Metamorphic Field Gradients Across the Himachal Himalaya

Total Page:16

File Type:pdf, Size:1020Kb

Metamorphic Field Gradients Across the Himachal Himalaya TECTONICS, VOL. 32, 540–557, doi:10.1002/tect.20020, 2013 Metamorphic field gradients across the Himachal Himalaya, northwest India: Implications for the emplacement of the Himalayan crystalline core Remington M. Leger,1,2 A. Alexander G. Webb,1 Darrell J. Henry,1 John A. Craig,1 and Prashant Dubey3 Received 28 August 2012; revised 23 January 2013; accepted 3 February 2013; published 31 May 2013. [1] New constraints on pressures and temperatures experienced by rocks of the Himachal Himalaya are presented in order to test models for the emplacement of the Himalayan crystalline core here. A variety of methods were employed: petrographic analysis referenced to a petrogenetic grid, exchange and net-transfer thermobarometry, Ti-in-biotite thermometry, and analysis of quartz recrystallization textures. Rocks along three transects (the northern Beas, Pabbar, and southern Beas transects) were investigated. Results reveal spatially coherent metamorphic field gradients across amphibolite-grade and migmatitic metamorphic rocks. Along the northern Beas transect, rocks record peak temperatures of ~650–780C at low elevations to the north of ~3210’ N; rocks in other structural positions along this transect record peak temperatures of <640C that decrease with increasing structural elevation. Rocks of the Pabbar transect dominantly record ~650–700C peak temperatures to the east of ~7755’ E and ~450–620C peak temperatures farther west. Peak temperatures of ~450–600C along the southern Beas transect record a right-way-up metamorphic field gradient. Results are integrated with literature data to determine a metamorphic isograd map of the Himachal Himalaya. This map is compared to metamorphic isograd map pattern predictions of different models for Himalayan crystalline core emplacement. This analysis excludes models involving large magnitude (>20–30 km) extrusion and permits (1) models involving small magnitude (<20–30 km) extrusion that is discontinuous along the orogen and (2) tectonic wedging models, in which the crystalline core was emplaced at depth between a sole thrust and a back thrust in the Early-Middle Miocene. Citation: Leger, R. M., A. A. G. Webb, D. J. Henry, J. A. Craig, and P. Dubey (2013), Metamorphic field gradients across the Himachal Himalaya, northwest India: Implications for the emplacement of the Himalayan crystalline core, Tectonics, 32, 540–557, doi:10.1002/tect.20020. 1. Introduction Daniel et al., 2003]. Development of inverted metamorphic field gradients in the Himalaya has been explained by [2] First-order aspects of Himalayan tectonics are debated, end-member and hybrid models involving postmetamorphic in particular the development and emplacement of the recumbent folding of isograds [Heim and Gansser,1939; crystalline core, i.e., the Greater Himalayan Crystalline Frank et al., 1973; Searle and Rex, 1989] and/or shearing complex (GHC) (Figure 1). Key features of this unit include fi of isograds [Jain and Manickavasagam,1993;Hubbard, an inverted metamorphic eld gradient extending through 1996; Vannay and Grasemann, 2001]; syn-metamorphic the base to its middle or upper structural levels, and shearing of isograds [Grujic et al., 1996; Daniel et al., two shear zones bounding the GHC from above and below 2003], including within the context of a channel flow [e.g., Le Fort, 1996; Vannay and Grasemann, 1998; [Jamieson et al., 2004; Larson et al., 2010]; emplacement of a crystalline “hot-iron” hanging wall [Le Fort,1975; Célérier et al., 2009a, 2009b]; basal accretion of large or Additional supporting information may be found in the online version of small thrust horses [Reddy et al., 1993; Corrie and Kohn, this article. 2011] commonly in association with surface erosion 1Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA. [Royden, 1993; Herman et al., 2010]; shear heating 2Now at Department of Earth and Planetary Sciences, University of [Molnar and England, 1990]; and pre-Himalayan heating Tennessee, Knoxville, Tennessee, USA. by Early Paleozoic granite crystallization [Gehrels et al., 3Oil and Natural Gas Corporation of India, Mehsana, Gujarat, India. 2003]. Inverted metamorphic field gradients extend below fi Corresponding author: A. Alexander G. Webb, Department of Geology the GHC, and right-way-up metamorphic eld gradients and Geophysics, Louisiana State University, E235 Howe-Russell, Baton persist above it, such that the thermal field is commonly Rouge, LA 70803, USA. ([email protected]) continuous across the bounding shear zones and into the fl ©2013. American Geophysical Union. All Rights Reserved. anking units above and below [e.g., Bollinger et al., 0278-7407/13/10.1002/tect.20020 2004; Chambers et al., 2009]. 540 LEGER ET AL.: HIMACHAL METAMORPHIC FIELD GRADIENTS 70oE 80oE N 90oE 30oN China Zanskar shear zone Figures 4, 11 Figures 3, 8, 9, 10 India South Tibet detachment Bhutan Shimla Himachal Pradesh Almora / o 30 N Dadeldhura Myanmar klippe Pakistan India Kathmandu Nappe Bangladesh (Burma) Tethyan Himalayan Sequence: Quaternary Main Central thrust (MCT) < Precambrian - Cambrian Late Cretaceous - Tertiary < Ordovician - Mesozoic South Tibet detachment (STD) (includes Pulchauki Group) Asian and Indo-Burman plate rocks o Greater Himalayan Crystalline Great90 CounterE thrust Indian Craton complex Main Centralo thrust - Southo Tibet detachment Ophiolite / Ophiolitic 20 N 90 E Lesser Himalayan Sequence intersection line (white dash = buried, black melange dash = eroded) Figure 1. Geological Map of the Himalaya. The dashed line denotes the Indian state of Himachal Pradesh, boxes denotes the boundaries of Figures 3–5 and Figures 9–11. Modified from Webb et al. [2011a, 2011b]. [3] The GHC may have been emplaced as a northward- A. Wedge extrusion tapering wedge extruded to the south (Figure 2A) [Burchfiel E. Miocene - M. Miocene N and Royden, 1985; Grujic et al., 1996; Vannay and South Tibet ITS Grasemann, 2001]. Alternatively, these rocks may represent detachment Tibet a low viscosity channel of middle/lower crustal material THS driven south by the lateral pressure gradient from the high LHS GHC Tibetan Plateau to the Himalayan foreland [Nelson et al., Main 1996; Beaumont et al., 2001, 2004; Hodges et al., 2001; Central thrust Godin et al., 2006]. In both models (referred to as wedge B. Channel flow - focused denudation extrusion and channel flow-focused denudation, respectively), Early “tunnelling” stage: N the GHC was extruded to the surface during motion along the Eocene-Oligocene bounding faults (Figures 2A and B). In contrast, the tectonic ITS wedging model posits that the GHC was emplaced at depth Tibet THS as a southward-tapering wedge (Figure 2C) [Yin, 2006; Webb et al., 2007, 2011a, 2011b]. LHS [4] The GHC emplacement models make testable predic- tions for the distribution of structures and metamorphism in Localized exhumation stage: the orogen [e.g., Jamieson et al., 2004; Webb et al., 2011b]. E. Miocene - M. Miocene fl Wedge extrusion and channel ow-focused denudation South Tibet models predict that the GHC was emplaced at the surface in detachment the Early and Middle Miocene. At this time, the GHC would be bounded by the subparallel bounding shear zones, giving Main GHC these high grade rocks the appearance of a “pipe to the Central thrust ” surface in cross-sectional view (Figure 2). In map view, these C. Tectonic wedging models predict that the bounding faults and GHC consistently E. Miocene - M. Miocene N Great separate relatively low grade rocks to north and south. The Counter tectonic wedging model predicts that the bounding faults ITS thrust fi South Tibet Tibet merge to the south, de ning the leading edge of the GHC. THS detachment South of this fault merger (branch line), the GHC would LHS GHC be missing, and the two low grade units would be in direct Main thrust contact. Central thrust [5] In this study, we test the GHC emplacement models by quantifying regional variations in metamorphic grade across Figure 2. Models for the emplacement of the Greater the Himachal Himalaya of northwest India. Previous studies Himalayan Crystalline Complex (GHC), modified from of this region indicate significant along-strike variations Webb et al. [2011b]. 541 LEGER ET AL.: HIMACHAL METAMORPHIC FIELD GRADIENTS in structural geometry and metamorphic field gradient [Frank [e.g., Wyss et al., 1999; Vannay et al., 2004]; or (3) be et al., 1973, 1995; Bhargava et al., 1991; Epard et al., 1995; folded with a top-southwest anticline (the Phojal anticline) Fuchs and Linner, 1995; Thakur, 1998; DiPietro and Pogue, and merge with the MCT along the northern margin of the 2004; Vannay et al., 2004; Richards et al., 2005; Yin, 2006; Kullu window [Thakur, 1998; Yin, 2006; Webb et al., Webb et al., 2007, 2011b]. We present petrographic obser- 2007, 2011b]. vations, new geothermobarometric determinations obtained [8] Rocks of the MCT hanging wall to the southwest of via exchange (garnet-biotite) and net-transfer (garnet-biotite- the Kullu window are commonly interpreted as (1) divided muscovite-plagioclase) reactions [e.g., Thompson, 1976; Ghent into GHC rocks and Tethyan Himalayan Sequence rocks and Stout, 1981], and Ti-in-biotite thermometry [Henry et al., [e.g., DiPietro and Pogue, 2004], (2) grouped as all GHC 2005]. rocks [e.g., Frank et al., 1973; Vannay et al., 2004], or (3) grouped as all Tethyan Himalayan Sequence rocks 2. Regional Geology [Webb et al., 2007, 2011b]. [9] The different STD and MCT hanging wall concepts 2.1. The Himalayan Orogen are related and have direct implications for Himalayan [6] Himalayan geology is commonly described as a three- tectonic models. For example, if the STD and MCT merge layer stack with the crystalline core, the GHC, as the middle along the northern margin of the Kullu window, then these layer bounded by faults above and below [e.g., Hodges, structures bound the frontal tip of the GHC there and the 2000]. The base of the stack is the Lesser Himalayan MCT hanging wall farther southwest consists of Tethyan Sequence, the Tethyan Himalayan Sequence is the upper Himalayan Sequence rocks.
Recommended publications
  • Geology of the Berne Quadrangle Black Hills South Dakota
    Geology of the Berne Quadrangle Black Hills South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission Geology of the Berne Quadrangle Black Hills South Dakota By JACK A. REDDEN PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-F Prepared partly on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 CONTENTS Page Page Abstract._ _-------------_-___________-_____________ 343 Pegmatites Continued Introduction.______________________________________ 344 Mineralogy __ _____________-___-___-_-------_--- 378 Previous work__________________________________ 345 Origin.- --___-____-_-_-_---------------------_ 380 Fieldwork and acknowledgments._-_-_--__________ 345 Paleozoic and younger rocks. ________________________ 381 Geologic setting____--__-______________________ ____ 345 Deadwood Formation, __________________________ 381 Metamorphic rocks_________________________________ 347 Englewood Formation.. _ __________--____-_-__--_ 381 Stratigraphic units west of Grand Junction fault___- 347 Pahasapa Limestone- _______-_____.__-----_-- - 381 Vanderlehr Formation.._____________________ 347 Quaternary and Recent deposits. _________________ 382 Biotite-plagioclase gneiss.________________
    [Show full text]
  • Tectonic Interleaving Along the Main Central Thrust, Sikkim Himalaya
    research-articleResearch ArticleXXX10.1144/jgs2013-064C. M. Mottram et al.Tectonic Interleaving Along the Mct 2014 Journal of the Geological Society, London, Vol. 171, 2014, pp. 255 –268. http://dx.doi.org/10.1144/jgs2013-064 Published Online First on January 14, 2014 © 2014 The Authors Tectonic interleaving along the Main Central Thrust, Sikkim Himalaya CATHERINE M. MOTTRAM1*, T. W. ARGLES1, N. B. W. HARRIS1, R. R. PARRISH2,3, M. S. A. HORSTWOOD3, C. J. WARREN1 & S. GUPTA4 1Department of Environment, Earth and Ecosystems, Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR), The Open University, Walton Hall, Milton Keynes MK7 6AA, UK 2Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK 3NERC Isotope Geosciences Laboratory, British Geological Survey, Keyworth, Nottingham NG12 5GG, UK 4Department of Geology & Geophysics, I.I.T., Kharagpur—721 302, India *Corresponding author (e-mail: [email protected]) Abstract: Geochemical and geochronological analyses provide quantitative evidence about the origin, devel- opment and motion along ductile faults, where kinematic structures have been overprinted. The Main Central Thrust is a key structure in the Himalaya that accommodated substantial amounts of the India–Asia conver- gence. This structure juxtaposes two isotopically distinct rock packages across a zone of ductile deformation. Structural analysis, whole-rock Nd isotopes, and U–Pb zircon geochronology reveal that the hanging wall is characterized by detrital zircon peaks at c. 800–1000 Ma, 1500–1700 Ma and 2300–2500 Ma and an εNd(0) signature of –18.3 to –12.1, and is intruded by c. 800 Ma and c.
    [Show full text]
  • Analysis of Trends in Extreme Precipitation Events Over Western Himalaya Region: Intensity and Duration Wise Study M
    J. Ind. Geophys. Union ( May Analysis2017 ) of trends in extreme precipitation events over Western Himalaya Region: v.21, no.3, pp: 223-229 intensity and duration wise study Analysis of trends in extreme precipitation events over Western Himalaya Region: intensity and duration wise study M. S. Shekhar*1, Usha Devi1, Surendar Paul2, G. P. Singh3 and Amreek Singh1 1Snow and Avalanche Study Establishment, Research and Development Centre, Sector 37, Chandigarh - 160036, India 2 India Meteorological Department, Chandigarh - 160036, India 3Department of Geophysics, Institute of Science, Banaras Hindu University, Varanasi-221005, India *Corresponding Author: [email protected] ABSTRACT The impact of climate change on precipitation has received a great deal of attention by scholars worldwide. Efforts have been made in this study to find out trends in terms of intensity and duration of precipitation for different altitudes and ranges in Western Himalaya region representing Jammu & Kashmir and Himachal Pradesh. In terms of intensity, precipitation has been classified as Low, Medium and Heavy. Durations of precipitation are classified as prolonged dry days (PDD), short dry days (SDD), prolonged wet days (PWD) and short wet days (SWD). Analysis indicates significant positive trends for low and heavy precipitation events and negative for medium precipitation events in Pir-Panjal range. For Shamshawari and Great Himalaya ranges, there is no significant trend for low, medium and heavy precipitation events. In terms of altitude, significant positive trends in low precipitation events have been observed for lower and middle altitudes and no significant trend has been found for medium and heavy precipitation events for other altitudes. In terms of duration, PDD/SDD shows significant increasing/decreasing trends for all ranges and altitudes.
    [Show full text]
  • Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew
    GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew ORIGIN, TEXTURE, AND CLASSIFICATION OF METAMORPHIC ROCKS Teklewold Ayalew Addis Ababa University, Ethiopia Keywords: aluminosilicates, assemblage, fabric, foliation, gneissose banding, index mineral, isograd, lineation, lithosphere, metamorphic facies, metasomatism, orogenic belt, schistosity Contents 1. Introduction 2. Occurrence 2.1. Orogenic Metamorphism 2.2. Contact Metamorphism 2.3. Ocean Floor Metamorphism 3. Classification 4. Minerals of Metamorphic Rocks 5. Metamorphic Facies 5.1. Facies of Very Low Grade 5.2. Greenschist Facies 5.3. Amphibolite Facies 5.4. Granulite Facies 5.5. Hornblende Hornfels Facies 5.6. Pyroxene Hornfels Facies 5.7. Blueschist Facies 5.8. Eclogite Facies 6. Tectonic Setting of Metamorphic Facies 7. Textures 7.1. Layering, Banding, and Fabric Development 8. Kinetics 8.1. Diffusion 8.2. Nucleation 8.3. Crystal Growth AcknowledgmentUNESCO – EOLSS Glossary Bibliography Biographical SketchSAMPLE CHAPTERS Summary Metamorphic rocks are igneous, sedimentary, or other metamorphic rocks whose texture and composition has been changed by metamorphism. Metamorphism occurs as a response to changes in the physical or chemical environment of any pre-existing rock, such as variations in pressure or temperature, strain, or the infiltration of fluids. It involves recrystallization of existing minerals into new grains and/or the appearance of new mineral phases and breakdown of others. Metamorphic processes take place ©Encyclopedia of Life Support Systems (EOLSS) GEOLOGY – Vol. II - Origin, Texture, and Classification of Metamorphic Rocks - Teklewold Ayalew essentially in the solid state. The rock mass does not normally disaggregate and lose coherence entirely; however small amounts of fluids are frequently present and may play an important catalytic role.
    [Show full text]
  • Diversity, Indigenous Uses and Conservation Status of Medicinal Plants in Manali Wildlife Sanctuary, North Western Himalaya
    Indian Journal of Traditional Knowledge Vol. 10 (3), July 2011, pp. 439-459 Diversity, indigenous uses and conservation status of medicinal plants in Manali wildlife sanctuary, North western Himalaya Rana Man S & Samant*SS GB Pant Institute of Himalayan Environment & Development, Himachal Unit, Mohal-Kullu, 175 126, Himachal Pradesh, India E-mails: [email protected], [email protected] Received 26.02 09; revised 23.09.09 In the moutaineous regions human populations are dependent on plants for their sustenance particularly for medicine. In India, more than 95% of the total medicinal plants used in preparing medicines by various industries are harvested from wild. There is a great need to recognise the potential of bioresources at their fullest. Therefore, the present study focused to assess the medicinal plants diversity in Manali wildlife sanctuary of North western Himalaya, identify species preference, native, endemic and threatened medicinal plants and suggests conservation measures. A total of 270 medicinal plants belonging to 84 families and 197 genera were recorded. Maximum medicinal plants were reported in the altitudinal zone, 2000-2800 m and decreased with increasing altitude. Out of the total, 162 medicinal plants were native and 98 were endemic to the Himalayan region. Maximum species were used for stomach problems, followed by skin, eyes, blood and liver problems. Thirty seven species were identified as threatened. Dactylorhiza hatagirea, Aconitum heterophyllum, Arnebia benthamii, Lilium polyphyllum, Swertia chirayita, Podophyllum hexandrum, Jurinella macrocephala, Taxus baccata subsp. wallichiana, etc. were highly preferred species and continuous extraction from the wild for trade has increased pressure which may cause extinction of these species in near future.
    [Show full text]
  • Forests of the Western Himalayas, 1876-1897
    HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies Volume 21 Number 2 Himalayan Research Bulletin Article 6 2001 Territorialization, Resistance and the Mirage of Permanent Boundaries: Forests of the Western Himalayas, 1876-1897 Ashwini Chhatre Duke University Follow this and additional works at: https://digitalcommons.macalester.edu/himalaya Recommended Citation Chhatre, Ashwini. 2001. Territorialization, Resistance and the Mirage of Permanent Boundaries: Forests of the Western Himalayas, 1876-1897. HIMALAYA 21(2). Available at: https://digitalcommons.macalester.edu/himalaya/vol21/iss2/6 This Research Article is brought to you for free and open access by the DigitalCommons@Macalester College at DigitalCommons@Macalester College. It has been accepted for inclusion in HIMALAYA, the Journal of the Association for Nepal and Himalayan Studies by an authorized administrator of DigitalCommons@Macalester College. For more information, please contact [email protected]. Territorialization, Resistance and the Mirage of Permanent Boundaries Forests of the Western Himalayas, 1876-1897 Ashwini Chhatre Duke University ABSTRACT Internal territorialization is described as the attempt to circumscribe the use of various resources, such as land and forests, within the boundaries of a nation-state. This translates into the creation of property rights for different social actors and the demarcation of a physical sphere wherein such rights could be exercised. The notion of permanent boundaries around forests, where local people lack property rights, is popular with all arms of the state, everywhere. This paper traces the first attempts by the colonial state in the Indian Western Himalayas to draw boundaries around forests and define the rights of local populations. The process, which intensified with the publication of a Forest Department report in 1876, was fraught with obstacles at several levels through­ out its course.
    [Show full text]
  • Contributions to the Geology of the North-Western Himalayas 1-59 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Abhandlungen der Geologischen Bundesanstalt in Wien Jahr/Year: 1975 Band/Volume: 32 Autor(en)/Author(s): Fuchs Gerhard Artikel/Article: Contributions to the Geology of the North-Western Himalayas 1-59 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Contributions to the Geology of the North-Western Himalayas GERHARD FUCHS 64 Figures and 5 Plates BAND 32 • WIEN 1975 EIGENTÜMER, HERAUSGEBER UND VERLEGER: GEOLOGISCHE BUNDESANSTALT, WIEN SCHRIFTLEITUNG: G.WOLETZ DRUCK: BRÜDER HOLLINEK, WIENER NEUDORF ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 3 Abh. Geol. B.-A. Band 32 59 Seiten 64 Fig., 5 Beilagen Wien, Feber 1975 Contribution to the Geology of the North-Western Himalayas By GERHARD FUCHS With 64 figures and 5 plates (= Beilage 1—5) Data up to 1972, except PI. 1 'I NW-Himalaya U Stratigraphie i3 Tektonik £ Fazies Contents Zusammenfassung 3 1.3.1. The Hazara Slates 40 Abstract 4 1.3.2. The Tanol Formation 40 Preface 5 1.3.3. The Sequence Tanakki Boulder Bed — Introduction 5 Sirban Formation 41 1. Descriptive Part 6 1.3.4. The Galdanian and Hazira Formations 42 1.1. Kashmir 6 1.3.5. The Meso-Cenozoic Sequence 44 1.1.1. The Riasi-Gulabgarh Pass Section 6 1.4. Swabi — Nowshera 46 1.1.2. The Apharwat Area . 11 1.4.1. Swabi 46 1.1.3. The Kolahoi-Basmai Anticline (Liddar valley) ... 17 1.4.2.
    [Show full text]
  • Mapping Deforestation and Forest Degradation Patterns in Western Himalaya, Pakistan
    remote sensing Technical Note Mapping Deforestation and Forest Degradation Patterns in Western Himalaya, Pakistan Faisal Mueen Qamer 1,2,*, Khuram Shehzad 1, Sawaid Abbas 3, MSR Murthy 1, Chen Xi 2, Hammad Gilani 1 and Birendra Bajracharya 1 1 International Centre for Integrated Mountain Development (ICIMOD), Kathmandu 44700, Nepal; [email protected] (K.S.); [email protected] (M.M.); [email protected] (H.G.); [email protected] (B.B.) 2 The Xinjiang Institute of Ecology and Geography (XIEG), Chinese Academy of Sciences (CAS), Urumqi 830011, China; [email protected] 3 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China; [email protected] * Correspondence: [email protected]; Tel.: +977-01-500-3222 Academic Editors: Rasmus Fensholt, Stephanie Horion, Torbern Tagesson, Martin Brandt, Parth Sarathi Roy and Prasad S. Thenkabail Received: 31 December 2015; Accepted: 12 April 2016; Published: 6 May 2016 Abstract: The Himalayan mountain forest ecosystem has been degrading since the British ruled the area in the 1850s. Local understanding of the patterns and processes of degradation is desperately required to devise management strategies to halt this degradation and provide long-term sustainability. This work comprises a satellite image based study in combination with national expert validation to generate sub-district level statistics for forest cover over the Western Himalaya, Pakistan, which accounts for approximately 67% of the total forest cover of the country. The time series of forest cover maps (1990, 2000, 2010) reveal extensive deforestation in the area. Indeed, approximately 170,684 ha of forest has been lost, which amounts to 0.38% per year clear cut or severely degraded during the last 20 years.
    [Show full text]
  • Relationship Between Rock Type, Metamorphic Grade
    Canadian Mineralogist Vol. 25, pp. 485-498(1987) RELATIONSHIPBETWEEN ROCK TYPE, METAMORPHIC GRADE, AND FLUID- PHASECOMPOSITION IN THE GRENVILLESUPERGROUP, LIMERICKTOWNSHIP, ONTARIO P. JAMES LgANDERSON Depaftmentof Geologyand GeologicalEngineering, Colorado School of Mines, Goldm, Colorado8M01, U.S.A. JAMES L. MUNOZ Depafimentof GeologicalSciences, University of Colorado,Boulder, Colorado80309-0250, U.S.A, ABSTRACT entre535 et 550'C dansles marbres et 402et 543"Cou plus dans les lithologies pauvres en carbonate. La valerir de The srudy area in Limerick Township in the southern X(CO) seraitentre 0,45 et 0.55 dansles marbreset moins Grenville Province consistsof a sequenceof late Proterozoic de 0. l0 dansles milieux pauvresen carbonate.La relatlon metabasalts,noncalcareous and calcareousquartzofeld- entre degr€de m6tamorphismeet lithologie refldte la dimi spatlfc granofels,and marblesintruded by two gabbro com- nution du X(CO) du marbre vers les unit€s moins riches plexes.During the Grenville Orogeny,metamorphism of en calcaire.Cette relation pourrait 6tre attribude l) d un marble producedassemblages that are below the titanite, tamponnageinterne de la phasefluide par lesr6actions iso- actinolite - calcite,and hornblende- K-feldsparisograds, gradiquesi des valeurs 6levdesde X(CO) dans les mar- but above the hornblende - K-feldspar isograd in the bres et des valeurs inf6rieures dans les unit6s pauvres en quartzofeldspathicunits and amphibolitss. Calcite-dolomite carbonate, ou 2) d un tamponnagedes fluides i desvaleurs and two-feldspargeothennometry, and calculationof the faibles de X(CO) par les r€actionsisogradiques suite i displacementof intersectingequilibria due to solid-solution, l'infiltration de fluides aqueux au travers des unit€s pau- bracket equilibrium temperaturesbetween 535 and 550'C vres ou sanscarbonate.
    [Show full text]
  • Observed Climate Change in the Himalayas
    Observed climate change in the Himalayas Hemant Borgaonkar, IITM Science and Training Workshop on Climate Change over the High Mountains of Asia during 9 -12 October, 2018, IITM, Pune • Temperature analysis ……trends • Rainfall analysis…………….trends • Dendroclimatic reconstructions over the Himalayan region Sr. Station State Lat. Long. Alti. Temperatur Rainfall No. (M) e 1 Srinagar J&K 340 05’ 740 50’ 1587 1901-2016 1892-2016 2 Quazigund J&K 330 30’ 750 10’ 1630 1962-2016 1962-2016 72O 75O 78O 81O N | | | | 3 Banihal J&K 330 35’ 750 05’ 1690 1962-2016 1962-2016 36O- * 4 Leh J&K 340 09’ 770 34’ 3506 1901-1990 1876-1990 33O- * * * 5 Shimla H.P. 310 06’ 770 10’ 2202 1901-2007 1863-2007 * O * 30 - 0 0 ** * * 6 Bhunter H.P. 31 50’ 77 10’ 1067 1964-2014 1964-2014 *** * 7 Dehra Dun U.K. 300 19’ 780 02’ 682 1901-2015 1863-2007 8 Mukteswar U.K 290 28’ 790 39’ 2311 1901-2014 1964-2014 9 Mussoorie U.K. 300 27’ 780 05’ 2042 1901-1990 1863-2007 10 Joshimath U.K. 300 33’ 790 34’ 2045 ---- 1871-1987 11 Almora U.K. 290 30’ 790 35’ 1642 ---- 1856-1978 12 Nainital U.K. 290 25’ 790 27’ 2084 ---- 1849-1978 13 Pauri U.K. 300 07’ 780 44’ 1824 ---- 1871-1978 14 Pithoragarh U.K. 30001’ 800 14’ 1514 ---- 1864-1978 15 30 C) Srinagar = 1 C) 30 Banihal = 3 30 O O 10 20 20 20 5 10 10 10 Rainfall(Cm) Rainfall(Cm) 0 0 Temperature( 0 0 Temperature( J FMAMJ JASOND J FMAMJ JASOND Month Month Qazigund = 2 1.5 20 C) Leh = 4 20 30 C) O O 15 20 1 10 10 5 10 0.5 0 Rainfall(Cm) Rainfall(Cm) Temperature( 0 0 Temperature( 0 -10 J FMAMJ JASOND J FMAMJ JASOND Month Month 15 30 C)
    [Show full text]
  • Vein Assemblages and Metamorphism in Dutchess County, New York ABSTRACT Others, 1972) and Shows the Study Area
    ROSEMARY J. VIDALE Department of Geology and Geophysics, State University of New York at Binghamton, Binghamton, New York 13901 Vein Assemblages and Metamorphism in Dutchess County, New York ABSTRACT others, 1972) and shows the study area. The Stuyvesant Falls, Mount Merino, Indian major geologic mapping of this area was River, and Austin Glen). Carbonate-rich Mineral assemblages of fissure veins in done by Barth (1936) and by Balk (1936) layers occur locally in pelitic rocks of both pelitic rocks are a consistent function of with significant additions by Fisher and autochthon and allochthon and are espe- metamorphic grade within a 1,700 km2 area others (1972). cially abundant near the base of the in and near Dutchess County, New York. The principal geologic units are the Walloomsac. The following vein assemblages are ob- Precambrian gneisses of the Hudson and Figure 2 shows metamorphic isograds in served with increasing grade: quartz and Housatonic Highlands; autochthonous this region. They were first mapped by Barth quartz-calcite up to just above the staurolite lower Paleozoic units, including Cambrian (1936, p. 777-779 and Plate 1) but have isograd, with limited occurrence of quariz- quartzite (Poughquag), Cambrian- been remapped (Vidale, in prep.). Barth's albite below the biotite isograd; quartz and Ordovician carbonate rock (Wappinger, isograds correspond accurately to first quartz-plagioclase (An20 to An50) from tie Stockbridge, and In wood), and Ordovician megascopic appearance of index minerals. staurolite isograde up to the sillimanite- pelitic rock (Walloomsac); and allochtho- Detailed thin-section examination of rocks orthoclase isograd; and quartz, quartz- nous Cambrian-Ordovician pelitic units with appropriate bulk chemical composi- plagioclase, and quartz-plagioclase- (Everett, Nassau, Germantown, Elizaville, tion for the first occurrence of index orthoclase above the sillimanite-orthoclase isograd.
    [Show full text]
  • A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry
    PROPERTY OF DUG,r c LiiiRARYyw A Sillimanite Gneiss Dome in the Yukon Crystalline Terrane, East-Central Alaska: Petrography and Garnet- Biotite Geothermometry By CYNTHIA DUSEL-BACON and HELEN L. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 1170-E Petrographic, geothermometric, and structural data are used to support the hypothesis that a 600-km* area of pelitic metamorphic rocks is a gneiss dome -- -- UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Dusel-Bacon. Cynthia. A sillimanite gneiss dome in the Yukon crystalline terrane, eastcentral Alaska. (Shorter contributions to general geology) (Geological Survey Professional Paper 1170-E) Bibliography Supt. of Docs. no.: 1 19.412: 1170-E 1. Gneiss--Alaska. 2. Intrusions (Geology)-Alaska. I. Foster, Helen Laura. 1919- . 11. Title. Ill. Series. IV. Series: United States: Geological Survey. Professional Paper 1170-E. QE475.G55D87 1983 552'.4 83-60003 1 For sale by the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 42304 CONTENTS Page Abstract .............................................................................................................................................................. El Introduction .....................................................................................................................................................
    [Show full text]