Vein Assemblages and Metamorphism in Dutchess County, New York ABSTRACT Others, 1972) and Shows the Study Area

Total Page:16

File Type:pdf, Size:1020Kb

Vein Assemblages and Metamorphism in Dutchess County, New York ABSTRACT Others, 1972) and Shows the Study Area ROSEMARY J. VIDALE Department of Geology and Geophysics, State University of New York at Binghamton, Binghamton, New York 13901 Vein Assemblages and Metamorphism in Dutchess County, New York ABSTRACT others, 1972) and shows the study area. The Stuyvesant Falls, Mount Merino, Indian major geologic mapping of this area was River, and Austin Glen). Carbonate-rich Mineral assemblages of fissure veins in done by Barth (1936) and by Balk (1936) layers occur locally in pelitic rocks of both pelitic rocks are a consistent function of with significant additions by Fisher and autochthon and allochthon and are espe- metamorphic grade within a 1,700 km2 area others (1972). cially abundant near the base of the in and near Dutchess County, New York. The principal geologic units are the Walloomsac. The following vein assemblages are ob- Precambrian gneisses of the Hudson and Figure 2 shows metamorphic isograds in served with increasing grade: quartz and Housatonic Highlands; autochthonous this region. They were first mapped by Barth quartz-calcite up to just above the staurolite lower Paleozoic units, including Cambrian (1936, p. 777-779 and Plate 1) but have isograd, with limited occurrence of quariz- quartzite (Poughquag), Cambrian- been remapped (Vidale, in prep.). Barth's albite below the biotite isograd; quartz and Ordovician carbonate rock (Wappinger, isograds correspond accurately to first quartz-plagioclase (An20 to An50) from tie Stockbridge, and In wood), and Ordovician megascopic appearance of index minerals. staurolite isograde up to the sillimanite- pelitic rock (Walloomsac); and allochtho- Detailed thin-section examination of rocks orthoclase isograd; and quartz, quartz- nous Cambrian-Ordovician pelitic units with appropriate bulk chemical composi- plagioclase, and quartz-plagioclase- (Everett, Nassau, Germantown, Elizaville, tion for the first occurrence of index orthoclase above the sillimanite-orthoclase isograd. Extreme deformation makes rela- 73°30 tive crosscutting relations of veins difficult to determine; however, late quartz veins are fairly common, and late quartz-calcite veins are seen in high-grade rocks near marble contacts. A tentative conclusion is that quartz and quartz-calcite, quartz-plagioclase, and quartz-plagioclase-orthoclase veins form in pelitic rocks at successively higher metamorphic grades from material derived from the surrounding matrix. This may happen during prograde and retrograde l°45' metamorphism and during successive metamorphic events. INTRODUCTION The purpose of this study was to discover the nature and origin of veins and other coarse-grained segregations in pelitic rocks in a block of twelve 7lh' quadrangles in Dutchess and Putnam Counties, New York, and in Litchfield and Fairfield Counties, Connecticut. The segregations might reflect original layering, magma or aqueous fluids injected from outside the pelitic unit, material derived from the surrounding matrix during metamorphism, or some combination of these. Original layering or injected material would not be expected to vary systematically in bulk composition as a function of metamorphic grade, whereas material derived locally from the metamor- phic matrix could vary with grade. The l°30' backbone of this investigation, therefore, was field and thin-section observation of mineral assemblages in coarse segregations Allochthonous Cambrian - Ordovician Cambrian quartzite and comparison of their spatial distribution pelitic rocks to that of the regional metamorphic Autochthonous Ordovician Precambrian metamorphic pelitic rocks rocks isograds. Autochthonous and Allochthonous E2 Cambrian-Ordovician pelitic rocks LOCATION AND GEOLOGY Cambrian-Ordivican carbonate Gneisses of probable OF THE AREA m rocks Paleozoic age Figure 1 is simplified from the new Figure 1. Geologic map of Dutchess County, New York, and adjoining region (modified from Fisher and others, geologic map of New York State (Fisher and 1972). Quadrangle names indicated by locality designations. Geological Society of America Bulletin, v. 85, p. 303-336, 3 figs., February 1974 303 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/85/2/303/3429232/i0016-7606-85-2-303.pdf by guest on 01 October 2021 304 R. J. VIDALE 73°45 73-30' relative to the position of mapped isograds. A. secondary objective was to determine relative ages and vein types on the basis of crosscutting relations. However, the pelitic rocks of this region have been so strongly kneaded tectonically that nearly all segrega- tions are now discontinuous deformed plates and lenses in a micaceous matrix. Very few crosscutting relations can be seen, and one cannot be certain about most of these because of the strong deformation. A 4I°45 statistically significant number of observa- tions are required, and they were not achieved in this study. Determination of vein density (proportion of vein volume to matrix volume) also requires large-scale statistical treatment as well as correlation with position :.n major structural features. Most of the segregations range from a few millimeters to ~ 10 cm thick. There are some larger segregations, as much as ~30 cm :hick, and a few pegmatite bodies >3 m thick. Most of the segregations appear to lave been crosscutting veins before defor- mation; however, all observed coarse- grained regions in fold noses, boudin necks, en echelon gash fractures, and rolled garnet shadows were examined and included in the data. Except for the large pegmatite bodies, all sizes and forms of segregations at any given sampling locality contain the same assortment of mineral assemblages. For 4I°30 convenience, all will be called veins. The most practical sampling procedure proved to be examination and staining of I I Paleozoic pelitic rocks Isograds veins in the field. Large outcrops or roadcuts were used wherever possible. All veins were Contacts of lithologie units from Fig. 1 examined for geometry and mineralogy; an average of six were chosen for detailed study Vein Assemblages: at each outcrop. These included veins typical O Q, Q - Ce • Q, Q - Plag of the locality and any that appeared in any • Q, 0 - Ce, Q-Ab, Q-Ab-Cc A Q, Q-Plag, Q-Plag-Ksp way atypical. All were stained for plagio- clase and potassium feldspar, because S Q, O-Ce, 0-Ab, Q-Ab-Ce, • Rare muscovite also present Q-Ab-Ksp, Q-Ab-Ksp-Cc weathering and granulation commonly Figure 2. Metamorphic isograds and vein assemblages. Q, quartz; Ce, calcite; Ab, albite; Ksp, potassium feldspar; made distinctions among quartz and Plag, plagioclase in An20 to An50 range. feldspars uncertain. Hydrofluoric acid and cobaltinitrite and amaranth solutions were minerals has resulted in a general westward nowhere completely lost from the assem- used. Where any doubt remained (for shift of Barth's isograds. blage. The reaction producing orthoclase example, amaranth is Ca-specific and would All isograds except that of biotite is, approximately, muscovite + quartz = not be expected to stain highly albitic represent the first occurrence of the mineral sillimanite + orthoclase + H20. A reaction plagioclase), thin sections were cut. or assemblage. The biotite isograd marks the of this type, wh xh is dependent on 1 H2O Ninety-five localities in the pelitic units were occurrence of biotite in all pelitic outcrops. well as on bulk chemistry, would be studied in this manner; a concentration of Patchy, partially altered brown mica is expected to occur over a range of both localities was studied wherever assemblages found for several kilometers farther west. temperature ard total pressure. Similar seemed to be changing. In addition, thin This appears to be somewhat altered biotite; transition zones have been observed in other sections selected for accurate location of it shows bird's-eye extinction and gives an areas (see, for example, Guidotti, 1963). isograds were routinely cut across small electron-microprobe analysis much closer to The isograds are smoothed curves based segregations, and the mineral assemblages in that of biotite than of stilpnomelane. It is not on field observation and on study of more these segregations were checked for consist- detrital, because it cuts across detrital than 450 microscope sections. Sampling ency with the segregation assemblages seen layering. Probable stilpnomelane is also density, comb ned with limitations on in the field studies. present locally below the biotite isograd. exposure and bulk chemistry, is insufficient The sillimanite isograd marks the first to delineate small irregularities. VEIN ASSEMBLAGES occurrence of fibrolitic sillimanite. Nearly AND RELATIONS all sillimanite in this region is fibrolitic, and OBJECTIVES AND METHODS Figure 2, shows the field sampling no "isograd" can be mapped for the first The major objective of this study was to localities and indicates the types of vein occurrence of the massive variety. characterize all types and compositions of mineral assemblages seen at each locality. Occurrence of coexisting sillimanite and coarse-grained segregations in the pelitic No distinctions could be drawn on the basis orthoclase is very spotty; muscovite is lithologies and to note their distribution of size, shape, or structural environment; all Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/85/2/303/3429232/i0016-7606-85-2-303.pdf by guest on 01 October 2021 VEIN ASSEMB LAGES AND METAMORPHISM IN DUTCHESS COUNTY, NEW YORK 305 kinds of coarse-grained segregations con- tained the same assemblages. Quartz and quartz-calcite veins occur in every large outcrop
Recommended publications
  • Geology of the Berne Quadrangle Black Hills South Dakota
    Geology of the Berne Quadrangle Black Hills South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission Geology of the Berne Quadrangle Black Hills South Dakota By JACK A. REDDEN PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 CONTENTS Page Page Abstract._ _-------------_-___________-_____________ 343 Pegmatites Continued Introduction.______________________________________ 344 Mineralogy __ _____________-___-___-_-------_--- 378 Previous work__________________________________ 345 Origin.- --___-____-_-_-_---------------------_ 380 Fieldwork and acknowledgments._-_-_--__________ 345 Paleozoic and younger rocks. ________________________ 381 Geologic setting____--__-______________________ ____ 345 Deadwood Formation, __________________________ 381 Metamorphic rocks_________________________________ 347 Englewood Formation.. _ __________--____-_-__--_ 381 Stratigraphic units west of Grand Junction fault___- 347 Pahasapa Limestone- _______-_____.__-----_-- - 381 Vanderlehr Formation.._____________________ 347 Quaternary and Recent deposits. _________________ 382 Biotite-plagioclase gneiss.________________
    [Show full text]
  • Tectonic Interleaving Along the Main Central Thrust, Sikkim Himalaya
    research-articleResearch ArticleXXX10.1144/jgs2013-064C. M. Mottram et al.Tectonic Interleaving Along the Mct 2014 Journal of the Geological Society, London, Vol. 171, 2014, pp. 255 –268. http://dx.doi.org/10.1144/jgs2013-064 Published Online First on January 14, 2014 © 2014 The Authors Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya CATHERINE M. MOTTRAM1*, T. W. ARGLES1, N. B. W. HARRIS1, R. R. PARRISH2,3, M. S. A. HORSTWOOD3, C. J. WARREN1 & S. GUPTA4 1Department of Environment, Earth and Ecosystems, Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR), The Open University, Walton Hall, Milton Keynes MK7 6AA, UK 2Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK 3NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 4Department of Geology & Geophysics, I.I.T., Kharagpur—721 302, India *Corresponding author (e-mail: [email protected]) Abstract: Geochemical and geochronological analyses provide quantitative evidence about the origin, devel- opment and motion along ductile faults, where kinematic structures have been overprinted. The Main Central Thrust is a key structure in the Himalaya that accommodated substantial amounts of the India–Asia conver- gence. This structure juxtaposes two isotopically distinct rock packages across a zone of ductile deformation. Structural analysis, whole-rock Nd isotopes, and U–Pb zircon geochronology reveal that the hanging wall is characterized by detrital zircon peaks at c. 800–1000 Ma, 1500–1700 Ma and 2300–2500 Ma and an εNd(0) signature of –18.3 to –12.1, and is intruded by c. 800 Ma and c.
    [Show full text]
  • Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew
    GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew ORIGIN, TEXTURE, AND CLASSIFICATION OF METAMORPHIC ROCKS Teklewold Ayalew Addis Ababa University, Ethiopia Keywords: aluminosilicates, assemblage, fabric, foliation, gneissose banding, index mineral, isograd, lineation, lithosphere, metamorphic facies, metasomatism, orogenic belt, schistosity Contents 1. Introduction 2. Occurrence 2.1. Orogenic Metamorphism 2.2. Contact Metamorphism 2.3. Ocean Floor Metamorphism 3. Classification 4. Minerals of Metamorphic Rocks 5. Metamorphic Facies 5.1. Facies of Very Low Grade 5.2. Greenschist Facies 5.3. Amphibolite Facies 5.4. Granulite Facies 5.5. Hornblende Hornfels Facies 5.6. Pyroxene Hornfels Facies 5.7. Blueschist Facies 5.8. Eclogite Facies 6. Tectonic Setting of Metamorphic Facies 7. Textures 7.1. Layering, Banding, and Fabric Development 8. Kinetics 8.1. Diffusion 8.2. Nucleation 8.3. Crystal Growth AcknowledgmentUNESCO – EOLSS Glossary Bibliography Biographical SketchSAMPLE CHAPTERS Summary Metamorphic rocks are igneous, sedimentary, or other metamorphic rocks whose texture and composition has been changed by metamorphism. Metamorphism occurs as a response to changes in the physical or chemical environment of any pre-existing rock, such as variations in pressure or temperature, strain, or the infiltration of fluids. It involves recrystallization of existing minerals into new grains and/or the appearance of new mineral phases and breakdown of others. Metamorphic processes take place ©Encyclopedia of Life Support Systems (EOLSS) GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew essentially in the solid state. The rock mass does not normally disaggregate and lose coherence entirely; however small amounts of fluids are frequently present and may play an important catalytic role.
    [Show full text]
  • Metamorphic Field Gradients Across the Himachal Himalaya
    TECTONICS, VOL. 32, 540–557, doi:10.1002/tect.20020, 2013 Metamorphic field gradients across the Himachal Himalaya, northwest India: Implications for the emplacement of the Himalayan crystalline core Remington M. Leger,1,2 A. Alexander G. Webb,1 Darrell J. Henry,1 John A. Craig,1 and Prashant Dubey3 Received 28 August 2012; revised 23 January 2013; accepted 3 February 2013; published 31 May 2013. [1] New constraints on pressures and temperatures experienced by rocks of the Himachal Himalaya are presented in order to test models for the emplacement of the Himalayan crystalline core here. A variety of methods were employed: petrographic analysis referenced to a petrogenetic grid, exchange and net-transfer thermobarometry, Ti-in-biotite thermometry, and analysis of quartz recrystallization textures. Rocks along three transects (the northern Beas, Pabbar, and southern Beas transects) were investigated. Results reveal spatially coherent metamorphic field gradients across amphibolite-grade and migmatitic metamorphic rocks. Along the northern Beas transect, rocks record peak temperatures of ~650–780C at low elevations to the north of ~3210’ N; rocks in other structural positions along this transect record peak temperatures of <640C that decrease with increasing structural elevation. Rocks of the Pabbar transect dominantly record ~650–700C peak temperatures to the east of ~7755’ E and ~450–620C peak temperatures farther west. Peak temperatures of ~450–600C along the southern Beas transect record a right-way-up metamorphic field gradient. Results are integrated with literature data to determine a metamorphic isograd map of the Himachal Himalaya. This map is compared to metamorphic isograd map pattern predictions of different models for Himalayan crystalline core emplacement.
    [Show full text]
  • Relationship Between Rock Type, Metamorphic Grade
    Canadian Mineralogist Vol. 25, pp. 485-498(1987) RELATIONSHIPBETWEEN ROCK TYPE, METAMORPHIC GRADE, AND FLUID- PHASECOMPOSITION IN THE GRENVILLESUPERGROUP, LIMERICKTOWNSHIP, ONTARIO P. JAMES LgANDERSON Depaftmentof Geologyand GeologicalEngineering, Colorado School of Mines, Goldm, Colorado8M01, U.S.A. JAMES L. MUNOZ Depafimentof GeologicalSciences, University of Colorado,Boulder, Colorado80309-0250, U.S.A, ABSTRACT entre535 et 550'C dansles marbres et 402et 543"Cou plus dans les lithologies pauvres en carbonate. La valerir de The srudy area in Limerick Township in the southern X(CO) seraitentre 0,45 et 0.55 dansles marbreset moins Grenville Province consistsof a sequenceof late Proterozoic de 0. l0 dansles milieux pauvresen carbonate.La relatlon metabasalts,noncalcareous and calcareousquartzofeld- entre degr€de m6tamorphismeet lithologie refldte la dimi spatlfc granofels,and marblesintruded by two gabbro com- nution du X(CO) du marbre vers les unit€s moins riches plexes.During the Grenville Orogeny,metamorphism of en calcaire.Cette relation pourrait 6tre attribude l) d un marble producedassemblages that are below the titanite, tamponnageinterne de la phasefluide par lesr6actions iso- actinolite - calcite,and hornblende- K-feldsparisograds, gradiquesi des valeurs 6levdesde X(CO) dans les mar- but above the hornblende - K-feldspar isograd in the bres et des valeurs inf6rieures dans les unit6s pauvres en quartzofeldspathicunits and amphibolitss. Calcite-dolomite carbonate, ou 2) d un tamponnagedes fluides i desvaleurs and two-feldspargeothennometry, and calculationof the faibles de X(CO) par les r€actionsisogradiques suite i displacementof intersectingequilibria due to solid-solution, l'infiltration de fluides aqueux au travers des unit€s pau- bracket equilibrium temperaturesbetween 535 and 550'C vres ou sanscarbonate.
    [Show full text]
  • A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry
    PROPERTY OF DUG,r c LiiiRARYyw A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry By CYNTHIA DUSEL-BACON and HELEN L. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1170-E Petrographic, geothermometric, and structural data are used to support the hypothesis that a 600-km* area of pelitic metamorphic rocks is a gneiss dome -- -- UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Dusel-Bacon. Cynthia. A sillimanite gneiss dome in the Yukon crystalline terrane, eastcentral Alaska. (Shorter contributions to general geology) (Geological Survey Professional Paper 1170-E) Bibliography Supt. of Docs. no.: 1 19.412: 1170-E 1. Gneiss--Alaska. 2. Intrusions (Geology)-Alaska. I. Foster, Helen Laura. 1919- . 11. Title. Ill. Series. IV. Series: United States: Geological Survey. Professional Paper 1170-E. QE475.G55D87 1983 552'.4 83-60003 1 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 42304 CONTENTS Page Abstract .............................................................................................................................................................. El Introduction .....................................................................................................................................................
    [Show full text]
  • Regional Thermal Metamorphism and Deformation of the Sitka Graywacke, Southern Baranof Island, Southeastern Alaska
    Regional Thermal Metamorphism and Deformation of the Sitka Graywacke, Southern Baranof Island, Southeastern Alaska U.S. GEOLOGICAL SURVEY BULLETIN 1779 Regional Thermal Metamorphism and Deformation of the Sitka Graywacke, Southern Baranof Island, Southeastern Alaska By ROBERT A. LONEY and DAVID A. BREW U.S. GEOLOGICAL SURVEY BULLETIN 1779 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1987 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center, Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publication Data Loney, Robert Ahlberg, 1922- Regional thermal metamorphism and deformation of the Sitka Graywacke, southern Baranof Island, southeastern Alaska. U.S. Geological Survey Bulletin 1779 Bibliography Supt. of Docs. No.: 119.3: 1779 1. Metamorphism (Geology)-Aiaska-Baranof Island. 2. Rock deformation-Alaska Baranof Island. 3. Sitka Graywacke (Alaska). I. Brew, David A. II. Title. Ill. Series. QE75.B9 No. 1779 557.3 s 87-600001 [QE475.A2] [552' .4'097982] CONTENTS Abstract 1 Introduction 1 Acknowledgments 2 Geologic setting 2 Structure 3 Metamorphism 3 General description 3 Whole-rock composition 5 Garnet composition 5 Metamorphic isograds and zones 5 Discussion 12 Summary 16 References cited 16 FIGURES 1-3. Maps showing: 1. Location of the southern Baranof Island study area 2 2. Location of structural domains and geometry of bedding, foliation, fold axes, and lineations 4 3. Major geologic units, metamorphic isograds and zones related to the Crawfish Inlet and Redfish Bay plutons, and location of samples analyzed in this study 6 4.
    [Show full text]
  • Polymetamorphism in Medium- to High-Grade Pelitic Metamorphic Rocks, West-Central Maine
    Polymetamorphism in medium- to high-grade pelitic metamorphic rocks, west-central Maine M. J. HOLDAWAY Department of Geological Sciences, Southern Methodist University, Dallas, Texas 75275 CHARLES V. GUIDOTTI» Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706 JAMES M. NOVAK Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts 01731 WILLIAM E. HENRY 235 G.B., Research Center, Phillips Petroleum Company, Bartlesville, Oklahoma 74004 ABSTRACT throughout the area at a given time, but range in grade from chlorite zone to K- increased about 0.5 kbar or more between feldspar-sillimanite zone (Osberg and oth- A regional petrologic study of pelitic M2 and M3 metamorphism. The more ers, 1968). metamorphic rocks has been undertaken, regional distribution of isograds to the With the exception of a small syenite with emphasis on the area bounded by the south is consistent with higher initial tem- body near Litchfield and two gabbro intru- cities of Augusta, Lewiston, Norway, peratures and more closely spaced mag- sions (Fig. 1), the plutonic rocks are biotite- Rangeley, Kingfield, and Madison. This matic heat sources, but not necessarily with muscovite-garnet quartz monzonites and report involves a regional isograd map, increasing pressure to the south. The pres- biotite-garnet granodiorites of the New interpretation of the nature of the various sure increase between M2 and M3 might Hampshire Magma Series. For the purpose reactions, and discussion of petrologic prob- have been produced by intrusion of magma of this report, the plutons are identified as lems of polymetamorphism, isograd distri- above the present level and/or extrusion of batholiths or groups of smaller plutons bution, and widespread occurrence of mus- rhyolitic volcanics.
    [Show full text]
  • Metamorphic Facies Map of Southeastern Alaska Distribution, Facies, and Ages of Regionally Metamorphosed Rocks
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICALSURVEY METAMORPHIC FACIES MAP OF SOUTHEASTERN ALASKA DISTRIBUTION, FACIES, AND AGES OF REGIONALLY METAMORPHOSED ROCKS By Cynthia Ousel-Bacon, David A. Brew, and Susan L. Douglass1 Prepared in Cooperation with State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys Open-File Report 91-29 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Menlo Park, CA 94025 CONTENTS Page Abstract......................................................................................................................................^ Introduction.....................................................................................................................................1 Acknowledgments................................................................................................................^ Summary of the major metamorphic episodes that affected southeastern Alaska..........................8 Detailed description of metamorphic map units........................................................................... 1 0 Southern Prince of Wales Island and adjacent islands .....................................................1 0 GNS (O-C) + LPP (DS)..................................................................................1
    [Show full text]
  • Petrographic Records of Two Metamorphic Events in the Lesser Himalayan Metabasites, Modi Khola Section, Central Nepal
    Bulletin of the Department of Geology Bulletin of the Department of Geology, Tribhuvan University, Kathmandu, Nepal, Vol. 11, 2008, pp. 5–12 Petrographic records of two metamorphic events in the Lesser Himalayan metabasites, Modi Khola section, central Nepal Lalu Paudel Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal ABSTRACT Metabasites of the Lesser Himalaya along the Modi Khola valley in central Nepal are the supracrustal dikes and sills of basic igneous rocks emplaced in the clastic sediments and later metamorphosed together with the host rocks. They contain almost a constant metamorphic mineral assemblage of Ca-amphiboles+plagioclase+biotite+quartz±epidote±chlorite+(Fe-Ti oxides). Amphiboles occur in the form of porphyroblast and recrystallized matrix. The porphyroblasts are zoned with actinolitic cores and hornblende rims. The recrystallized matrix ranges in composition from actinolite in chlorite zone to hornblende in biotite and garnet zones. The cores of porphyroblasts are pre-kinematic and were probably formed prior to the Tertiary Himalayan orogeny. The rims of porphyroblasts and matrix amphiboles are syn-kynematic and were formed during the Upper Main Central Thrust activity in the Tertiary. The systematic changes in amphibole compositions as well as textural characteristics of metabasites are in good agreement with the classical concept of increasing metamorphic grade and intensity of deformation structurally upwards towards the Upper Main Central Thrust in the Lesser Himalaya. INTRODUCTION mineralogically more sensitive to variation in pressure and temperature and may record metamorphic There are several controversial issues related to information which is not found in equivalent metamorphic evolution of the Lesser Himalaya in metasediments (Miyashiro 1973).
    [Show full text]
  • Structural and Geochronological Evidence for the Leading Edge of the Greater Himalayan Crystalline Complex in the Central Nepal Himalaya
    Earth and Planetary Science Letters 304 (2011) 483–495 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Structural and geochronological evidence for the leading edge of the Greater Himalayan Crystalline complex in the central Nepal Himalaya A. Alexander G. Webb a,⁎, Axel K. Schmitt b, Dian He a, Eric L. Weigand c,1 a Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA b Department of Earth and Space Sciences, University of California, Los Angeles, CA 90095, USA c Fugro West, Inc., 4829 McGrath St., Suite 100, Ventura, CA 93003, USA article info abstract Article history: The Himalaya is commonly described as a three layer-two fault stack. Namely, a high-grade crystalline core Received 31 July 2010 featuring an inverted metamorphic field gradient, the Greater Himalayan Crystalline complex (GHC), is Received in revised form 9 February 2011 separated from units above and below by shear zones. The Lesser Himalayan Sequence (LHS) underlies the Accepted 14 February 2011 GHC below the Main Central thrust, and the Tethyan Himalayan Sequence (THS) overlies it along the South Editor: R.W. Carlson Tibet detachment. However, the southern Main Central thrust hanging wall consists of a lower unit dominated by a right-way-up metamorphic sequence of biotite±garnet schists (Bhimphedi Group) and an Keywords: upper unit with only anchizone metamorphism (Pulchauki Group). The Bhimphedi Group is commonly South Tibet detachment equated to the GHC, while the Pulchauki Group is well correlated to the THS. However, no shear zone Main Central thrust separates these units.
    [Show full text]
  • Evidence for a Far-Traveled Thrust Sheet in the Greater Himalayan Thrust System, and an Alternative Model to Building the Himalaya S
    Boise State University ScholarWorks Geosciences Faculty Publications and Presentations Department of Geosciences 1-1-2015 Evidence for a Far-Traveled Thrust Sheet in the Greater Himalayan Thrust System, and an Alternative Model to Building the Himalaya S. Khanal University of Alabama D. M. Robinson University of Alabama M. J. Kohn Boise State University S. Mandal University of Alabama This document was originally published by American Geophysical Union in Tectonics. Copyright restrictions may apply. doi: 10.1002/2014TC003616 PUBLICATIONS Tectonics RESEARCH ARTICLE Evidence for a far-traveled thrust sheet in the Greater 10.1002/2014TC003616 Himalayan thrust system, and an alternative Key Points: model to building the Himalaya • The Galchhi shear zone predates the Main Central Thrust S. Khanal1, D. M. Robinson1, M. J. Kohn2, and S. Mandal1 • Similar timing, age, and metamorphism – to the intra Greater Himalayan thrusts 1Department of Geological Sciences, University of Alabama, Tuscaloosa, Alabama, USA, 2Department of Geosciences, Boise • Kathmandu klippe is the leading edge of an intra–Greater Himalayan thrust State University, Boise, Idaho, USA Supporting Information: Abstract The Galchhi shear zone underlies the Kathmandu klippe in central Nepal and has emerged as • Readme a key structure for discriminating competing models for the formation of the Himalayan orogenic wedge. • Figure S1 • Figure S2 New chronologic data from the Galchhi area suggest a new structural and orogenic interpretation. Zircons • Text S1 from quartzites and an orthogneiss restrict protolith deposition to between 467 + 7/ À 10 Ma and ~570 Ma, • Table S1 with metamorphic zircon growth at 23–29 Ma. Comparable data from the Greater Himalayan Sequence (GHS) at the intra-GHS Langtang thrust, north of Galchhi, similarly restrict GHS deposition to between 475 + 7/ À 3and Correspondence to: ≥ S.
    [Show full text]