
17. Clay Mineralogy of Deep-Sea Sediments in the Northwestern Pacific, Dsdp, Leg 20
17. CLAY MINERALOGY OF DEEP-SEA SEDIMENTS IN THE NORTHWESTERN PACIFIC, DSDP, LEG 20 Hakuyu Okada and Katsutoshi Tomita, Department of Geology, Kagoshima University, Kagoshima 890, Japan INTRODUCTION intensity of montmorillonite can be obtained by sub- tracting the (001) reflection intensity of chlorite from the Clay mineral study of samples collected during Leg 20 of preheating or pretreating reflection intensity at 15 Å. the Deep Sea Drilling Project in the western north Pacific In a specimen with coexisting kaolinite and chlorite, was carried out mainly by means of X-ray diffraction their overlapping reflections make it difficult to determine analyses. Emphasis was placed on determining vertical quantitatively these mineral compositions. For such speci- changes in mineral composition of sediments at each site. mens Wada's method (Wada, 1961) and heat treatment Results of the semiquantitative and quantitative deter- were adopted. minations of mineral compositions of analyzed samples are The following shows examples of the determination of shown in Tables 1, 2, 3, 5, and 7. The mineral suites some intensity ratios of reflections of clay minerals. presented here show some unusual characters as discussed below. The influence of burial diagenesis is also evidenced Case 1 in the vertical distribution of some authigenic minerals. Montmorillonite (two layers of water molecules between These results may contribute to a better understanding silicate layers)—kaolinite mixture. of deep-sea sedimentation on the northwestern Pacific This is the situation in which samples contain both plate. montmorillonite and kaolinite. The first-order basal reflec- tions of these minerals do not overlap. When the (002) ANALYTICAL PROCEDURES reflection of montmorillonite, which appears at about 7 Å, Each sample was dried in air, and X-ray diffraction is absent or negligible, the intensity ratio is easily obtained. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Mapping Phyllosilicates and Aqueous Alteration Products at Tyrrhena Terra, Mars
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1323.pdf MAPPING PHYLLOSILICATES AND AQUEOUS ALTERATION PRODUCTS AT TYRRHENA TERRA, MARS. F. H. Grant1 and J. L. Bishop2, 1University of California, Los Angeles (Los Angeles, CA; [email protected]), 2SETI Institute (Mountain View, CA). Summary: Outcrops of phyllosilicates and small sites of less common aqueous alteration minerals were mapped at Tyrrhena Terra on Mars using CRISM pa- rameters, and CRISM spectral data were collected to more closely analyze the mineralogy in this region. Fe- and Mg-rich smectite and chlorite group phyllosilicates are both detected at Tyrrhena Terra, including sapo- nite, chamosite, and clinochlore. Zeolites and car- bonates are among the rarer alteration minerals also observed at Tyrrhena Terra that further constrain the alteration history in this region. More chlorite than smectite is observed, indicating higher temperature alteration processes occurred at Tyrrhena Terra. Introduction: Tyrrhena Terra is a region in the southern hemisphere of Mars, between the Isidis and Hellas impact basins and south of Libya Montes. The selected study site (Fig. 1) is of particular interest be- cause it has a large concentration of phyllosilicate minerals exposed on the surface, among small outcrops of rarer aqueous alteration minerals [1]. Phyllosilicates are a crucial mineral group to study when striving to understand the aqueous alteration history of a region. Less common aqueous alteration minerals, including zeolite, carbonate, and hydrated sulfates, are also im- portant to further constrain the alteration history of a region [2]. For this research project, we focused pri- marily on identifying the phyllosilicate minerals smec- tite and chlorite. -
Halloysite Nanotubes Coated by Chitosan for the Controlled Release of Khellin
polymers Article Halloysite Nanotubes Coated by Chitosan for the Controlled Release of Khellin Lorenzo Lisuzzo 1 , Giuseppe Cavallaro 1,2,* , Stefana Milioto 1,2 and Giuseppe Lazzara 1,2 1 Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; [email protected] (L.L.); [email protected] (S.M.); [email protected] (G.L.) 2 Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy * Correspondence: [email protected]; Tel.: +39-091-2389-7962 Received: 9 July 2020; Accepted: 5 August 2020; Published: 7 August 2020 Abstract: In this work, we have developed a novel strategy to prepare hybrid nanostructures with controlled release properties towards khellin by exploiting the electrostatic interactions between chitosan and halloysite nanotubes (HNT). Firstly, khellin was loaded into the HNT lumen by the vacuum-assisted procedure. The drug confinement within the halloysite cavity has been proved by water contact angle experiments on the HNT/khellin tablets. Therefore, the loaded nanotubes were coated with chitosan as a consequence of the attractions between the cationic biopolymer and the halloysite outer surface, which is negatively charged in a wide pH range. The effect of the ionic strength of the aqueous medium on the coating efficiency of the clay nanotubes was investigated. The surface charge properties of HNT/khellin and chitosan/HNT/khellin nanomaterials were determined by ζ potential experiments, while their morphology was explored through Scanning Electron Microscopy (SEM). Water contact angle experiments were conducted to explore the influence of the chitosan coating on the hydrophilic/hydrophobic character of halloysite external surface. -
Portada 1291.Cdr
Informes Técnicos Ciemat 1291 Septiembre, 2013 Comprehensive Characterization of Palygorskite from Torrejón el Rubio (Spain) Based on Experimental Techniques and Theoretical DFT Studies A. M. Fernández V. Timón J.J. Cubero D.M. Sánchez-Ledesma L. Gutiérrez-Nebot J.J. Martínez C. Romero M. Labajo A. Melón I. Barrios GOBIERNO MINISTERIO DE ESPAÑA DE ECONOMÍA Centro de Investigaciones Y COMPETITIVIDAD Energéticas, Medioambientales y Tecnológicas Informes Técnicos Ciemat 1291 Septiembre, 2013 Comprehensive Characterization of Palygorskite from Torrejón el Rubio (Spain) Based on Experimental Techniques and Theoretical DFT Studies A. M. Fernándeza V. Timónb J.J. Cuberoc D.M. Sánchez-Ledesmaa L. Gutiérrez-Nebota J.J. Martíneza C. Romeroa M. Labajoa A. Melóna I. Barriosa a CIEMAT, Avda. Complutense 22, 28040, Madrid, Spain b Instituto de Estructura de la Materia, Serrano 123, 28006 Madrid, Spain c Departamento de Minas, Junta de Extremadura, Spain Departamento de Medio Ambiente Toda correspondencia en relación con este trabajo debe dirigirse al Servicio de In- formación y Documentación, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Ciudad Universitaria, 28040-MADRID, ESPAÑA. Las solicitudes de ejemplares deben dirigirse a este mismo Servicio. Los descriptores se han seleccionado del Thesauro del DOE para describir las ma- terias que contiene este informe con vistas a su recuperación. La catalogación se ha hecho utilizando el documento DOE/TIC-4602 (Rev. 1) Descriptive Cataloguing On-Line, y la cla- sifi cación de acuerdo con el documento DOE/TIC.4584-R7 Subject Categories and Scope publicados por el Offi ce of Scientifi c and Technical Information del Departamento de Energía de los Estados Unidos. -
The Properties of Moulding Sand with Halloysite
ARCHIVES of ISSN (2299-2944) FOUNDRY ENGINEERING Volume 12 Issue 2/2012 DOI: 10.2478/v10266-012-0062-5 Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences 205 – 210 The Properties of Moulding Sand with Halloysite M. Cholewa, Ł. Kozakiewicz* Silesian University of Technology, Foundry Department, Towarowa 7, 44-100 Gliwice, PL *Corresponding author: E-mail address: [email protected] Received 25-05-2012; accepted in revised form 31-05-2012 Abstract Until now, the mould sand in general use in the foundry industry are based on bentonite, which resulted from the fact that a good recognition properties and phenomena associated with this material. Come to know and normalized content of montmorillonite and carbonates and their important role in the construction of bentonite, and mass properties of the participation of compressive strength or scatter. Halloysite is widely used in industry and beyond them. However, little is known about its use in the foundry in Poland and abroad. This article presents preliminary research conducted at the Foundry Department of Silesian University of Technology on this material. Will raise the question of the representation of this two materials, which contains information connected with history and formation of materials, their structure and chemical composition. In the research, the results of compressive strength tests in wet masses of quartz matrix, where as a binder is used halloysite and bentonite in different proportions. Keywords: Halloysite, Bentonite, Moulding Sand Automation in the previous period concerned the processes 1. Introduction related mainly to the implementation of form, hence the early arrangements are known as automatic molding lines (ALF). -
HIGH TEMPERATURE PHASES in SEPIOLITB, ATTAPULGITE and SAPONITE Gnoncrs Kulnrcrr,* Departmentof Geology, Uniters'ityof Lllinois, Urbana,Illinois
THE AMERICAN MINERALOGIST, VOL 44, JULY_AUGUST, 1959 HIGH TEMPERATURE PHASES IN SEPIOLITB, ATTAPULGITE AND SAPONITE Gnoncrs Kulnrcrr,* Departmentof Geology, Uniters'ityof lllinois, Urbana,Illinois. AssrnA.cr The high temperature reactions of sepiolite, attapulgite and saponite were studied by continuous high temperatute rc-ray diffraction techniques. The easy formation of enstatite from the fibrous minerals is explained by structural analogy. The reactions of the well crystallized specimens of sepiolite and attapulgite difier somewhat from those of their massive sedimentary varieties. The difierences cannot be ex- plained with the chemical and structural data, suggesting possible variations in some inti- mate details of the framework of these two varieties. INrnooucuox The nature of the crystalline phases formed by firing the magnesian clay mineralshas beendescribed (2,3,7, I0, 12,15, 16),but only for the well crystallized chlorites (3) have the precise conditions of formation of these phases as well as their structural relationships with the starting material been clearly determined. The three minerals chosenfor this investigation provide difierent struc- tural arrangementsof the same type of lattice in a series of Al-Mg hydrous silicates.Saponite and sepiolite have the same bulk composi- tion but they difier in the mode of assemblage,i.e. layers or ribbons, of their structural units. Attapulgite has the same kind of framework as sepiolite, but a large proportion of magnesium has been replaced by aluminum or iron. It was thought that, by taking advantage of these features and by using a method of continuous high-tempetature x-ray diffraction analysis,a new contribution to the problem would be possible. -
Fabrication of Eco-Friendly Betanin Hybrid Materials Based on Palygorskite and Halloysite
Supplementary Materials Fabrication of Eco-Friendly Betanin Hybrid Materials Based on Palygorskite and Halloysite Shue Li 1,2,3, Bin Mu 1,3,*, Xiaowen Wang 1,3, Yuru Kang 1,3 and Aiqin Wang 1,3,* 1 Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (S.L.); [email protected] (X.W.); [email protected] (Y.K.) 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3 Center of Xuyi Palygorskite Applied Technology, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Xuyi 211700, China * Correspondence: [email protected] (B.M.); [email protected] (A.W.); Fax: +86-931-496-8019; Tel: +86-931-486-8118 Received: 3 September 2020; Accepted: 15 October 2020; Published: date Materials 2020, 13, 4649; doi:10.3390/ma13204649 www.mdpi.com/journal/materials Materials 2020, 13, 4649 2 of 4 I. Supplementary Figures Figure S1. The element mapping images of (A) betanin/Pal and (B) betanin/Hal: (a) C, (b) N, (c) O, (d) Si, (e) Mg, (f), Al (g) Fe, (h) Ca. Materials 2020, 13, 4649; doi:10.3390/ma13204649 www.mdpi.com/journal/materials Materials 2020, 13, 4649 3 of 4 Figure S2. Digital images of the pure betanin, betanin/Pal and betanin/Hal at different heating temperatures. Figure S3. Digital images of the supernate after the pure betanin, betanin/Pal, betanin/Hal were immersed h in (a) distilled water, (b) 0.1 M HCl and (c) 0.1 M NaOH for 24, respectively. -
Clay Minerals Soils to Engineering Technology to Cat Litter
Clay Minerals Soils to Engineering Technology to Cat Litter USC Mineralogy Geol 215a (Anderson) Clay Minerals Clay minerals likely are the most utilized minerals … not just as the soils that grow plants for foods and garment, but a great range of applications, including oil absorbants, iron casting, animal feeds, pottery, china, pharmaceuticals, drilling fluids, waste water treatment, food preparation, paint, and … yes, cat litter! Bentonite workings, WY Clay Minerals There are three main groups of clay minerals: Kaolinite - also includes dickite and nacrite; formed by the decomposition of orthoclase feldspar (e.g. in granite); kaolin is the principal constituent in china clay. Illite - also includes glauconite (a green clay sand) and are the commonest clay minerals; formed by the decomposition of some micas and feldspars; predominant in marine clays and shales. Smectites or montmorillonites - also includes bentonite and vermiculite; formed by the alteration of mafic igneous rocks rich in Ca and Mg; weak linkage by cations (e.g. Na+, Ca++) results in high swelling/shrinking potential Clay Minerals are Phyllosilicates All have layers of Si tetrahedra SEM view of clay and layers of Al, Fe, Mg octahedra, similar to gibbsite or brucite Clay Minerals The kaolinite clays are 1:1 phyllosilicates The montmorillonite and illite clays are 2:1 phyllosilicates 1:1 and 2:1 Clay Minerals Marine Clays Clays mostly form on land but are often transported to the oceans, covering vast regions. Kaolinite Al2Si2O5(OH)2 Kaolinite clays have long been used in the ceramic industry, especially in fine porcelains, because they can be easily molded, have a fine texture, and are white when fired. -
Metamorphic and Metasomatic Kyanite-Bearing Mineral
Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Trebus, Marie Bitte, Benjamin Rondeau, Constantinos Mavrogonatos, Ian Graham, Marius Etienne, et al. To cite this version: Alexandre Tarantola, Panagiotis Voudouris, Aurélien Eglinger, Christophe Scheffer, Kimberly Tre- bus, et al.. Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece). Minerals, MDPI, 2019, 10.3390/min9040252. hal-02932247 HAL Id: hal-02932247 https://hal.archives-ouvertes.fr/hal-02932247 Submitted on 7 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. minerals Article Metamorphic and Metasomatic Kyanite-Bearing Mineral Assemblages of Thassos Island (Rhodope, Greece) Alexandre Tarantola 1,* , Panagiotis Voudouris 2 , Aurélien Eglinger 1, Christophe Scheffer 1,3, Kimberly Trebus 1, Marie Bitte 1, Benjamin Rondeau 4 , Constantinos Mavrogonatos 2 , Ian Graham 5, Marius Etienne 1 and Chantal Peiffert -
Far-Infrared Spectra of Hydrous Silicates at Low Temperatures Providing Laboratory Data for Herschel and ALMA
A&A 492, 117–125 (2008) Astronomy DOI: 10.1051/0004-6361:200810312 & c ESO 2008 Astrophysics Far-infrared spectra of hydrous silicates at low temperatures Providing laboratory data for Herschel and ALMA H. Mutschke1,S.Zeidler1, Th. Posch2, F. Kerschbaum2, A. Baier2, and Th. Henning3 1 Astrophysikalisches Institut, Schillergässchen 2-3, 07745 Jena, Germany e-mail: [mutschke;sz]@astro.uni-jena.de 2 Institut für Astronomie, Türkenschanzstraße 17, 1180 Wien, Austria e-mail: [email protected] 3 Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] Received 2 June 2008 / Accepted 4 September 2008 ABSTRACT Context. Hydrous silicates occur in various cosmic environments, and are among the minerals with the most pronounced bands in the far infrared (FIR) spectral region. Given that Herschel and ALMA will open up new possibilities for astronomical FIR and sub-mm spectroscopy, data characterizing the dielectric properties of these materials at long wavelengths are desirable. Aims. We aimed at examining the FIR spectra of talc, picrolite, montmorillonite, and chamosite, which belong to four different groups of phyllosilicates. We tabulated positions and band widths of the FIR bands of these minerals depending on the dust temperature. Methods. By means of powder transmission spectroscopy, spectra of the examined materials were measured in the wavelength range 25−500 μm at temperatures of 300, 200, 100, and 10 K. Results. Room-temperature measurements yield the following results. For talc, a previously unknown band, centered at 98.5 μm, was found, in addition to bands at 56.5 and 59.5 μm. -
Nontronite Is a Smectire Group Clay Mineral Which. Ff,T'lffi'"Fff"#:J""
The American Mineralogist, Yolume60, pages 840448, 1975 Primary NontroniteFrom the VenezuelanGuayana W. C. ISpHoRpllrC Department of Geology and Geography, Uniuersity of South Alabama Mobile, Alabama 36688 Abstract Nontronite, the iron-rich end member of SmectiteGroup clays, has previouslybeen reported as a hydrothermalalteration product, as a constituentof soil clays formed by weatheringof a variety of rock types,and as an alterationproduct of volcanicrocks. This paper describesthe chemical,optical, and X-ray propertiesof a new occurrenceof the mineralwhere its origin is apparentlyrelated to directcrystallization from high temperature waters.The mineral is further unique in that it containsonly a very small percentageof aluminaand therebyclosely approaches the previouslyunreported wholly iron end-member. Significantdifferences were found in the optical propertiesof the Venezuelannontronit€ when comparedwith those of an earlier study, especiallywith regard to the variation in refractiveindex with Fe2Oscontent. It now appearsthat this variationhas been over-simpli- fied and may not be as orderlyas was previouslybelieved. The variouslines of evidencethat argue againstan origin by either hydrothermalalteration or chemicalweathering are dis- cussed,as well as thosesupporting an origin by direct crystallizationfrom high temperature watersof probablemagmatic or metamorphicorigin. lntroduction product in gneissesand slates.At the other sites,non- Nontroniteisa Smectire Group clay mineral which. ff,T'Lffi'"fff"#:j""1|# ,XXT::""."t1:j'# occurs as the iron-rich end-memberin the d.ioc- rr-;i",;-be an arterationproduct. At the type tahedral sub-group montmorillonite-beidellite- io.uri,v,Nontron, France, Berthier (1g27) descri6ed nontroniteseries' It haspreviously been *p":l:9^:t^1 ,tr" ri".r"r-: as occurringas "onion-like" massesas- constituentof sedimentaryrocks, as the productof -:-,--; -,,, alterationorvolcanic grasses andas a hydrother.mal alterationproduct.