Dynamic Designer Motion User's Guide

Total Page:16

File Type:pdf, Size:1020Kb

Dynamic Designer Motion User's Guide Dynamic Designer Motion User’s Guide Part Number DMSE01R1-01 COPYRIGHT NOTICE Copyright © 1997-2001 by Mechanical Dynamics, Inc. All rights reserved. U. S. Government Restricted Rights: If the Software and Documentation are provided in connection with a government contract, then they are provided with RESTRICTED RIGHTS. Use, duplication or disclosure is subject to restrictions stated in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Mechanical Dynamics, Inc. 2300 Traverwood Drive, Ann Arbor, Michigan 48105. Information in this document is subject to change without notice. This document contains proprietary and copyrighted information and may not be copied, reproduced, translated, or reduced to any electronic medium without prior consent, in writing, from Mechanical Dynamics, Inc. REVISION HISTORY Third Printing July 2001 TRADEMARKS ADAMS is a registered United States trademark and ADAMS/Solver, ADAMS/Kinematics, and ADAMS/View are trademarks of Mechanical Dynamics, Inc. SolidEdge, is a trademarks of Unigraphics Solutions. Windows is a registered trademark of MicroSoft Corporation. All other brands and product names are the trademarks of their respective holders. Table of Contents Table of Contents.......................................................................................................................... i 1 Dynamic Designer/Motion............................................................................................ 1 Why are Mechanisms Important?................................................................................................. 1 Benefits of Using Dynamic Designer/Motion ................................................................................ 2 Installing Dynamic Designer/Motion ............................................................................................. 3 Licensing.................................................................................................................................... 10 Product Structure ....................................................................................................................... 12 User Interface............................................................................................................................. 13 Steps in Defining and Simulating a Mechanism ......................................................................... 15 2 Creating Mechanisms................................................................................................. 19 Modeling Procedure ................................................................................................................... 19 Automatically Create Parts and Joints ....................................................................................... 20 Motion Parts............................................................................................................................... 22 Rigidly Attached Parts................................................................................................................ 24 Constraints ................................................................................................................................. 25 Revolute Joint ............................................................................................................................ 27 Translational Joint ...................................................................................................................... 28 Cylindrical Joint .......................................................................................................................... 29 Spherical Joint............................................................................................................................ 30 Universal Joint............................................................................................................................ 31 Screw Joint................................................................................................................................. 32 Planar Joint ................................................................................................................................ 33 Fixed Joint.................................................................................................................................. 34 Joint Friction............................................................................................................................... 35 Understanding Joint Primitives................................................................................................... 44 Inline JPrim ................................................................................................................................ 45 Inplane JPrim ............................................................................................................................. 46 Orientation JPrim ....................................................................................................................... 47 Parallel Axes JPrim .................................................................................................................... 48 Perpendicular JPrim................................................................................................................... 49 Understanding Motions .............................................................................................................. 50 Motion Expression...................................................................................................................... 52 Creating Joints, Joint Primitives, and Motions............................................................................ 57 Understanding Contact Constraints ........................................................................................... 64 Creating Contact Constraints ..................................................................................................... 66 Creating 3D Contacts................................................................................................................. 76 Joint Couplers ............................................................................................................................ 79 Motion on Parts .......................................................................................................................... 80 Rigid Bodies ............................................................................................................................... 83 Forces ........................................................................................................................................ 87 Creating Applied Forces............................................................................................................. 93 Creating Springs and Dampers.................................................................................................. 99 Table of Contents i Creating Impact Forces............................................................................................................ 108 Gravity...................................................................................................................................... 112 Manipulating Mechanism Entities............................................................................................. 113 3 Materials.....................................................................................................................115 Adding Materials ...................................................................................................................... 115 Editing Materials ...................................................................................................................... 119 4 Mechanism Solution .................................................................................................123 Simulation Panel ...................................................................................................................... 123 Simulating ................................................................................................................................ 129 Simulation Troubleshooting...................................................................................................... 130 5 Reviewing Your Results ...........................................................................................131 Animating The Mechanism....................................................................................................... 131 Exporting an AVI movie............................................................................................................ 134 Exporting Animations to VRML ................................................................................................ 136 Exporting Results to Excel ....................................................................................................... 137 Exporting Results to a Text File ............................................................................................... 140 Interference Detection.............................................................................................................. 141 Exporting to FEA...................................................................................................................... 143 Creating Trace Paths ..............................................................................................................
Recommended publications
  • MSC.ADAMS Functions
    COSMOSMotion User’s Guide COPYRIGHT NOTICE Copyright © 20023by Structural Research and Analysis Corp, All rights reserved. Portions Copyright © 1997-2003 by MSC.Software Corporation. All rights reserved. U. S. Government Restricted Rights: If the Software and Documentation are provided in connection with a government contract, then they are provided with RESTRICTED RIGHTS. Use, duplication or disclosure is subject to restrictions stated in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. MSC.Software. 2 MacArthur Place, Santa Ana, CA 92707. Information in this document is subject to change without notice. This document contains proprietary and copyrighted information and may not be copied, reproduced, translated, or reduced to any electronic medium without prior consent, in writing, from MSC.Software Corporation. REVISION HISTORY First Printing December 2001 Second Printing September 2002 Third Printing August 2003 TRADEMARKS MSC.ADAMS is a registered United States trademark and MSC.ADAMS/Solver, MSC.ADAMS/Kinematics, MSC.ADAMS/View, and COSMOSMotion are trademarks of MSC.Software. SolidWorks, FeatureManager, SolidBasic, and RapidDraft are trademarks of SolidWorks Corporation. Windows is a registered trademark of MicroSoft Corporation. All other brands and product names are the trademarks of their respective holders. Table of Contents Table of Contents...........................................................................................................................i 1 COSMOSMotion...........................................................................................................
    [Show full text]
  • Robot Control and Programming: Class Notes Dr
    NAVARRA UNIVERSITY UPPER ENGINEERING SCHOOL San Sebastian´ Robot Control and Programming: Class notes Dr. Emilio Jose´ Sanchez´ Tapia August, 2010 Servicio de Publicaciones de la Universidad de Navarra 987‐84‐8081‐293‐1 ii Viaje a ’Agra de Cimientos’ Era yo todav´ıa un estudiante de doctorado cuando cayo´ en mis manos una tesis de la cual me llamo´ especialmente la atencion´ su cap´ıtulo de agradecimientos. Bueno, realmente la tesis no contaba con un cap´ıtulo de ’agradecimientos’ sino mas´ bien con un cap´ıtulo alternativo titulado ’viaje a Agra de Cimientos’. En dicho capitulo, el ahora ya doctor redacto´ un pequeno˜ cuento epico´ inventado por el´ mismo. Esta pequena˜ historia relataba las aventuras de un caballero, al mas´ puro estilo ’Tolkiano’, que cabalgaba en busca de un pueblo recondito.´ Ya os podeis´ imaginar que dicho caballero, no era otro sino el´ mismo, y que su viaje era mas´ bien una odisea en la cual tuvo que superar mil y una pruebas hasta conseguir su objetivo, llegar a Agra de Cimientos (terminar su tesis). Solo´ deciros que para cada una de esas pruebas tuvo la suerte de encontrar a una mano amiga que le ayudara. En mi caso, no voy a presentarte una tesis, sino los apuntes de la asignatura ”Robot Control and Programming´´ que se imparte en ingles.´ Aunque yo no tengo tanta imaginacion´ como la de aquel doctorando para poder contaros una historia, s´ı que he tenido la suerte de encontrar a muchas personas que me han ayudado en mi viaje hacia ’Agra de Cimientos’. Y eso es, amigo lector, al abrir estas notas de clase vas a ser testigo del final de un viaje que he realizado de la mano de mucha gente que de alguna forma u otra han contribuido en su mejora.
    [Show full text]
  • Creating and Running a Dynamic Analysis a Force Simulating The
    Creating and Running a Dynamic Analysis A force simulating the engine firing load (acting along the negative X-direction) will be added to the piston for a dynamic simulation. It will be more realistic if the force can be applied when the piston starts moving to the left (negative X-direction) and can be applied only for a selected short period. In order to do so, we will have to define measures that monitor the position of the piston for the firing load to be activated. Unfortunately, such a capability is not available in COSMOSMotion. Therefore, the force is simplified as a step function of 3 lbf along the negative X-direction applied for 0.1 seconds. The force will be defined as a point force at the center point of the end face of the piston, as shown in Figure 5-21. Before we add the force, we will turn off the angular velocity driver defined at the joint Revolute2 in the previous simulation. We will have to delete the simulation before we can make any changes to the From the browser, expand the Constraints branch, and then the Joints branch. Right click Revolute to bring up the Edit Mate-Defined Joint dialog box (Figure 5-22). Pull-down the Motion Type and choose Free. Click Apply to accept the change. Note that if you run a simulation now, nothing will happen since there is no motion driver or force defined (gravity has been turned off). Now we are ready to add the force. The force can be added from the browser by expanding the Forces branch, right clicking the Action Only node, and choosing Add Action-Only Force, as shown in Figure 5- 23.
    [Show full text]
  • 1700 Animated Linkages
    Nguyen Duc Thang 1700 ANIMATED MECHANICAL MECHANISMS With Images, Brief explanations and Youtube links. Part 1 Transmission of continuous rotation Renewed on 31 December 2014 1 This document is divided into 3 parts. Part 1: Transmission of continuous rotation Part 2: Other kinds of motion transmission Part 3: Mechanisms of specific purposes Autodesk Inventor is used to create all videos in this document. They are available on Youtube channel “thang010146”. To bring as many as possible existing mechanical mechanisms into this document is author’s desire. However it is obstructed by author’s ability and Inventor’s capacity. Therefore from this document may be absent such mechanisms that are of complicated structure or include flexible and fluid links. This document is periodically renewed because the video building is continuous as long as possible. The renewed time is shown on the first page. This document may be helpful for people, who - have to deal with mechanical mechanisms everyday - see mechanical mechanisms as a hobby Any criticism or suggestion is highly appreciated with the author’s hope to make this document more useful. Author’s information: Name: Nguyen Duc Thang Birth year: 1946 Birth place: Hue city, Vietnam Residence place: Hanoi, Vietnam Education: - Mechanical engineer, 1969, Hanoi University of Technology, Vietnam - Doctor of Engineering, 1984, Kosice University of Technology, Slovakia Job history: - Designer of small mechanical engineering enterprises in Hanoi. - Retirement in 2002. Contact Email: [email protected] 2 Table of Contents 1. Continuous rotation transmission .................................................................................4 1.1. Couplings ....................................................................................................................4 1.2. Clutches ....................................................................................................................13 1.2.1. Two way clutches...............................................................................................13 1.2.1.
    [Show full text]
  • Gruebler's Equation
    Theory of Machines Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering . © 2012 1 Syllabus and Course Outline Faculty of Engineering Department of Mechanical Engineering EMEC 3302, Theory of Machines Instructor: Dr. Anwar Abu-Zarifa Office: IT Building, Room: I413 Tel: 2821 eMail: [email protected] Website: http://site.iugaza.edu.ps/abuzarifa Office Hrs: see my website SAT 09:30 – 11:00 Q412 MON 09:30 – 11:00 Q412 Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering . © 2012 2 Text Book: R. L. Norton, Design of Machinery “An Introduction to the Synthesis and Analysis of Mechanisms and Machines”, McGraw Hill Higher Education; 3rd edition Reference Books: . John J. Uicker, Gordon R. Pennock, Joseph E. Shigley, Theory of Machines and Mechanisms . R.S. Khurmi, J.K. Gupta,Theory of Machines . Thomas Bevan, The Theory of Machines . The Theory of Machines by Robert Ferrier McKay . Engineering Drawing And Design, Jensen ect., McGraw-Hill Science, 7th Edition, 2007 . Mechanical Design of Machine Elements and Machines, Collins ect., Wiley, 2 Edition, 2009 Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering . © 2012 3 Grading: Attendance 5% Design Project 25% Midterm 30% Final exam 40% Course Description: The course provides students with instruction in the fundamentals of theory of machines. The Theory of Machines and Mechanisms provides the foundation for the study of displacements, velocities, accelerations, and static and dynamic forces required for the proper design of mechanical linkages, cams, and geared systems. Dr. Anwar Abu-Zarifa . Islamic University of Gaza . Department of Mechanical Engineering .
    [Show full text]
  • Kinematic Analysis of 3 D.O.F of Robot
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 Kinematic Analysis of 3 D.O.F of Robot Janakinandan Nookala, Prudhvi Gogineni, Suresh Babu G Abstract:The study of motion can be divided into kinematics The relative position of two bodies connected by aprismatic and dynamics. Direct kinematics refers to the calculation of end joint is defined by the amount of linear slide of one relative effectors position, orientation, velocity, and acceleration when to the other one. This one parameter movement identifies the corresponding joint values are known. Inverse refers to the this joint as a one degree of freedom kinematic pair. opposite case in which required joint values are calculated for given end effector values, as done in path planning. Some special aspects of kinematics include handling of redundancy collision CYLINDRICAL JOINT: avoidance, and singularity avoidance. Once all relevant positions, A cylindrical joint is two degrees of freedom kinematic pair velocities, and accelerations have been calculated using used in mechanisms. Cylindrical joints provide single-axis kinematics, this information can be used to improve the control sliding function as well as a single axis rotation, providing a algorithms of a robot. Most of the industrial robots are described way for two rigid bodies to translate and rotate freely. This geometrically by their Denavit-Hartenberg (DH) parameters, which are also difficult to perceive for students. Students will find can be pictured by an unsecured axle mounted on a chassis, the subject easier to learn if they are able to visualize in 3 as it may freely rotate and translate.
    [Show full text]
  • The Multibody Dynamics Module User's Guide
    Multibody Dynamics Module User’s Guide Multibody Dynamics Module User’s Guide © 1998–2018 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; and 9,454,625. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Version: COMSOL 5.4 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates • COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community • Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number: CM023801 Contents Chapter 1: Introduction About the Multibody Dynamics Module 10 What Can the Multibody Dynamics Module Do? .
    [Show full text]
  • MECANO Motion Theory
    MECANO Motion/ Theory Page 1 MECANO Motion Theory SAMTECH SA 2000 April 2000 MECANO Motion/ Theory Page 2 Index 1 VARIATIONAL FORMULATION OF THE DYNAMIC PROBLEM ............................................. 3 1.1 CONSTRAINTS IN MECHANISM ANALYSIS........................................................................................... 4 2 CONSTRAINED STATIONARY VALUE PROBLEM....................................................................... 6 2.1 AUGMENTED LAGRANGIAN APPROACH ............................................................................................. 6 3 FORMULATION OF THE CONSTRAINED DYNAMIC PROBLEM............................................. 7 3.1 INTERNAL FORCES AND TANGENT STIFFNESS..................................................................................... 7 4 CLASSIFICATION OF KINEMATIC PAIRS ..................................................................................... 9 4.1 LOWER PAIRS..................................................................................................................................... 9 4.2 HIGHER PAIRS .................................................................................................................................. 13 5 MECANO ELEMENTS SYNTAX ....................................................................................................... 15 6 MECANO: NON LINEAR FINITE ELEMENT ANALYSIS ........................................................... 16 6.1 STRUCTURE LIBRARY......................................................................................................................
    [Show full text]
  • Rajalakshmi Engineering College, Thandalam
    1. Terminology and Definitions-Degree of Freedom, Mobility Kinematics: The study of motion (position, velocity, acceleration). A major goal of understanding kinematics is to develop the ability to design a system that will satisfy specified motion requirements. This will be the emphasis of this class. Kinetics: The effect of forces on moving bodies. Good kinematic design should produce good kinetics. Mechanism: A system design to transmit motion. (low forces) Machine: A system designed to transmit motion and energy. (forces involved) Basic Mechanisms: Includes geared systems, cam-follower systems and linkages (rigid links connected by sliding or rotating joints). A mechanism has multiple moving parts (for example, a simple hinged door does not qualify as a mechanism). Examples of mechanisms: Tin snips, vise grips, car suspension, backhoe, piston engine, folding chair, windshield wiper drive system, etc. Key concepts: Degrees of freedom: The number of inputs required to completely control a system. Examples: A simple rotating link. A two link system. A four-bar linkage. A five-bar linkage. Types of motion: Mechanisms may produce motions that are pure rotation, pure translation, or a combination of the two. We reduce the degrees of freedom of a mechanism by restraining the ability of the mechanism to move in translation (x-y directions for a 2D mechanism) or in rotation (about the z- axis for a 2-D mechanism). Link: A rigid body with two or more nodes (joints) that are used to connect to other rigid bodies. (WM examples: binary link, ternary link (3 joints), quaternary link (4 joints)) Joint: A connection between two links that allows motion between the links.
    [Show full text]
  • Kinematic Analysis and Synthesis of Four-Bar Mechanisms for Straight Line Coupler Curves
    Rochester Institute of Technology RIT Scholar Works Theses 5-1-1994 Kinematic analysis and synthesis of four-bar mechanisms for straight line coupler curves Arun K. Natesan Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Natesan, Arun K., "Kinematic analysis and synthesis of four-bar mechanisms for straight line coupler curves" (1994). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Acknowledgments This study acknowledges with sincere gratitude and thanks the patience and guidance of my thesis advisor, Dr. Nir Berzak. Without his extreme accessibility and invaluable advice, this thesis would never have gotten its shape. Thanks are due to Dr. Richard Budynas, my program advisor for his support throughout my M.S. program. Sincere gratitude is extended to Dr. Joseph Torok and Dr. Wayne Walter for spending their valuable time in reviewing this work. Special thanks to Ms. Sandy Grooms of Department of Engineering Support who helped me in getting the typed version of this report. Last but not least deep gratitude is expressed to my mother, my brother, my sister and her family for their never-ending patience and support. ABSTRACT Mechanisms are means of power transmission as well as motion transformers. A four- bar mechanism consists mainly of four planar links connected with four revolute joints. The input is usually given as rotary motion of a link and output can be obtained from the motion of another link or a coupler point.
    [Show full text]
  • Handbook of Robotics Chapter 1: Kinematics
    Handbook of Robotics Chapter 1: Kinematics Ken Waldron Jim Schmiedeler Department of Mechanical Engineering Department of Mechanical Engineering Stanford University The Ohio State University Stanford, CA 94305, USA Columbus, OH 43210, USA September 17, 2007 Contents 1 Kinematics 1 1.1 Introduction . 1 1.2 Position and Orientation Representation . 1 1.2.1 Position and Displacement . 2 1.2.2 Orientation and Rotation . 2 Rotation Matrices . 2 Euler Angles . 3 Fixed Angles . 3 Angle-Axis . 4 Quaternions . 4 1.2.3 Homogeneous Transformations . 5 1.2.4 Screw Transformations . 5 Chasles’ Theorem . 6 Rodrigues’ Equation . 7 1.2.5 Matrix Exponential Parameterization . 8 Exponential Coordinates for Rotation . 8 Exponential Coordinates for Rigid Body Motion . 8 1.2.6 Pl¨ucker Coordinates . 9 1.3 Joint Kinematics . 9 1.3.1 Lower Pair Joints . 10 Revolute . 10 Prismatic . 10 Helical . 10 Cylindrical . 11 Spherical . 11 Planar . 12 1.3.2 Higher Pair Joints . 12 Rolling Contact . 12 1.3.3 Compound Joints . 12 Universal ............................................... 12 1.3.4 6-DOF Joint . 12 1.3.5 Physical Realization . 13 1.3.6 Holonomic and Nonholonomic Constraints . 13 1.3.7 Generalized Coordinates . 13 1.4 Geometric Representation . 13 1.5 Workspace . 15 1.6 Forward Kinematics . 16 1.7 Inverse Kinematics . 16 i CONTENTS ii 1.7.1 Closed-Form Solutions . 17 Algebraic Methods . 17 Geometric Methods . 17 1.7.2 Numerical Methods . 18 Symbolic Elimination Methods . 18 Continuation Methods . 18 Iterative Methods . 18 1.8 Forward Instantaneous Kinematics . 18 1.8.1 Jacobian . 19 1.9 Inverse Instantaneous Kinematics . 19 1.9.1 Inverse Jacobian .
    [Show full text]
  • Robot Geometry and Kinematics
    V. Kumar 5. Introduction to Robot Geometry and Kinematics The goal of this chapter is to introduce the basic terminology and notation used in robot geometry and kinematics, and to discuss the methods used for the analysis and control of robot manipulators. The scope of this discussion will be limited, for the most part, to robots with planar geometry. The analysis of manipulators with three-dimensional geometry can be found in any robotics text1. 5.1 Some definitions and examples We will use the term mechanical system to describe a system or a collection of rigid or flexible bodies that may be connected together by joints. A mechanism is a mechanical system that has the main purpose of transferring motion and/or forces from one or more sources to one or more outputs. A linkage is a mechanical system consisting of rigid bodies called links that are connected by either pin joints or sliding joints. In this section, we will consider mechanical systems consisting of rigid bodies, but we will also consider other types of joints. Degrees of freedom of a system The number of independent variables (or coordinates) required to completely specify the configuration of the mechanical system. While the above definition of the number of degrees of freedom is motivated by the need to describe or analyze a mechanical system, it also is very important for controlling or driving a mechanical system. It is also the number of independent inputs required to drive all the rigid bodies in the mechanical system. Examples: (a) A point on a plane has two degrees of freedom.
    [Show full text]