Belt Series in the Region Around Snow Peak and Mallard Peak, Idaho

Total Page:16

File Type:pdf, Size:1020Kb

Belt Series in the Region Around Snow Peak and Mallard Peak, Idaho Belt Series in the Region Around Snow Peak and Mallard Peak, Idaho GEOLOGICAL SURVEY PROFESSIONAL PAPER 344-E Belt Series in the Region Around Snow Peak and Mallard Peak, Idaho By ANNA HIETANEN METAM ORPHIC AND IGNEOUS ROCKS ALONG THE NORTHWEST BORDER ZONE OF THE IDAHO BATHOLITH GEOLOGICAL SURVEY PROFESSIONAL PAPER 344-E Petrologic and structural study of a part of the northwestern contact aureole of the Idaho batholith UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract __________________________________________ _ E1 Metamorphic rocks-Continued Introduction ______________________________________ _ 1 Petrographic description-Continued Metamorphic rocks ________________________________ _ 2 Structure _________________________________ _ E21 Stratigraphy and correlation ____________________ _ 2 FauUs ________________________________ _ 21 Prichard Formation ________________________ _ 3 North west-trending faults ____ - _____ _ 22 Ravalli Group ____________________________ _ 3 North-trending faults ______________ _ 22 Wallace Formation ________________________ _ 6 Folding and lineation __________________ _ 23 Petrographic description ________________________ _ 7 Two sets of folds __________________ _ 23 Prichard Formation ________________________ _ 7 Influence of the grade of metamor- Schist ________________________________ _ 7 phism __________________________ _ 24 QuartzUe _____________________________ _ 8 Influence of the type of material Burke Formation __________________________ _ 8 folded __________________________ _ 25 Quartzite unit _________________________ _ 8 Folds related to faults ______________ _ 25 Schist unit ____________________________ _ 9 Differences in trends between indivi- Revett Formation _________________________ _ 9 dual fault blocks _________________ _ 26 St. Regis Formation _______________________ _ 9 Foliation, cleavage, and fracture cleavage __ 26 Wallace Formation _________________________ _ 10 Igneous rocks _____________________________________ _ 27 Quartzite unit _________________________ _ 10 Plutonic rocks _________________________________ _ 27 Schist units ___________________________ _ 11 Quartz diorite _____________________________ _ 27 Biotite zone _______________________ _ 12 Quartz monzonite and granite _______________ _ 28 Garnet zone ______________________ _ 12 Pegmatite and quartz veins _________________ _ 28 Staurolite zone ____________________ _ 13 Hypabyssal rocks ______________________________ _ 29 Kyanite-staurolite zone _____________ _ 13 Gabbroic sills and dikes ____________________ - 29 Kyanite zone ______________________ _ 15 Dioritic dikes _____________________________ - 30 Sillimanite-kyanite zone ____________ _ 16 Quartz monzonitic dikes and sills ____________ _ 30 Sillimanite zone ___________________ _ 16 Granitic dikes _______________________ - _____ - 31 Metamorphic reactions and metamorphic fa- Conclusions _______________________________________ _ 32 cies ____________________________________ _ 16 References ________________________________________ _ 33 ILLUSTRATIONS Page PLATE 1. Geologic map of the Mallard Peak area, Idaho __________________________________________________ In pocket 2. Geologic map of the Snow Peak area, Idaho ____________________________________________________ In pocket FIGURE 1. Index map of northern Idaho_____________________________________________________________________ E2 2. Generalized stratigraphic section of the Belt Series near Snow Peak ____________________ --------------- 4 3. Photomicrograph of quartzite of the Burke Formation_______________________________________________ 9 4-6. Camera lucida drawings of: 4. Biotite porphyroblasts in biotite zone on West Sister__________________________________________ 12 5. Garnet in garnet zone on Middle Sister_____________________________________________________ 12 6. A postkinematic staurolite in garnet-mica schist of the staurolite zone north of Junction Peak ____ - 13 7. Photographs showing pseudomorphs after staurolite in staurolite-kyanite zone__________________________ 14 8. Photograph of staurolite schist a mile southeast of Bathtub Mountain___________________________ _ _ _ _ _ _ 15 9. A, Photograph of herringbone structure in pseudomorph after a staurolite twin. B, Drawing showing pseudo- morph after staurolite and two episodes of recrystallization of garnet________________________________ 16 10. Diagram showing stability ranges of the index minerals______________________________________________ 18 11. A tentative pressure-temperature diagram showing a possible pressure-temperature gradient of recrystalli- zation_______________________________________________________________________________________ 20 12. Photograph of two sets of folds in garnet-mica schist of the Prichard Formation________________________ 23 13. Drawing of two sets of small folds in th_ schist of the St. Regis Formation_____________________________ 24 14. Drawing of folded quartzite layers in intensely wrinkled schist of the Prichard and St. Regis Formations__ 25 15. Photomicrograph of garnet-mica schist showing bedding and transecting foliation_______________________ 26 16. Photograph of quartz vein in actinolite-diopside granofels southwest of Dismal Lake____________________ 28 17-19. Photomicrographs: 17. Gabbroic rock in Wishards sill______________________________________________________________ 29 18. Quartz monzonitic dike rock________________________________________________________________ 30 19. Spherules of granophyric intergrowth of quartz and feldspars in a granitic dike____________________ 31 m IV CONTENTS TABLES Page TABLES 1, 2. Chemical composition in weight and ionic percentages and molecular norm and mode: 1. Staurolite schist from locality 2096----------------------------------------------------------- E15 2. Granitic dike 2155 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 31 METAMORPHIC AND IGNEOUS ROCKS ALONG THE NORTHWEST BORDER ZONE OF THE IDAHO BATHOLITH BELT SERIES IN THE REGION AROUND SNOW PEAK AND MALLARD PEAK, IDAHO By ANNA HIETANEN ABSTRACT their pressure-temperature fields can be determined. The Snow Peak and Mallard Peak areas provide a far elearer Biotite, garnet, staurolite, kyanite, ·and sillimanite iso­ and more complete account of various geologic events in the grads show a uniform increase in the grade of meta­ northwestern contact aureole of the Idaho batholith than do the morphism southward toward the batholith. Moreover, Headquarters, Boehls Butte, and Elk River-Clarkia areas studied the area offers excellent opportunity for a. study of the previously (Hietanen 1962a, 1963a, b). The normal stratigraphic sequence of the five lowest formations of the Belt Series of Pre­ style of folding in layers of different bulk compositions cambrian age is well exposed in many localities. This sequence under various metamorphic conditions. allows correlation with known equivalents farther north with The area studied comprises 400 square miles in the greater certainty than could be done previously. All metamorphic southeastern part of Shoshone County and in the north­ zones are represented in the mapped area described in this report central part of Clearwater County (fig. 1). It joins the starting with biotite zone in the north and followed succes.sively by zones of garnet, staurolite, staurolite-kyanite, kyanite, kya­ Bungalow area (Hietanen, 1963c) to the south and the nite-sillimanite, and sillimanite-muscovite toward the south. Two Boehls Butte quadrangle and vicinity (Hietanen, episodes of recrystallization are ·evident: a synkinematic and a 1963a) to the west. The southern part of the mapped later postkinematic one during which the temperature was some­ area (pl. 1) , called the Mallard Peak area. in this report, what higher. is bounded by long 115°25' and 115°40' W. and by lat Many of the structural features, ·such as the style of folding and orientation :of foliation and cleavage, change with the grade 46°45' and 47°00' N. This area is covered by the follow­ of metamorphism and With the material folded. Structure is ing 7-l;2-minute topographic quadrangle sheets: the complicated by two to three sets of folds, whose axes intersect eastern part of Buzzard Roost, the Mallard Peak, the at angles of 60°-80°. The folds range in size from minute wrinkles western part of Pole Mountain, the Sheep Mountain, to large folds having wave lengths of several miles. Several high-angle faults--most trending north, ·some trending north­ and the western part of TheNub. west-interrupt the stratigraphic and structural continuity. The northern part of the mapped area (pl. 2), which lies between the St. Joe River and lat 47°00', is called INTRODUCTION the Snow Peak area after a prominent mountain that This report is pa.rt of a series of petrologic ·and struc­ rises 5,000 feet above the canyon of the Little North tural studies of the northwestern contact aureole of the Fork of the Clearwater River in the southwest. The Idaho batholith. The mapped area (pis. 1, 2) is a 12- easternmost part o~ this area is covered by the Simmons mile-wide belt through the metamorphic contact aureole Peak 30-minute quadrangle map. of the batholith and has several unique features tha,t The topography
Recommended publications
  • Geology of the Berne Quadrangle Black Hills South Dakota
    Geology of the Berne Quadrangle Black Hills South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission Geology of the Berne Quadrangle Black Hills South Dakota By JACK A. REDDEN PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 CONTENTS Page Page Abstract._ _-------------_-___________-_____________ 343 Pegmatites Continued Introduction.______________________________________ 344 Mineralogy __ _____________-___-___-_-------_--- 378 Previous work__________________________________ 345 Origin.- --___-____-_-_-_---------------------_ 380 Fieldwork and acknowledgments._-_-_--__________ 345 Paleozoic and younger rocks. ________________________ 381 Geologic setting____--__-______________________ ____ 345 Deadwood Formation, __________________________ 381 Metamorphic rocks_________________________________ 347 Englewood Formation.. _ __________--____-_-__--_ 381 Stratigraphic units west of Grand Junction fault___- 347 Pahasapa Limestone- _______-_____.__-----_-- - 381 Vanderlehr Formation.._____________________ 347 Quaternary and Recent deposits. _________________ 382 Biotite-plagioclase gneiss.________________
    [Show full text]
  • Tectonic Interleaving Along the Main Central Thrust, Sikkim Himalaya
    research-articleResearch ArticleXXX10.1144/jgs2013-064C. M. Mottram et al.Tectonic Interleaving Along the Mct 2014 Journal of the Geological Society, London, Vol. 171, 2014, pp. 255 –268. http://dx.doi.org/10.1144/jgs2013-064 Published Online First on January 14, 2014 © 2014 The Authors Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya CATHERINE M. MOTTRAM1*, T. W. ARGLES1, N. B. W. HARRIS1, R. R. PARRISH2,3, M. S. A. HORSTWOOD3, C. J. WARREN1 & S. GUPTA4 1Department of Environment, Earth and Ecosystems, Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR), The Open University, Walton Hall, Milton Keynes MK7 6AA, UK 2Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK 3NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 4Department of Geology & Geophysics, I.I.T., Kharagpur—721 302, India *Corresponding author (e-mail: [email protected]) Abstract: Geochemical and geochronological analyses provide quantitative evidence about the origin, devel- opment and motion along ductile faults, where kinematic structures have been overprinted. The Main Central Thrust is a key structure in the Himalaya that accommodated substantial amounts of the India–Asia conver- gence. This structure juxtaposes two isotopically distinct rock packages across a zone of ductile deformation. Structural analysis, whole-rock Nd isotopes, and U–Pb zircon geochronology reveal that the hanging wall is characterized by detrital zircon peaks at c. 800–1000 Ma, 1500–1700 Ma and 2300–2500 Ma and an εNd(0) signature of –18.3 to –12.1, and is intruded by c. 800 Ma and c.
    [Show full text]
  • Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew
    GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew ORIGIN, TEXTURE, AND CLASSIFICATION OF METAMORPHIC ROCKS Teklewold Ayalew Addis Ababa University, Ethiopia Keywords: aluminosilicates, assemblage, fabric, foliation, gneissose banding, index mineral, isograd, lineation, lithosphere, metamorphic facies, metasomatism, orogenic belt, schistosity Contents 1. Introduction 2. Occurrence 2.1. Orogenic Metamorphism 2.2. Contact Metamorphism 2.3. Ocean Floor Metamorphism 3. Classification 4. Minerals of Metamorphic Rocks 5. Metamorphic Facies 5.1. Facies of Very Low Grade 5.2. Greenschist Facies 5.3. Amphibolite Facies 5.4. Granulite Facies 5.5. Hornblende Hornfels Facies 5.6. Pyroxene Hornfels Facies 5.7. Blueschist Facies 5.8. Eclogite Facies 6. Tectonic Setting of Metamorphic Facies 7. Textures 7.1. Layering, Banding, and Fabric Development 8. Kinetics 8.1. Diffusion 8.2. Nucleation 8.3. Crystal Growth AcknowledgmentUNESCO – EOLSS Glossary Bibliography Biographical SketchSAMPLE CHAPTERS Summary Metamorphic rocks are igneous, sedimentary, or other metamorphic rocks whose texture and composition has been changed by metamorphism. Metamorphism occurs as a response to changes in the physical or chemical environment of any pre-existing rock, such as variations in pressure or temperature, strain, or the infiltration of fluids. It involves recrystallization of existing minerals into new grains and/or the appearance of new mineral phases and breakdown of others. Metamorphic processes take place ©Encyclopedia of Life Support Systems (EOLSS) GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew essentially in the solid state. The rock mass does not normally disaggregate and lose coherence entirely; however small amounts of fluids are frequently present and may play an important catalytic role.
    [Show full text]
  • Metamorphic Field Gradients Across the Himachal Himalaya
    TECTONICS, VOL. 32, 540–557, doi:10.1002/tect.20020, 2013 Metamorphic field gradients across the Himachal Himalaya, northwest India: Implications for the emplacement of the Himalayan crystalline core Remington M. Leger,1,2 A. Alexander G. Webb,1 Darrell J. Henry,1 John A. Craig,1 and Prashant Dubey3 Received 28 August 2012; revised 23 January 2013; accepted 3 February 2013; published 31 May 2013. [1] New constraints on pressures and temperatures experienced by rocks of the Himachal Himalaya are presented in order to test models for the emplacement of the Himalayan crystalline core here. A variety of methods were employed: petrographic analysis referenced to a petrogenetic grid, exchange and net-transfer thermobarometry, Ti-in-biotite thermometry, and analysis of quartz recrystallization textures. Rocks along three transects (the northern Beas, Pabbar, and southern Beas transects) were investigated. Results reveal spatially coherent metamorphic field gradients across amphibolite-grade and migmatitic metamorphic rocks. Along the northern Beas transect, rocks record peak temperatures of ~650–780C at low elevations to the north of ~3210’ N; rocks in other structural positions along this transect record peak temperatures of <640C that decrease with increasing structural elevation. Rocks of the Pabbar transect dominantly record ~650–700C peak temperatures to the east of ~7755’ E and ~450–620C peak temperatures farther west. Peak temperatures of ~450–600C along the southern Beas transect record a right-way-up metamorphic field gradient. Results are integrated with literature data to determine a metamorphic isograd map of the Himachal Himalaya. This map is compared to metamorphic isograd map pattern predictions of different models for Himalayan crystalline core emplacement.
    [Show full text]
  • Metamorphism Definition of Metamorphism
    Chapter-1 1.Introduction to Metamorphism Definition of Metamorphism • The word "Metamorphism" comes from the Greek: Meta = change, Morph = form, so metamorphism means to change form. • In geology Metamorphism is a proceses leading change in mineralogy and/or structure and /or chemical composition in a rock.. • These changes are due to physical and/or chemical conditions that differ from theses normally occurring in the zone of weathering cementation and diagenesis. petrology is key 2 • The original rock that has undergone metamorphism is called the protolith. • Protolith- refers to the original rock, prior to metamorphism. In low grade metamorphic rocks, original textures are often preserved allowing one to determine the likely protolith. • Metamorphic rocks are produced from üIgneous rocks üSedimentary rocks See on Rock cycle!!! üOther metamorphic rocks • Metamorphism progresses incrementally from low-grade to high- grade. • During metamorphism the rock must remain essentially solid. petrology is key 3 The Rock Cycle petrology is key 4 • The limits of metamorphism is dependent on the two important physical variables, i.e. Temp and pressure. Ø L o w t e m p l i m i t o f m e t a m o r p h i s m : A t w h i c h transformation set are strongly dependent on the material under investigation. (e.g. Important transformation of evaporate and organic material, begin to take place at considerably low temp. than transformation of most silicates and carbonate rocks. • In general, the low temp. Limit of metamorphism silicate rocks are around 150 + 50 0c. • the first appearance of the following minerals is taken to indicate the beginning of metamorphism: • F e - M g – c a r p h o l i t e , g l a u c o p h o n e , l a w s o n i t e , paragonite, prehnite,).
    [Show full text]
  • Relationship Between Rock Type, Metamorphic Grade
    Canadian Mineralogist Vol. 25, pp. 485-498(1987) RELATIONSHIPBETWEEN ROCK TYPE, METAMORPHIC GRADE, AND FLUID- PHASECOMPOSITION IN THE GRENVILLESUPERGROUP, LIMERICKTOWNSHIP, ONTARIO P. JAMES LgANDERSON Depaftmentof Geologyand GeologicalEngineering, Colorado School of Mines, Goldm, Colorado8M01, U.S.A. JAMES L. MUNOZ Depafimentof GeologicalSciences, University of Colorado,Boulder, Colorado80309-0250, U.S.A, ABSTRACT entre535 et 550'C dansles marbres et 402et 543"Cou plus dans les lithologies pauvres en carbonate. La valerir de The srudy area in Limerick Township in the southern X(CO) seraitentre 0,45 et 0.55 dansles marbreset moins Grenville Province consistsof a sequenceof late Proterozoic de 0. l0 dansles milieux pauvresen carbonate.La relatlon metabasalts,noncalcareous and calcareousquartzofeld- entre degr€de m6tamorphismeet lithologie refldte la dimi spatlfc granofels,and marblesintruded by two gabbro com- nution du X(CO) du marbre vers les unit€s moins riches plexes.During the Grenville Orogeny,metamorphism of en calcaire.Cette relation pourrait 6tre attribude l) d un marble producedassemblages that are below the titanite, tamponnageinterne de la phasefluide par lesr6actions iso- actinolite - calcite,and hornblende- K-feldsparisograds, gradiquesi des valeurs 6levdesde X(CO) dans les mar- but above the hornblende - K-feldspar isograd in the bres et des valeurs inf6rieures dans les unit6s pauvres en quartzofeldspathicunits and amphibolitss. Calcite-dolomite carbonate, ou 2) d un tamponnagedes fluides i desvaleurs and two-feldspargeothennometry, and calculationof the faibles de X(CO) par les r€actionsisogradiques suite i displacementof intersectingequilibria due to solid-solution, l'infiltration de fluides aqueux au travers des unit€s pau- bracket equilibrium temperaturesbetween 535 and 550'C vres ou sanscarbonate.
    [Show full text]
  • Vein Assemblages and Metamorphism in Dutchess County, New York ABSTRACT Others, 1972) and Shows the Study Area
    ROSEMARY J. VIDALE Department of Geology and Geophysics, State University of New York at Binghamton, Binghamton, New York 13901 Vein Assemblages and Metamorphism in Dutchess County, New York ABSTRACT others, 1972) and shows the study area. The Stuyvesant Falls, Mount Merino, Indian major geologic mapping of this area was River, and Austin Glen). Carbonate-rich Mineral assemblages of fissure veins in done by Barth (1936) and by Balk (1936) layers occur locally in pelitic rocks of both pelitic rocks are a consistent function of with significant additions by Fisher and autochthon and allochthon and are espe- metamorphic grade within a 1,700 km2 area others (1972). cially abundant near the base of the in and near Dutchess County, New York. The principal geologic units are the Walloomsac. The following vein assemblages are ob- Precambrian gneisses of the Hudson and Figure 2 shows metamorphic isograds in served with increasing grade: quartz and Housatonic Highlands; autochthonous this region. They were first mapped by Barth quartz-calcite up to just above the staurolite lower Paleozoic units, including Cambrian (1936, p. 777-779 and Plate 1) but have isograd, with limited occurrence of quariz- quartzite (Poughquag), Cambrian- been remapped (Vidale, in prep.). Barth's albite below the biotite isograd; quartz and Ordovician carbonate rock (Wappinger, isograds correspond accurately to first quartz-plagioclase (An20 to An50) from tie Stockbridge, and In wood), and Ordovician megascopic appearance of index minerals. staurolite isograde up to the sillimanite- pelitic rock (Walloomsac); and allochtho- Detailed thin-section examination of rocks orthoclase isograd; and quartz, quartz- nous Cambrian-Ordovician pelitic units with appropriate bulk chemical composi- plagioclase, and quartz-plagioclase- (Everett, Nassau, Germantown, Elizaville, tion for the first occurrence of index orthoclase above the sillimanite-orthoclase isograd.
    [Show full text]
  • A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry
    PROPERTY OF DUG,r c LiiiRARYyw A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry By CYNTHIA DUSEL-BACON and HELEN L. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1170-E Petrographic, geothermometric, and structural data are used to support the hypothesis that a 600-km* area of pelitic metamorphic rocks is a gneiss dome -- -- UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Dusel-Bacon. Cynthia. A sillimanite gneiss dome in the Yukon crystalline terrane, eastcentral Alaska. (Shorter contributions to general geology) (Geological Survey Professional Paper 1170-E) Bibliography Supt. of Docs. no.: 1 19.412: 1170-E 1. Gneiss--Alaska. 2. Intrusions (Geology)-Alaska. I. Foster, Helen Laura. 1919- . 11. Title. Ill. Series. IV. Series: United States: Geological Survey. Professional Paper 1170-E. QE475.G55D87 1983 552'.4 83-60003 1 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 42304 CONTENTS Page Abstract .............................................................................................................................................................. El Introduction .....................................................................................................................................................
    [Show full text]
  • Regional Thermal Metamorphism and Deformation of the Sitka Graywacke, Southern Baranof Island, Southeastern Alaska
    Regional Thermal Metamorphism and Deformation of the Sitka Graywacke, Southern Baranof Island, Southeastern Alaska U.S. GEOLOGICAL SURVEY BULLETIN 1779 Regional Thermal Metamorphism and Deformation of the Sitka Graywacke, Southern Baranof Island, Southeastern Alaska By ROBERT A. LONEY and DAVID A. BREW U.S. GEOLOGICAL SURVEY BULLETIN 1779 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1987 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Loney, Robert Ahlberg, 1922- Regional thermal metamorphism and deformation of the Sitka Graywacke, southern Baranof Island, southeastern Alaska. U.S. Geological Survey Bulletin 1779 Bibliography Supt. of Docs. No.: 119.3: 1779 1. Metamorphism (Geology)-Aiaska-Baranof Island. 2. Rock deformation-Alaska Baranof Island. 3. Sitka Graywacke (Alaska). I. Brew, David A. II. Title. Ill. Series. QE75.B9 No. 1779 557.3 s 87-600001 [QE475.A2] [552' .4'097982] CONTENTS Abstract 1 Introduction 1 Acknowledgments 2 Geologic setting 2 Structure 3 Metamorphism 3 General description 3 Whole-rock composition 5 Garnet composition 5 Metamorphic isograds and zones 5 Discussion 12 Summary 16 References cited 16 FIGURES 1-3. Maps showing: 1. Location of the southern Baranof Island study area 2 2. Location of structural domains and geometry of bedding, foliation, fold axes, and lineations 4 3. Major geologic units, metamorphic isograds and zones related to the Crawfish Inlet and Redfish Bay plutons, and location of samples analyzed in this study 6 4.
    [Show full text]
  • Polymetamorphism in Medium- to High-Grade Pelitic Metamorphic Rocks, West-Central Maine
    Polymetamorphism in medium- to high-grade pelitic metamorphic rocks, west-central Maine M. J. HOLDAWAY Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275 CHARLES V. GUIDOTTI» Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706 JAMES M. NOVAK Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts 01731 WILLIAM E. HENRY 235 G.B., Research Center, Phillips Petroleum Company, Bartlesville, Oklahoma 74004 ABSTRACT throughout the area at a given time, but range in grade from chlorite zone to K- increased about 0.5 kbar or more between feldspar-sillimanite zone (Osberg and oth- A regional petrologic study of pelitic M2 and M3 metamorphism. The more ers, 1968). metamorphic rocks has been undertaken, regional distribution of isograds to the With the exception of a small syenite with emphasis on the area bounded by the south is consistent with higher initial tem- body near Litchfield and two gabbro intru- cities of Augusta, Lewiston, Norway, peratures and more closely spaced mag- sions (Fig. 1), the plutonic rocks are biotite- Rangeley, Kingfield, and Madison. This matic heat sources, but not necessarily with muscovite-garnet quartz monzonites and report involves a regional isograd map, increasing pressure to the south. The pres- biotite-garnet granodiorites of the New interpretation of the nature of the various sure increase between M2 and M3 might Hampshire Magma Series. For the purpose reactions, and discussion of petrologic prob- have been produced by intrusion of magma of this report, the plutons are identified as lems of polymetamorphism, isograd distri- above the present level and/or extrusion of batholiths or groups of smaller plutons bution, and widespread occurrence of mus- rhyolitic volcanics.
    [Show full text]
  • Metamorphic Facies Map of Southeastern Alaska Distribution, Facies, and Ages of Regionally Metamorphosed Rocks
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICALSURVEY METAMORPHIC FACIES MAP OF SOUTHEASTERN ALASKA DISTRIBUTION, FACIES, AND AGES OF REGIONALLY METAMORPHOSED ROCKS By Cynthia Ousel-Bacon, David A. Brew, and Susan L. Douglass1 Prepared in Cooperation with State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys Open-File Report 91-29 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Menlo Park, CA 94025 CONTENTS Page Abstract......................................................................................................................................^ Introduction.....................................................................................................................................1 Acknowledgments................................................................................................................^ Summary of the major metamorphic episodes that affected southeastern Alaska..........................8 Detailed description of metamorphic map units........................................................................... 1 0 Southern Prince of Wales Island and adjacent islands .....................................................1 0 GNS (O-C) + LPP (DS)..................................................................................1
    [Show full text]
  • Chapter 10. Metamorphism & Metamorphic Rocks
    Physical Geology, First University of Saskatchewan Edition is used under a CC BY-NC-SA 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 10. Metamorphism & Metamorphic Rocks Adapted by Karla Panchuk from Physical Geology by Steven Earle Figure 10.1 Grey and white striped metamorphic rocks (called gneiss) at Pemaquid Point were transformed by extreme heat and pressure during plate tectonic collisions. Source: Karla Panchuk (2018) CC BY 4.0. Photos by Joyce McBeth (2009) CC BY 4.0. Map by Flappiefh (2013), derivative of Reisio (2005), Public Domain. Learning Objectives After reading this chapter and answering the review questions at the end, you should be able to: • Summarize the factors that influence the nature of metamorphic rocks. • Explain how foliation forms in metamorphic rocks. • Classify metamorphic rocks based on their texture and mineral content, and explain the origins of both. • Describe the various settings in which metamorphic rocks are formed and explain the links between plate tectonics and metamorphism • Describe the different types of metamorphism, including burial metamorphism, regional metamorphism, seafloor metamorphism, subduction zone metamorphism, contact metamorphism, shock metamorphism, and dynamic metamorphism. • Explain how metamorphic facies and index minerals are used to characterize metamorphism in a region. • Explain why fluids are important for metamorphism and describe what happens during metasomatism. Chapter 10. Metamorphism & Metamorphic Rocks 1 Metamorphism Occurs Between Diagenesis And Melting Metamorphism is the change that takes place within a body of rock as a result of it being subjected to high pressure and/or high temperature. The parent rock or protolith is the rock that exists before metamorphism starts.
    [Show full text]