Metamorphism Definition of Metamorphism

Total Page:16

File Type:pdf, Size:1020Kb

Metamorphism Definition of Metamorphism Chapter-1 1.Introduction to Metamorphism Definition of Metamorphism • The word "Metamorphism" comes from the Greek: Meta = change, Morph = form, so metamorphism means to change form. • In geology Metamorphism is a proceses leading change in mineralogy and/or structure and /or chemical composition in a rock.. • These changes are due to physical and/or chemical conditions that differ from theses normally occurring in the zone of weathering cementation and diagenesis. petrology is key 2 • The original rock that has undergone metamorphism is called the protolith. • Protolith- refers to the original rock, prior to metamorphism. In low grade metamorphic rocks, original textures are often preserved allowing one to determine the likely protolith. • Metamorphic rocks are produced from üIgneous rocks üSedimentary rocks See on Rock cycle!!! üOther metamorphic rocks • Metamorphism progresses incrementally from low-grade to high- grade. • During metamorphism the rock must remain essentially solid. petrology is key 3 The Rock Cycle petrology is key 4 • The limits of metamorphism is dependent on the two important physical variables, i.e. Temp and pressure. Ø L o w t e m p l i m i t o f m e t a m o r p h i s m : A t w h i c h transformation set are strongly dependent on the material under investigation. (e.g. Important transformation of evaporate and organic material, begin to take place at considerably low temp. than transformation of most silicates and carbonate rocks. • In general, the low temp. Limit of metamorphism silicate rocks are around 150 + 50 0c. • the first appearance of the following minerals is taken to indicate the beginning of metamorphism: • F e - M g – c a r p h o l i t e , g l a u c o p h o n e , l a w s o n i t e , paragonite, prehnite,). petrology is key 5 Ø High temp Limit of Metamorphism: Melting temp. are strongly dependent on pressure, rock composition and the amount of water present. • The highest temp. Recorded from metamorphic rocks of crustal origin by geothermometric methods are 1000-1100 0c. petrology is key 6 • Summing up the high temp. Limit of crustal metamorphism may be estimated at about 650 – 1100 0c depending on rock composition while this limit is much higher temp. For earths mantle. Ø Low Pressure limit of metamorphism : If a magma rises towards the surface, metamorphism in contact aureols may occur at near-surface pressures of few bars. Ø High pressure limit of metamorphism: Long time ago maximum pressure in metamorphic crustal rocks did not exceed 10 kb. • As better calibrations became available , it was found that mineral assemblages in eclogites often recorded pressures of 15-20 kb. petrology is key 7 • 1.2 Types of Metamorphism • On the basis of geological setting, we distinguish between metamorphism of local and regional extent. 1. Regional extent • Orogenic metamorphism • Ocean floor metamorphism • Burial metamorphism 2. Local extent • Contact metamorphism • Cataclastic metamorphism • Impact metamorphism • Hydrothermal metamorphism petrology is key 8 1.2.1 Metamorphism of Regional Extent • Produces the greatest quantity of metamorphic rock, associated with mountain building • Orogenic metamorphism: • Orogenic metamorphism is characteristic of orogenic belts where deformation accompanies recrystallization. Such metamorphic rocks in general exhibit a penetrative fabric with preferred orientation of mineral grains. Including phyllites, schists and gneisses. • Orogenic metamorphism appears to be a long-lasting processes of millions or tens of millions of years duration, including a number of phases of recrystalization and deformation. • Rocks produced by regional orogenic and local contact metamorphism petrology is key 9 v Ocean floor metamorphism: • The metamorphic rocks thus produced are moved laterally by ocean floor spreading, covering large parts of the oceanic crust. • The Ocean floor metamorphism are mostly basic and ultra basic composition. As most of these rocks are non schistose, v Burial metamorphism: • Is applied for low temp. Regional metamorphism affecting sediments and inter-layered volcanic rocks. e.g. Of burial metamorphism includes mainly southern Newzeland, eastern Australia, and Chile. • petrology is key 10 1.3 Metamorphism of Local Extent q Contact/thermal metamorphism: § Occurs due to a rise in temperature when magma invades a host rock • A zone of alteration called an aureole. § The zone of contact metamorphism is termed a contact aureole. The width of the contact metamorphic areoles varies, but in most cases in the range of several metres to a few kilometres. petrology is key 11 Ø The size and shape of an aureole is controlled by: • The nature of the pluton § Size § Temperature § Shape § Composition § Orientation Ø The nature of the country rocks is controlled by : § Composition § Depth and metamorphic grade prior to intrusion § Permeability petrology is key 12 petrology is key 13 • The width of the aureoles depends upon the volume, nature and intrusion depth of a magmatic body as well as the property of the country rocks. Contact metamorphism are generally fine-grained and lack schistosity. The main typical e.g. Is called hornfels. petrology is key 14 petrology is key 15 In general Contact Meta - is Ø Form at high T and low P . Ø Result in a fine-grained rock that show no foliation (hornfels). Ø Occurs adjacent to igneous intrusion (high temp). Ø Large zones of contact metamorphic rocks surrounding the intrusion, heated by magma (contact aureole). Ø Metamorphic grade increases in all direction towards the intrusion. Ø It occurs at a shallower level of the crust – at low Pressure. petrology is key 16 q Cataclastic metamorphism: o Occurs as a result of deformation. o Dependent on T, P, rock composition, strain condition etc. o When two rocks slide one another along fault plane or shear zone. o The resulting cataclastic rocks are non-folliated and rocks known as fault breccia. petrology is key 17 • Cataclastic Metamorphism produces sheared, highly deformed rocks called mylonites. petrology is key 18 q Impact metamorphism: § Is a type of metamorphism in which the shock waves and the observed changes in rocks and minerals result from the hypervelocity impact of meteorite. • Occurs when high speed projectiles called meteorites strike Earth’s surface – Products are called impactites q Hydrothermal Metamorphism: § Here hot solutions or gases have percolated through fractures causing mineralogical and chemical changes in the neighbouring rocks. § The processes is particularly to problem of ore- genesis rock alteration etc.. petrology is key 19 § Chemical alteration caused when hot, ion-rich fluids, called hydrothermal solutions, circulate through fissures and cracks that develop in rock. § Most widespread along the axis of the mid-ocean ridge system petrology is key 20 Metamorphic rocks and associated environments petrology is key 21 § Metamorphism is always associated with processes and changes. § The new mineral assemblages form at the expense of old ones, consequently older minerals may disappear (eg. A metamorphic rock may originally contain GRt +Qtz+Sil). § The structure of rocks in crust and mantle may be modified (e.g., randomly oriented sillimanite needles may be aligned parallel after the processes). petrology is key 22 • The term metamorphosis actually means • transformation, • modification alteration, • conversion and thus is clearly a processes related expression. • Metamorphic processes can be viewed as a combination of • (1) chemical reaction between minerals and gasses, liquids and fluids (mainly H2O) and • (2)transport and exchange of substances and heat between domains where such reactions takes place. • Metamorphism occurs episodically and is particularly related to mountain building episodes of convergent plate margins (collision zones) and during subsequent uplift and extensions of continental crust,. petrology is key 23 § Chemical reactions in metamorphic rocks may be classified according to a number of different criteria. § Below , follows a brief presentation of various kinds of reactions that modify the mineralogy or mineral chemistry of the metamorphic rocks. (a) Reactions among solid phase components § theses are often termed solid-solid reactions, § Typical solid-solid reactions are, § for example: Al2 Sio5= Kyanite - Andalusite Kyanite – Sillimenite Sillimenite - Andalusite CaCo3 = Calcite-Aragonite C= Graphite-Diamond Sio2=Qtz- Coesite, sictoshovite etc petrology is key 24 (b) Net transfer reactions § Such reactions transfer the composition of reactant minerals to minerals of the product assemblages. I- Reactions involving anhydrous phase component only: jd (jadeite) +Qtz= Ab (albite) Gross+ Qtz= An +2 Worksite 3Fe+ Cordierite = 2 Alm (almandine) +4 Sill +5Qtz II- Volatile conserving Solid-Solid reactions Tlc+4En= Ath (anthophylite) Lws (Lawsonite) + 2Qtz= Wa (wairkite) 2(phlogophite) + 8 Sill + 7Qtz= 2Ms(muskovite) + Crd (Cordierite) petrology is key 25 (C) Exchange Reactions (1) These reactions exchange components between a set of minerals. • Reactions involving anhydrous phase component only. Fe-Mg exchange between Olivine and orth-pyroxene Fo+ Fs (fayalite)= Fa +En (Enstantite) Fe-Mg exchange between clino-pyroxene and garnet Di (diposide)+ Alm (almandine)= Hd (hedenbrgite) + Prp (pyrope) (2) Volatile Conserving solid-solid reactions Fe-Mg exchange between garnet and biotite Pyrope+Ann=Alm+Phl Cl-OH exchange between amphibole and biotite D) Exsolution reactions soli-solid reactions High temp. Alkali feldspar=K-feldspar+ Na feldspar Mg-rich calcite=
Recommended publications
  • Clay Minerals Soils to Engineering Technology to Cat Litter
    Clay Minerals Soils to Engineering Technology to Cat Litter USC Mineralogy Geol 215a (Anderson) Clay Minerals Clay minerals likely are the most utilized minerals … not just as the soils that grow plants for foods and garment, but a great range of applications, including oil absorbants, iron casting, animal feeds, pottery, china, pharmaceuticals, drilling fluids, waste water treatment, food preparation, paint, and … yes, cat litter! Bentonite workings, WY Clay Minerals There are three main groups of clay minerals: Kaolinite - also includes dickite and nacrite; formed by the decomposition of orthoclase feldspar (e.g. in granite); kaolin is the principal constituent in china clay. Illite - also includes glauconite (a green clay sand) and are the commonest clay minerals; formed by the decomposition of some micas and feldspars; predominant in marine clays and shales. Smectites or montmorillonites - also includes bentonite and vermiculite; formed by the alteration of mafic igneous rocks rich in Ca and Mg; weak linkage by cations (e.g. Na+, Ca++) results in high swelling/shrinking potential Clay Minerals are Phyllosilicates All have layers of Si tetrahedra SEM view of clay and layers of Al, Fe, Mg octahedra, similar to gibbsite or brucite Clay Minerals The kaolinite clays are 1:1 phyllosilicates The montmorillonite and illite clays are 2:1 phyllosilicates 1:1 and 2:1 Clay Minerals Marine Clays Clays mostly form on land but are often transported to the oceans, covering vast regions. Kaolinite Al2Si2O5(OH)2 Kaolinite clays have long been used in the ceramic industry, especially in fine porcelains, because they can be easily molded, have a fine texture, and are white when fired.
    [Show full text]
  • Far-Infrared Spectra of Hydrous Silicates at Low Temperatures Providing Laboratory Data for Herschel and ALMA
    A&A 492, 117–125 (2008) Astronomy DOI: 10.1051/0004-6361:200810312 & c ESO 2008 Astrophysics Far-infrared spectra of hydrous silicates at low temperatures Providing laboratory data for Herschel and ALMA H. Mutschke1,S.Zeidler1, Th. Posch2, F. Kerschbaum2, A. Baier2, and Th. Henning3 1 Astrophysikalisches Institut, Schillergässchen 2-3, 07745 Jena, Germany e-mail: [mutschke;sz]@astro.uni-jena.de 2 Institut für Astronomie, Türkenschanzstraße 17, 1180 Wien, Austria e-mail: [email protected] 3 Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] Received 2 June 2008 / Accepted 4 September 2008 ABSTRACT Context. Hydrous silicates occur in various cosmic environments, and are among the minerals with the most pronounced bands in the far infrared (FIR) spectral region. Given that Herschel and ALMA will open up new possibilities for astronomical FIR and sub-mm spectroscopy, data characterizing the dielectric properties of these materials at long wavelengths are desirable. Aims. We aimed at examining the FIR spectra of talc, picrolite, montmorillonite, and chamosite, which belong to four different groups of phyllosilicates. We tabulated positions and band widths of the FIR bands of these minerals depending on the dust temperature. Methods. By means of powder transmission spectroscopy, spectra of the examined materials were measured in the wavelength range 25−500 μm at temperatures of 300, 200, 100, and 10 K. Results. Room-temperature measurements yield the following results. For talc, a previously unknown band, centered at 98.5 μm, was found, in addition to bands at 56.5 and 59.5 μm.
    [Show full text]
  • Effect of Kaolinite and Ca-Montmorillonite on the Alleviation of Soil Water Repellency
    Effect of kaolinite and Ca-montmorillonite on the alleviation of soil water repellency P. Dlapa1, S.H. Doerr2, Ľ. Lichner3, M. Šír4, M. Tesař4 1Faculty of Natural Science, Comenius University, Bratislava, Slovakia 2Department of Geography, University of Wales Swansea, Swansea, UK 3Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovakia 4Institute for Hydrodynamics, Academy of Sciences of the Czech Republic, Prague, Czech Republic ABSTRACT The effects of adding 1–3% (weight) kaolinite or Ca-montmorillonite on the we�ability of silica sand, made highly water repellent with stearic acid, was studied during we�ing and prolonged drying phases at 50°C. The persistence of water repellency was estimated with the water drop penetration time (WDPT) test. A�er we�ing water repellency disappeared in all the samples. During the drying phase, water repellency re-appeared in all samples (untreated and clay-treated) as the water content decreased below 1%. Repellency did, however, not reach pre-we�ing levels. The effect of clay additions on water repellency differed strongly between the two clay types. Kaolinite reduced WDPT, while Ca-montmorillonite caused an increase in WDPT in the already highly repellent sand. Potential mechanisms for the alleviation effectiveness of kaolinite are proposed, with key factors being the high adhesion forces between water and clay mineral surfaces, and the ability kaolinite to disperse. In the case of Ca-montmorillonite, its lower affinity for water may lead to a displacement of water molecules at mineral surfaces by amphiphilic organic compounds, which may result in increased repellency. This phenomenon clearly requires further investigation. Keywords: water repellency; kaolinite; Ca-montmorillonite; stearic acid The occurrence of water repellency in many soils to wind erosion.
    [Show full text]
  • Rocks Soil Formation Soil Deposits Soil Mineralogy Soil Structure
    Geology; Rocks Soil Mineralogy Soil Formation Soil Soil Structure Deposits Engineering Soil Classification Site Exploration Characterization of Soils Phase Soil Permeability Stresses in Soil Relationships Seepage Masses Stress Strain Behavior of Soils Soil Consolidation Soil Shear Strength 1 Engineering Characterization of Soils Soil Properties that Control its Engineering Behavior Particle Size − Sieve Analysis − Hydrometer Analysis coarse-grained fine-grained Particle/Grain Size Soil Plasticity Distribution Particle Shapes (?) 2 Particle Size; Standard Sieve Sizes 3 ASTM Particle Size Classification 4 Sieve Analysis (Mechanical Analysis) This procedure is suitable for coarse grained soils See next slide for ASTM Standard Sieves No.10 sieve …. Has 10 apertures per linear inch 5 ASTM Standard Sieves 6 Hydrometer Analysis Also called Sedimentation Analysis Stoke’s Law D2γ (G − G ) v = w s L 18η 7 Grain Size Distribution Curves 8 Terminology C….. Poorly-graded soil D …. Well-graded soil E …. Gap-graded soil D10, D30, D60 = ?? Coefficient of Uniformity, Cu= D60/D10 Coefficient of Curvature, )2 Cc= (D30 /(D10)(D60) 9 Particle Distribution Calculations Example 10 Particle Shapes 11 Clay Formation Clay particles < 2 µm Compared to Sands and Silts, clay size particles have undergone a lot more “chemical weathering”! 12 Clay vs. Sand/Silt Clay particles are generally more platy in shape (sand more equi-dimensional) Clay particles carry surface charge Amount of surface charge depends on type of clay minerals Surface charges that
    [Show full text]
  • Multiple Veining in a Paleo–Accretionary Wedge: the Metamorphic Rock Record of Prograde Dehydration and Transient High Pore- GEOSPHERE, V
    Research Paper THEMED ISSUE: Subduction Top to Bottom 2 GEOSPHERE Multiple veining in a paleo–accretionary wedge: The metamorphic rock record of prograde dehydration and transient high pore- GEOSPHERE, v. 16, no. 3 fluid pressures along the subduction interface (Western Series, https://doi.org/10.1130/GES02227.1 11 figures; 2 tables; 1 set of supplemental files central Chile) Jesús Muñoz-Montecinos1,2,*, Samuel Angiboust1,*, Aitor Cambeses3,*, and Antonio García-Casco2,4,* CORRESPONDENCE: 1 [email protected] Institut de Physique du Globe de Paris, Université de Paris, CNRS, F-75005 Paris, France 2Department of Mineralogy and Petrology, Faculty of Sciences, University of Granada, Campus Fuentenueva s/n, 18002 Granada, Spain 3Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Bochum 44801, Germany CITATION: Muñoz-Montecinos, J., Angiboust, S., 4Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, Armilla, Granada 18100, Spain Cambeses, A., and García-Casco, A., 2020, Multiple veining in a paleo–accretionary wedge: The metamor- phic rock record of prograde dehydration and transient high pore-fluid pressures along the subduction inter- ABSTRACT that the formation of interlayered blueschist and fluid-rock interaction events (Zack and John, 2007). face (Western Series, central Chile): Geosphere, v. 16, greenschist layers in Pichilemu metavolcanics is a Textures recorded in veins yield information on no. 3, p. 765–786, https://doi.org/10.1130/GES02227.1. High pressure–low temperature metamorphic consequence of local bulk composition variations, crack aperture as well as crystal growth kinetics rocks from the late Paleozoic accretionary wedge and that greenschists are generally not formed due during each veining event (Cox and Etheridge, 1983; Science Editor: Shanaka de Silva exposed in central Chile (Pichilemu region) are to selective exhumation-related retrogression of Bons, 2001), while vein-filling mineral assemblages Guest Associate Editor: Gray E.
    [Show full text]
  • Spectral Reflectance and Chemical Properties of Magnesium-Rich Phyllosilicates
    44th Lunar and Planetary Science Conference (2013) 2939.pdf SPECTRAL REFLECTANCE AND CHEMICAL PROPERTIES OF MAGNESIUM-RICH PHYLLOSILICATES. R.J. Léveillé1, E. Cloutis2, P. Mann2, P. Sobrón1, C. Lefebvre1, A. Koujelev1, 1Canadian Space Agency ([email protected]), 2University of Winnipeg, CANADA. Introduction: Identifying minerals present on Mars formed with a custom laboratory set-up at CSA. The is critical to reconstructing past environments and geo- set-up includes a Q-switch Nd:YAG laser generating 8 logical processes, and to assessing past habitability. ns pulses at 1064 nm (20mJ@ 1 Hz) and a spectrome- Various phyllosilicates have been identified in rocks on ter (Ocean Optics HR2000, 0.1nm resolution). An av- Mars, including at Gale Crater, by orbiter-based spec- erage spectrum was calculated based on 10 shots at 10 troscopy [e.g., 1-4]. The formation of these minerals closely spaced locations on pressed pellets. All ex- would have required the presence of persistent liquid periments were done in standard atmosphere, though water over extended periods of time. However, the we have also begun experiments under Mars-like at- timing of hydrologic activity and nature of mineral mospheric conditions. formation processes are poorly constrained [2]. While Al- and Fe-Mg-phyllosilicates seem to be most com- mon on Mars, Mg-rich phyllosilicates (e.g., serpentine, talc, saponite, Mg-smectite) have also been identified [3, 4]. Mg-rich phyllosilicates can be especially useful in identifying past geochemical conditions as they may preferentially indicate sustained aqueous conditions, either long-term presence of liquid water or high water- to-rock ratios.
    [Show full text]
  • Clay Minerals
    CLAY MINERALS CD. Barton United States Department of Agriculture Forest Service, Aiken, South Carolina, U.S.A. A.D. Karathanasis University of Kentucky, Lexington, Kentucky, U.S.A. INTRODUCTION of soil minerals is understandable. Notwithstanding, the prevalence of silicon and oxygen in the phyllosilicate structure is logical. The SiC>4 tetrahedron is the foundation Clay minerals refers to a group of hydrous aluminosili- 2 of all silicate structures. It consists of four O ~~ ions at the cates that predominate the clay-sized (<2 |xm) fraction of apices of a regular tetrahedron coordinated to one Si4+ at soils. These minerals are similar in chemical and structural the center (Fig. 1). An interlocking array of these composition to the primary minerals that originate from tetrahedral connected at three corners in the same plane the Earth's crust; however, transformations in the by shared oxygen anions forms a hexagonal network geometric arrangement of atoms and ions within their called the tetrahedral sheet (2). When external ions bond to structures occur due to weathering. Primary minerals form the tetrahedral sheet they are coordinated to one hydroxyl at elevated temperatures and pressures, and are usually and two oxygen anion groups. An aluminum, magnesium, derived from igneous or metamorphic rocks. Inside the or iron ion typically serves as the coordinating cation and Earth these minerals are relatively stable, but transform- is surrounded by six oxygen atoms or hydroxyl groups ations may occur once exposed to the ambient conditions resulting in an eight-sided building block termed an of the Earth's surface. Although some of the most resistant octohedron (Fig.
    [Show full text]
  • Download PDF About Minerals Sorted by Mineral Group
    MINERALS SORTED BY MINERAL GROUP Most minerals are chemically classified as native elements, sulfides, sulfates, oxides, silicates, carbonates, phosphates, halides, nitrates, tungstates, molybdates, arsenates, or vanadates. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). NATIVE ELEMENTS (DIAMOND, SULFUR, GOLD) Native elements are minerals composed of only one element, such as copper, sulfur, gold, silver, and diamond. They are not common in Kentucky, but are mentioned because of their appeal to collectors. DIAMOND Crystal system: isometric. Cleavage: perfect octahedral. Color: colorless, pale shades of yellow, orange, or blue. Hardness: 10. Specific gravity: 3.5. Uses: jewelry, saws, polishing equipment. Diamond, the hardest of any naturally formed mineral, is also highly refractive, causing light to be split into a spectrum of colors commonly called play of colors. Because of its high specific gravity, it is easily concentrated in alluvial gravels, where it can be mined. This is one of the main mining methods used in South Africa, where most of the world's diamonds originate. The source rock of diamonds is the igneous rock kimberlite, also referred to as diamond pipe. A nongem variety of diamond is called bort. Kentucky has kimberlites in Elliott County in eastern Kentucky and Crittenden and Livingston Counties in western Kentucky, but no diamonds have ever been discovered in or authenticated from these rocks. A diamond was found in Adair County, but it was determined to have been brought in from somewhere else. SULFUR Crystal system: orthorhombic. Fracture: uneven. Color: yellow. Hardness 1 to 2.
    [Show full text]
  • A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish.
    [Show full text]
  • Dispersion Characteristics of Montmorillonite, Kaolinite, and Hike Clays in Waters of Varying Quality, and Their Control with Phosphate Dispersants by B
    Dispersion Characteristics of Montmorillonite, Kaolinite, and Hike Clays in Waters of Varying Quality, and Their Control with Phosphate Dispersants By B. N. ROLFE, R. F. MILLER, and I. S. McQUEEN SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 334-G Prepared in cooperation with Colorado State University UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1960 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. - Price 40 cents (paper cover) CONTENTS Page Results and discussion Continued Page Abstract._ ________________________________________ 229 Sodium illite in hard water_______________________ 241 Introduction.______________________________________ 229 Calcium illite in hard water._____________________ 243 Personnel._____________________________________ 230 Volclay in distilled water._______________________ 243 Acknowledgments _______________________________ 230 Volclay in medium-hard water- _-_-_-_---_.___ 243 Materials----------------------_---__---_----_--__- 231 Kaolinite (78.8 percent sodium saturated) in distilled Clay minerals._________________________________ 231 water ___-_-____--_-__-__-------_-_---_--____ 246 Phosphate deflocculents_--_-_______-_-__--______ 231 Kaolinite (78.8 percent sodium saturated) in medium- Waters.--____-----_--_--___-_-__--_-________ 231 hard water...________________________________ 246 Methods_______________________._________
    [Show full text]
  • Chapter 10. Metamorphism & Metamorphic Rocks
    Physical Geology, First University of Saskatchewan Edition is used under a CC BY-NC-SA 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 10. Metamorphism & Metamorphic Rocks Adapted by Karla Panchuk from Physical Geology by Steven Earle Figure 10.1 Grey and white striped metamorphic rocks (called gneiss) at Pemaquid Point were transformed by extreme heat and pressure during plate tectonic collisions. Source: Karla Panchuk (2018) CC BY 4.0. Photos by Joyce McBeth (2009) CC BY 4.0. Map by Flappiefh (2013), derivative of Reisio (2005), Public Domain. Learning Objectives After reading this chapter and answering the review questions at the end, you should be able to: • Summarize the factors that influence the nature of metamorphic rocks. • Explain how foliation forms in metamorphic rocks. • Classify metamorphic rocks based on their texture and mineral content, and explain the origins of both. • Describe the various settings in which metamorphic rocks are formed and explain the links between plate tectonics and metamorphism • Describe the different types of metamorphism, including burial metamorphism, regional metamorphism, seafloor metamorphism, subduction zone metamorphism, contact metamorphism, shock metamorphism, and dynamic metamorphism. • Explain how metamorphic facies and index minerals are used to characterize metamorphism in a region. • Explain why fluids are important for metamorphism and describe what happens during metasomatism. Chapter 10. Metamorphism & Metamorphic Rocks 1 Metamorphism Occurs Between Diagenesis And Melting Metamorphism is the change that takes place within a body of rock as a result of it being subjected to high pressure and/or high temperature. The parent rock or protolith is the rock that exists before metamorphism starts.
    [Show full text]
  • Belt Series in the Region Around Snow Peak and Mallard Peak, Idaho
    Belt Series in the Region Around Snow Peak and Mallard Peak, Idaho GEOLOGICAL SURVEY PROFESSIONAL PAPER 344-E Belt Series in the Region Around Snow Peak and Mallard Peak, Idaho By ANNA HIETANEN METAM ORPHIC AND IGNEOUS ROCKS ALONG THE NORTHWEST BORDER ZONE OF THE IDAHO BATHOLITH GEOLOGICAL SURVEY PROFESSIONAL PAPER 344-E Petrologic and structural study of a part of the northwestern contact aureole of the Idaho batholith UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract __________________________________________ _ E1 Metamorphic rocks-Continued Introduction ______________________________________ _ 1 Petrographic description-Continued Metamorphic rocks ________________________________ _ 2 Structure _________________________________ _ E21 Stratigraphy and correlation ____________________ _ 2 FauUs ________________________________ _ 21 Prichard Formation ________________________ _ 3 North west-trending faults ____ - _____ _ 22 Ravalli Group ____________________________ _ 3 North-trending faults ______________ _ 22 Wallace Formation ________________________ _ 6 Folding and lineation __________________ _ 23 Petrographic description ________________________ _ 7 Two sets of folds __________________ _ 23 Prichard Formation ________________________ _ 7 Influence of the grade of metamor- Schist ________________________________ _ 7 phism __________________________ _ 24 QuartzUe _____________________________ _ 8 Influence of the type of material Burke Formation __________________________ _ 8 folded __________________________ _ 25 Quartzite unit _________________________ _ 8 Folds related to faults ______________ _ 25 Schist unit ____________________________ _ 9 Differences in trends between indivi- Revett Formation _________________________ _ 9 dual fault blocks _________________ _ 26 St.
    [Show full text]