Development and Characterization of Velocity Workspaces for the Human Knee

Total Page:16

File Type:pdf, Size:1020Kb

Development and Characterization of Velocity Workspaces for the Human Knee Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 2001 Development and Characterization of Velocity Workspaces for the Human Knee. John Eric Fuller Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Fuller, John Eric, "Development and Characterization of Velocity Workspaces for the Human Knee." (2001). LSU Historical Dissertations and Theses. 403. https://digitalcommons.lsu.edu/gradschool_disstheses/403 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. ProQuest Information and Learning 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 800-521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. DEVELOPMENT AND CHARACTERIZATION OF VELOCITY WORKSPACES FOR THE HUMAN KNEE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Mechanical Engineering by John Eric Fuller B.S., Louisiana State University, 199S December, 2001 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number 3042619 UMI* UMI Microform 3042619 Copyright 2002 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. For my Father, my Mother and my Sister— my foundation, my sanctuary, my motivation, my inspiration. ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ACKNOWLEDGEMENTS This dissertation represents what I have been doing with my life for the past six years but these were things that I could not have done alone. As I consider those who have stepped up to lend me support, assistance, and guidance, it suddenly occurs to me that the current resurgence of patriotism, generosity, and humanity is not something that has been absent during my research. In fact, it has blessed me my entire life. With that the first people I must thank are those who gave me life. My parents brought me into this world, protected me from it, gave me the tools to survive in it, and the inspiration and courage that have kept me going. Thanking them almost seems absurd, for how do you communicate infinite gratitude with mere words? My sister kept me honest, suffered my moodiness, been an incredible role model, and taught me more than she will ever know and for that I will never be able to thank her enough. She has set the bar high and I hope one day I might be able to see just how high she has leapt. To Dr. Michael C. Murphy, my appreciation for the unwavering example, the opportunity, and for being more than a teacher and mentor. Thank you for being a friend and listening to what I had to say, no matter how ridiculous. Dr. Warren N. Waggenspack, Jr., also more than a teacher and mentor, you trusted me with your home and while it might just seem fair enough to you, that kind of trust is not something I regard lightly. For the remainder of my committee, Dr. Madden, Dr. Kerwin, and Dr. Welsch, thank you for the guidance, the patience, and the time you have given to this work. iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Rob, Donovan, Jake, Garrett, and Danny...for being true friends, and the subjects of way too many stories that I am sure will be further embellished with time, my eternal gratitude and, understandably, my continued silence. My gratitude must also be extended to those who have made specific technical contributions to the research. These include: Chris Schwehm for his assistance in accessing data, Timothy Morgan for the use of his thresholding code, and Anna Omeltchenko and Mingli Zhang for their preliminary development of the concepts of displacement workspaces. Specific acknowledgements for data collection include: ( 1) Massachusetts Institute of Technology Data Collection and Manipulation-Dr. Murali Jasty of Massachusetts General Hospital for arranging CT scans, Jane Pardy of Massachusetts General Hospital for operating the CT scanner, Professor Derek Rowell from the Massachusetts Institute of Technology for initial aid with CT scan imaging, Michael Stracher of the Orthopaedics Research Laboratory at Massachusetts General Hospital for data conversion, Mingli Zhang from Louisiana State University for data conversion, Timothy Morgan from Louisiana State University for preliminary coding (2) University o f Minnesota Data Collection and Manipulation-Dr. Greg Brown of the University of Minnesota and Regions Hospital for specimen acquisition, specimen dissection, marker placement, setting up the CT scans, general clinical guidance, and putting up with me for four days, Paul Grunhovd, R.T. of Regions Hospital for operating the CT scanner, Fred Wentorf from the Biomechanics Department of the University of Minnesota for specimen storage and handling, Synthes Corporation (Paoli, PA) for the donation of titanium screws (3) Those with the Visible Human Project (4) Health South iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Diagnostic Center Data Collection and Manipulation-Dr. Charles Greeson of Heath South Diagnostic Center for setting up the MRI scans and general clinical guidance David Frye of Heath South Diagnostic Center for operating the MRI scanner Chris Schwehm from the Remote Sensing and Image Processing Lab at Louisiana State University for data conversion. I also need to extend thanks to the people of the College of Engineering Dean’s Office, including: Vicki Hannan, Mickey Adler, Lisa Hebert, Shea Dunigan, Cathy Hill, Lisa Bergens, Lisa Launey, Cathy Harrison, Dr. Julius Langlinais, and the office student workers over the years. Their suggestions, help, employment, and indulgences for my benefit have helped enormously over the years. Last but certainly no least, I would be derelict in my gratuities if I did not acknowledge my fellow students who put up with my shenanigans, kept me on my toes, and kept our lab an entertaining place to work. To all of you, my sincere gratitude: Yohannes Desta, Tim Morgan, Jim O’Bryan, Anna Omeltchenko, Jim Rodgers, Christophe Marques, Fred Majkut, Kevin Zanca, Gary Templet, Mircea Despa, Dawit Yemane, Proyag Datta, Summer Johnson, Abhinav Bhushan, Tracy Morris, Catherine Oropeza, Dinakar Palaparti, John Williams, Madhulika Sathe, Michael Mitchell, Dwhyte Barrett, Lyle Breaux, Chris Cowart, and John Breeden. v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. TABLE OF CONTENTS DEDICATION_______________________________________________________ u ACKNOWLEDGEMENTS____________________________________________ iil LIST OF TABLES___________________________________________________ ix LIST OF FIGURES___________________________________________________ x LIST OF SELECTED SYMBOLS AND ACRONYMS____________________ xiii ABSTRACT________________________________________________________ xv CHAPTER 1. INTRODUCTION________________________________________ 1 1.1 Motivation.............................................................................................................1 1.1.1 Clinical Significance ...................................................................................... 2 1.1.2 Workspaces in Medicine ............................................................................... 7 1.1.3 Scientific Interest ..........................................................................................
Recommended publications
  • MSC.ADAMS Functions
    COSMOSMotion User’s Guide COPYRIGHT NOTICE Copyright © 20023by Structural Research and Analysis Corp, All rights reserved. Portions Copyright © 1997-2003 by MSC.Software Corporation. All rights reserved. U. S. Government Restricted Rights: If the Software and Documentation are provided in connection with a government contract, then they are provided with RESTRICTED RIGHTS. Use, duplication or disclosure is subject to restrictions stated in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. MSC.Software. 2 MacArthur Place, Santa Ana, CA 92707. Information in this document is subject to change without notice. This document contains proprietary and copyrighted information and may not be copied, reproduced, translated, or reduced to any electronic medium without prior consent, in writing, from MSC.Software Corporation. REVISION HISTORY First Printing December 2001 Second Printing September 2002 Third Printing August 2003 TRADEMARKS MSC.ADAMS is a registered United States trademark and MSC.ADAMS/Solver, MSC.ADAMS/Kinematics, MSC.ADAMS/View, and COSMOSMotion are trademarks of MSC.Software. SolidWorks, FeatureManager, SolidBasic, and RapidDraft are trademarks of SolidWorks Corporation. Windows is a registered trademark of MicroSoft Corporation. All other brands and product names are the trademarks of their respective holders. Table of Contents Table of Contents...........................................................................................................................i 1 COSMOSMotion...........................................................................................................
    [Show full text]
  • Robot Control and Programming: Class Notes Dr
    NAVARRA UNIVERSITY UPPER ENGINEERING SCHOOL San Sebastian´ Robot Control and Programming: Class notes Dr. Emilio Jose´ Sanchez´ Tapia August, 2010 Servicio de Publicaciones de la Universidad de Navarra 987‐84‐8081‐293‐1 ii Viaje a ’Agra de Cimientos’ Era yo todav´ıa un estudiante de doctorado cuando cayo´ en mis manos una tesis de la cual me llamo´ especialmente la atencion´ su cap´ıtulo de agradecimientos. Bueno, realmente la tesis no contaba con un cap´ıtulo de ’agradecimientos’ sino mas´ bien con un cap´ıtulo alternativo titulado ’viaje a Agra de Cimientos’. En dicho capitulo, el ahora ya doctor redacto´ un pequeno˜ cuento epico´ inventado por el´ mismo. Esta pequena˜ historia relataba las aventuras de un caballero, al mas´ puro estilo ’Tolkiano’, que cabalgaba en busca de un pueblo recondito.´ Ya os podeis´ imaginar que dicho caballero, no era otro sino el´ mismo, y que su viaje era mas´ bien una odisea en la cual tuvo que superar mil y una pruebas hasta conseguir su objetivo, llegar a Agra de Cimientos (terminar su tesis). Solo´ deciros que para cada una de esas pruebas tuvo la suerte de encontrar a una mano amiga que le ayudara. En mi caso, no voy a presentarte una tesis, sino los apuntes de la asignatura ”Robot Control and Programming´´ que se imparte en ingles.´ Aunque yo no tengo tanta imaginacion´ como la de aquel doctorando para poder contaros una historia, s´ı que he tenido la suerte de encontrar a muchas personas que me han ayudado en mi viaje hacia ’Agra de Cimientos’. Y eso es, amigo lector, al abrir estas notas de clase vas a ser testigo del final de un viaje que he realizado de la mano de mucha gente que de alguna forma u otra han contribuido en su mejora.
    [Show full text]
  • Creating and Running a Dynamic Analysis a Force Simulating The
    Creating and Running a Dynamic Analysis A force simulating the engine firing load (acting along the negative X-direction) will be added to the piston for a dynamic simulation. It will be more realistic if the force can be applied when the piston starts moving to the left (negative X-direction) and can be applied only for a selected short period. In order to do so, we will have to define measures that monitor the position of the piston for the firing load to be activated. Unfortunately, such a capability is not available in COSMOSMotion. Therefore, the force is simplified as a step function of 3 lbf along the negative X-direction applied for 0.1 seconds. The force will be defined as a point force at the center point of the end face of the piston, as shown in Figure 5-21. Before we add the force, we will turn off the angular velocity driver defined at the joint Revolute2 in the previous simulation. We will have to delete the simulation before we can make any changes to the From the browser, expand the Constraints branch, and then the Joints branch. Right click Revolute to bring up the Edit Mate-Defined Joint dialog box (Figure 5-22). Pull-down the Motion Type and choose Free. Click Apply to accept the change. Note that if you run a simulation now, nothing will happen since there is no motion driver or force defined (gravity has been turned off). Now we are ready to add the force. The force can be added from the browser by expanding the Forces branch, right clicking the Action Only node, and choosing Add Action-Only Force, as shown in Figure 5- 23.
    [Show full text]
  • 1700 Animated Linkages
    Nguyen Duc Thang 1700 ANIMATED MECHANICAL MECHANISMS With Images, Brief explanations and Youtube links. Part 1 Transmission of continuous rotation Renewed on 31 December 2014 1 This document is divided into 3 parts. Part 1: Transmission of continuous rotation Part 2: Other kinds of motion transmission Part 3: Mechanisms of specific purposes Autodesk Inventor is used to create all videos in this document. They are available on Youtube channel “thang010146”. To bring as many as possible existing mechanical mechanisms into this document is author’s desire. However it is obstructed by author’s ability and Inventor’s capacity. Therefore from this document may be absent such mechanisms that are of complicated structure or include flexible and fluid links. This document is periodically renewed because the video building is continuous as long as possible. The renewed time is shown on the first page. This document may be helpful for people, who - have to deal with mechanical mechanisms everyday - see mechanical mechanisms as a hobby Any criticism or suggestion is highly appreciated with the author’s hope to make this document more useful. Author’s information: Name: Nguyen Duc Thang Birth year: 1946 Birth place: Hue city, Vietnam Residence place: Hanoi, Vietnam Education: - Mechanical engineer, 1969, Hanoi University of Technology, Vietnam - Doctor of Engineering, 1984, Kosice University of Technology, Slovakia Job history: - Designer of small mechanical engineering enterprises in Hanoi. - Retirement in 2002. Contact Email: [email protected] 2 Table of Contents 1. Continuous rotation transmission .................................................................................4 1.1. Couplings ....................................................................................................................4 1.2. Clutches ....................................................................................................................13 1.2.1. Two way clutches...............................................................................................13 1.2.1.
    [Show full text]
  • Kinematic Analysis of 3 D.O.F of Robot
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 Kinematic Analysis of 3 D.O.F of Robot Janakinandan Nookala, Prudhvi Gogineni, Suresh Babu G Abstract:The study of motion can be divided into kinematics The relative position of two bodies connected by aprismatic and dynamics. Direct kinematics refers to the calculation of end joint is defined by the amount of linear slide of one relative effectors position, orientation, velocity, and acceleration when to the other one. This one parameter movement identifies the corresponding joint values are known. Inverse refers to the this joint as a one degree of freedom kinematic pair. opposite case in which required joint values are calculated for given end effector values, as done in path planning. Some special aspects of kinematics include handling of redundancy collision CYLINDRICAL JOINT: avoidance, and singularity avoidance. Once all relevant positions, A cylindrical joint is two degrees of freedom kinematic pair velocities, and accelerations have been calculated using used in mechanisms. Cylindrical joints provide single-axis kinematics, this information can be used to improve the control sliding function as well as a single axis rotation, providing a algorithms of a robot. Most of the industrial robots are described way for two rigid bodies to translate and rotate freely. This geometrically by their Denavit-Hartenberg (DH) parameters, which are also difficult to perceive for students. Students will find can be pictured by an unsecured axle mounted on a chassis, the subject easier to learn if they are able to visualize in 3 as it may freely rotate and translate.
    [Show full text]
  • The Multibody Dynamics Module User's Guide
    Multibody Dynamics Module User’s Guide Multibody Dynamics Module User’s Guide © 1998–2018 COMSOL Protected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474; 7,623,991; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; and 9,454,625. Patents pending. This Documentation and the Programs described herein are furnished under the COMSOL Software License Agreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the terms of the license agreement. COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Server, and LiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are the property of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliated with, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademark owners, see www.comsol.com/trademarks. Version: COMSOL 5.4 Contact Information Visit the Contact COMSOL page at www.comsol.com/contact to submit general inquiries, contact Technical Support, or search for an address and phone number. You can also visit the Worldwide Sales Offices page at www.comsol.com/contact/offices for address and contact information. If you need to contact Support, an online request form is located at the COMSOL Access page at www.comsol.com/support/case. Other useful links include: • Support Center: www.comsol.com/support • Product Download: www.comsol.com/product-download • Product Updates: www.comsol.com/support/updates • COMSOL Blog: www.comsol.com/blogs • Discussion Forum: www.comsol.com/community • Events: www.comsol.com/events • COMSOL Video Gallery: www.comsol.com/video • Support Knowledge Base: www.comsol.com/support/knowledgebase Part number: CM023801 Contents Chapter 1: Introduction About the Multibody Dynamics Module 10 What Can the Multibody Dynamics Module Do? .
    [Show full text]
  • Dynamic Designer Motion User's Guide
    Dynamic Designer Motion User’s Guide Part Number DMSE01R1-01 COPYRIGHT NOTICE Copyright © 1997-2001 by Mechanical Dynamics, Inc. All rights reserved. U. S. Government Restricted Rights: If the Software and Documentation are provided in connection with a government contract, then they are provided with RESTRICTED RIGHTS. Use, duplication or disclosure is subject to restrictions stated in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Mechanical Dynamics, Inc. 2300 Traverwood Drive, Ann Arbor, Michigan 48105. Information in this document is subject to change without notice. This document contains proprietary and copyrighted information and may not be copied, reproduced, translated, or reduced to any electronic medium without prior consent, in writing, from Mechanical Dynamics, Inc. REVISION HISTORY Third Printing July 2001 TRADEMARKS ADAMS is a registered United States trademark and ADAMS/Solver, ADAMS/Kinematics, and ADAMS/View are trademarks of Mechanical Dynamics, Inc. SolidEdge, is a trademarks of Unigraphics Solutions. Windows is a registered trademark of MicroSoft Corporation. All other brands and product names are the trademarks of their respective holders. Table of Contents Table of Contents.......................................................................................................................... i 1 Dynamic Designer/Motion............................................................................................ 1 Why are Mechanisms Important?................................................................................................
    [Show full text]
  • MECANO Motion Theory
    MECANO Motion/ Theory Page 1 MECANO Motion Theory SAMTECH SA 2000 April 2000 MECANO Motion/ Theory Page 2 Index 1 VARIATIONAL FORMULATION OF THE DYNAMIC PROBLEM ............................................. 3 1.1 CONSTRAINTS IN MECHANISM ANALYSIS........................................................................................... 4 2 CONSTRAINED STATIONARY VALUE PROBLEM....................................................................... 6 2.1 AUGMENTED LAGRANGIAN APPROACH ............................................................................................. 6 3 FORMULATION OF THE CONSTRAINED DYNAMIC PROBLEM............................................. 7 3.1 INTERNAL FORCES AND TANGENT STIFFNESS..................................................................................... 7 4 CLASSIFICATION OF KINEMATIC PAIRS ..................................................................................... 9 4.1 LOWER PAIRS..................................................................................................................................... 9 4.2 HIGHER PAIRS .................................................................................................................................. 13 5 MECANO ELEMENTS SYNTAX ....................................................................................................... 15 6 MECANO: NON LINEAR FINITE ELEMENT ANALYSIS ........................................................... 16 6.1 STRUCTURE LIBRARY......................................................................................................................
    [Show full text]
  • Kinematic Analysis and Synthesis of Four-Bar Mechanisms for Straight Line Coupler Curves
    Rochester Institute of Technology RIT Scholar Works Theses 5-1-1994 Kinematic analysis and synthesis of four-bar mechanisms for straight line coupler curves Arun K. Natesan Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Natesan, Arun K., "Kinematic analysis and synthesis of four-bar mechanisms for straight line coupler curves" (1994). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Acknowledgments This study acknowledges with sincere gratitude and thanks the patience and guidance of my thesis advisor, Dr. Nir Berzak. Without his extreme accessibility and invaluable advice, this thesis would never have gotten its shape. Thanks are due to Dr. Richard Budynas, my program advisor for his support throughout my M.S. program. Sincere gratitude is extended to Dr. Joseph Torok and Dr. Wayne Walter for spending their valuable time in reviewing this work. Special thanks to Ms. Sandy Grooms of Department of Engineering Support who helped me in getting the typed version of this report. Last but not least deep gratitude is expressed to my mother, my brother, my sister and her family for their never-ending patience and support. ABSTRACT Mechanisms are means of power transmission as well as motion transformers. A four- bar mechanism consists mainly of four planar links connected with four revolute joints. The input is usually given as rotary motion of a link and output can be obtained from the motion of another link or a coupler point.
    [Show full text]
  • Handbook of Robotics Chapter 1: Kinematics
    Handbook of Robotics Chapter 1: Kinematics Ken Waldron Jim Schmiedeler Department of Mechanical Engineering Department of Mechanical Engineering Stanford University The Ohio State University Stanford, CA 94305, USA Columbus, OH 43210, USA September 17, 2007 Contents 1 Kinematics 1 1.1 Introduction . 1 1.2 Position and Orientation Representation . 1 1.2.1 Position and Displacement . 2 1.2.2 Orientation and Rotation . 2 Rotation Matrices . 2 Euler Angles . 3 Fixed Angles . 3 Angle-Axis . 4 Quaternions . 4 1.2.3 Homogeneous Transformations . 5 1.2.4 Screw Transformations . 5 Chasles’ Theorem . 6 Rodrigues’ Equation . 7 1.2.5 Matrix Exponential Parameterization . 8 Exponential Coordinates for Rotation . 8 Exponential Coordinates for Rigid Body Motion . 8 1.2.6 Pl¨ucker Coordinates . 9 1.3 Joint Kinematics . 9 1.3.1 Lower Pair Joints . 10 Revolute . 10 Prismatic . 10 Helical . 10 Cylindrical . 11 Spherical . 11 Planar . 12 1.3.2 Higher Pair Joints . 12 Rolling Contact . 12 1.3.3 Compound Joints . 12 Universal ............................................... 12 1.3.4 6-DOF Joint . 12 1.3.5 Physical Realization . 13 1.3.6 Holonomic and Nonholonomic Constraints . 13 1.3.7 Generalized Coordinates . 13 1.4 Geometric Representation . 13 1.5 Workspace . 15 1.6 Forward Kinematics . 16 1.7 Inverse Kinematics . 16 i CONTENTS ii 1.7.1 Closed-Form Solutions . 17 Algebraic Methods . 17 Geometric Methods . 17 1.7.2 Numerical Methods . 18 Symbolic Elimination Methods . 18 Continuation Methods . 18 Iterative Methods . 18 1.8 Forward Instantaneous Kinematics . 18 1.8.1 Jacobian . 19 1.9 Inverse Instantaneous Kinematics . 19 1.9.1 Inverse Jacobian .
    [Show full text]
  • Classification of Mechanisms by Type and Mobility
    MAE 342 – Dynamics of Machines Types of Mechanisms Classification of Mechanisms by type and mobility MAE 342 – Dynamics of Machines 2 Planar, Spherical and Spatial Mechanisms • Planar Mechanisms: all points on each part move only in . Image from Technische Universität Ilmenau. Image from Northern Tool + Equipment Catalog Co. Images from Tiptop Industry Co., Ltd. 1 MAE 342 – Dynamics of Machines 3 Planar, Spherical and Spatial Mechanisms • Spherical Mechanisms: all points on each part move only in . Image from Maarten Steurbaut. Images from the Laboratory for the Analysis and Synthesis of Spatial Movement. Images from Laboratoire de robotique, Université Laval. MAE 342 – Dynamics of Machines 4 Planar, Spherical and Spatial Mechanisms • Spatial Mechanisms: points on each part can move in any direction in 3-dimensional space. Image from the Kinematic Models for Design Digital Library, Cornell University. Image from www.robots.com. Image from Slika Image from the Special Session on Computer Aided Linkage Synthesis, ASME DETC 2002. 2 MAE 342 – Dynamics of Machines 5 Mobility • Degrees of freedom (DOF) is: the number of independent controls needed to position a body. Mathematically it is the number of independent variables needed to specify the position of a body. A planar body has ___ DOF. A spherical body has ___ DOF. A spatial body has ___ DOF. MAE 342 – Dynamics of Machines 6 Mobility • Mobility is: the number of degrees of freedom of a mechanism. If the number of planar bodies is n (and there are no joints) the mobility is ______ . If one of the bodies is fixed, the mobility is ________ .
    [Show full text]
  • Configuration Space
    Chapter 2 Configuration Space A robot is mechanically constructed by connecting a set of bodies, called links, to each other using various types of joints. Actuators, such as electric motors, deliver forces or torques to the joints that cause the robot’s links to move. Usu- ally an end-e↵ector, such as a gripper or hand for grasping and manipulating objects, is attached to a specific link. All of the robots considered in this book have links that can be modeled as rigid bodies. Perhaps the most fundamental question one can ask about a robot is, where is it? (In the sense of where the links of the robot are situated.) The answer is the robot’s configuration: a specification of the positions of all points of the robot. Since the robot’s links are rigid and of known shape,1 only a few numbers are needed to represent the robot’s configuration. For example, the configuration of a door can be represented by a single number, the angle ✓ that the door rotates about its hinge. The configuration of a point lying on a plane can be described by two coordinates, (x, y). The configuration of a coin lying heads up on a flat table can be described by three coordinates: two coordinates (x, y) that specify the location of a particular point on the coin, and one coordinate ✓ that specifies the coin’s orientation. (See Figure 2.1). The above coordinates all share the common feature of taking values over a continuous range of real numbers. The smallest number of real-valued coor- dinates needed to represent a robot’s configuration is its degrees of freedom (dof).
    [Show full text]