Gruebler's Equation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1700 Animated Linkages
Nguyen Duc Thang 1700 ANIMATED MECHANICAL MECHANISMS With Images, Brief explanations and Youtube links. Part 1 Transmission of continuous rotation Renewed on 31 December 2014 1 This document is divided into 3 parts. Part 1: Transmission of continuous rotation Part 2: Other kinds of motion transmission Part 3: Mechanisms of specific purposes Autodesk Inventor is used to create all videos in this document. They are available on Youtube channel “thang010146”. To bring as many as possible existing mechanical mechanisms into this document is author’s desire. However it is obstructed by author’s ability and Inventor’s capacity. Therefore from this document may be absent such mechanisms that are of complicated structure or include flexible and fluid links. This document is periodically renewed because the video building is continuous as long as possible. The renewed time is shown on the first page. This document may be helpful for people, who - have to deal with mechanical mechanisms everyday - see mechanical mechanisms as a hobby Any criticism or suggestion is highly appreciated with the author’s hope to make this document more useful. Author’s information: Name: Nguyen Duc Thang Birth year: 1946 Birth place: Hue city, Vietnam Residence place: Hanoi, Vietnam Education: - Mechanical engineer, 1969, Hanoi University of Technology, Vietnam - Doctor of Engineering, 1984, Kosice University of Technology, Slovakia Job history: - Designer of small mechanical engineering enterprises in Hanoi. - Retirement in 2002. Contact Email: [email protected] 2 Table of Contents 1. Continuous rotation transmission .................................................................................4 1.1. Couplings ....................................................................................................................4 1.2. Clutches ....................................................................................................................13 1.2.1. Two way clutches...............................................................................................13 1.2.1. -
Kinematic Analysis of 3 D.O.F of Robot
International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-2, Issue-4, April 2013 Kinematic Analysis of 3 D.O.F of Robot Janakinandan Nookala, Prudhvi Gogineni, Suresh Babu G Abstract:The study of motion can be divided into kinematics The relative position of two bodies connected by aprismatic and dynamics. Direct kinematics refers to the calculation of end joint is defined by the amount of linear slide of one relative effectors position, orientation, velocity, and acceleration when to the other one. This one parameter movement identifies the corresponding joint values are known. Inverse refers to the this joint as a one degree of freedom kinematic pair. opposite case in which required joint values are calculated for given end effector values, as done in path planning. Some special aspects of kinematics include handling of redundancy collision CYLINDRICAL JOINT: avoidance, and singularity avoidance. Once all relevant positions, A cylindrical joint is two degrees of freedom kinematic pair velocities, and accelerations have been calculated using used in mechanisms. Cylindrical joints provide single-axis kinematics, this information can be used to improve the control sliding function as well as a single axis rotation, providing a algorithms of a robot. Most of the industrial robots are described way for two rigid bodies to translate and rotate freely. This geometrically by their Denavit-Hartenberg (DH) parameters, which are also difficult to perceive for students. Students will find can be pictured by an unsecured axle mounted on a chassis, the subject easier to learn if they are able to visualize in 3 as it may freely rotate and translate. -
Dynamic Designer Motion User's Guide
Dynamic Designer Motion User’s Guide Part Number DMSE01R1-01 COPYRIGHT NOTICE Copyright © 1997-2001 by Mechanical Dynamics, Inc. All rights reserved. U. S. Government Restricted Rights: If the Software and Documentation are provided in connection with a government contract, then they are provided with RESTRICTED RIGHTS. Use, duplication or disclosure is subject to restrictions stated in paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Mechanical Dynamics, Inc. 2300 Traverwood Drive, Ann Arbor, Michigan 48105. Information in this document is subject to change without notice. This document contains proprietary and copyrighted information and may not be copied, reproduced, translated, or reduced to any electronic medium without prior consent, in writing, from Mechanical Dynamics, Inc. REVISION HISTORY Third Printing July 2001 TRADEMARKS ADAMS is a registered United States trademark and ADAMS/Solver, ADAMS/Kinematics, and ADAMS/View are trademarks of Mechanical Dynamics, Inc. SolidEdge, is a trademarks of Unigraphics Solutions. Windows is a registered trademark of MicroSoft Corporation. All other brands and product names are the trademarks of their respective holders. Table of Contents Table of Contents.......................................................................................................................... i 1 Dynamic Designer/Motion............................................................................................ 1 Why are Mechanisms Important?................................................................................................ -
Rajalakshmi Engineering College, Thandalam
1. Terminology and Definitions-Degree of Freedom, Mobility Kinematics: The study of motion (position, velocity, acceleration). A major goal of understanding kinematics is to develop the ability to design a system that will satisfy specified motion requirements. This will be the emphasis of this class. Kinetics: The effect of forces on moving bodies. Good kinematic design should produce good kinetics. Mechanism: A system design to transmit motion. (low forces) Machine: A system designed to transmit motion and energy. (forces involved) Basic Mechanisms: Includes geared systems, cam-follower systems and linkages (rigid links connected by sliding or rotating joints). A mechanism has multiple moving parts (for example, a simple hinged door does not qualify as a mechanism). Examples of mechanisms: Tin snips, vise grips, car suspension, backhoe, piston engine, folding chair, windshield wiper drive system, etc. Key concepts: Degrees of freedom: The number of inputs required to completely control a system. Examples: A simple rotating link. A two link system. A four-bar linkage. A five-bar linkage. Types of motion: Mechanisms may produce motions that are pure rotation, pure translation, or a combination of the two. We reduce the degrees of freedom of a mechanism by restraining the ability of the mechanism to move in translation (x-y directions for a 2D mechanism) or in rotation (about the z- axis for a 2-D mechanism). Link: A rigid body with two or more nodes (joints) that are used to connect to other rigid bodies. (WM examples: binary link, ternary link (3 joints), quaternary link (4 joints)) Joint: A connection between two links that allows motion between the links. -
Robot Geometry and Kinematics
V. Kumar 5. Introduction to Robot Geometry and Kinematics The goal of this chapter is to introduce the basic terminology and notation used in robot geometry and kinematics, and to discuss the methods used for the analysis and control of robot manipulators. The scope of this discussion will be limited, for the most part, to robots with planar geometry. The analysis of manipulators with three-dimensional geometry can be found in any robotics text1. 5.1 Some definitions and examples We will use the term mechanical system to describe a system or a collection of rigid or flexible bodies that may be connected together by joints. A mechanism is a mechanical system that has the main purpose of transferring motion and/or forces from one or more sources to one or more outputs. A linkage is a mechanical system consisting of rigid bodies called links that are connected by either pin joints or sliding joints. In this section, we will consider mechanical systems consisting of rigid bodies, but we will also consider other types of joints. Degrees of freedom of a system The number of independent variables (or coordinates) required to completely specify the configuration of the mechanical system. While the above definition of the number of degrees of freedom is motivated by the need to describe or analyze a mechanical system, it also is very important for controlling or driving a mechanical system. It is also the number of independent inputs required to drive all the rigid bodies in the mechanical system. Examples: (a) A point on a plane has two degrees of freedom. -
Classification of Mechanisms by Type and Mobility
MAE 342 – Dynamics of Machines Types of Mechanisms Classification of Mechanisms by type and mobility MAE 342 – Dynamics of Machines 2 Planar, Spherical and Spatial Mechanisms • Planar Mechanisms: all points on each part move only in . Image from Technische Universität Ilmenau. Image from Northern Tool + Equipment Catalog Co. Images from Tiptop Industry Co., Ltd. 1 MAE 342 – Dynamics of Machines 3 Planar, Spherical and Spatial Mechanisms • Spherical Mechanisms: all points on each part move only in . Image from Maarten Steurbaut. Images from the Laboratory for the Analysis and Synthesis of Spatial Movement. Images from Laboratoire de robotique, Université Laval. MAE 342 – Dynamics of Machines 4 Planar, Spherical and Spatial Mechanisms • Spatial Mechanisms: points on each part can move in any direction in 3-dimensional space. Image from the Kinematic Models for Design Digital Library, Cornell University. Image from www.robots.com. Image from Slika Image from the Special Session on Computer Aided Linkage Synthesis, ASME DETC 2002. 2 MAE 342 – Dynamics of Machines 5 Mobility • Degrees of freedom (DOF) is: the number of independent controls needed to position a body. Mathematically it is the number of independent variables needed to specify the position of a body. A planar body has ___ DOF. A spherical body has ___ DOF. A spatial body has ___ DOF. MAE 342 – Dynamics of Machines 6 Mobility • Mobility is: the number of degrees of freedom of a mechanism. If the number of planar bodies is n (and there are no joints) the mobility is ______ . If one of the bodies is fixed, the mobility is ________ . -
ME3610 Part II Kinematics Fundamental Concepts
Part II: Kinematics, the fundamentals This section will provide an overview of the fundamental concepts in kinematics. This will include the following topics: 1. What is Kinematics? 2. Kinematics within mechanics 3. Key definitions 4. Motion and kinematic pairs 5. Transmission of motion 6. Mobility 7. Review of some general classes of Mechanisms ME 3610 Course Notes – S. Canfield Part II -1 1: What is Kinematics? “Kinematics is the study of _________________________________________________ Kinetics is the study of _________ on systems in motion: Underlying Assumptions in Kinematics: 1) Rigid bodies 2) Ignore forces (applied, friction, etc) 3) Bodies are connected by Joints – Kinematic pairs 4) The nature of connection b/n kinematic pairs is maintained This is kinematics, and this is kinematics, This is NOT kinematics, ME 3610 Course Notes – S. Canfield Part II -2 Why Kinematics? Why Machines? Create / harness energy (non-human energy) Manufacturing, agriculture Assistive / serve humans What is the future of kinematics and machinery? Miniature, micro and perhaps even nano-scale machines (motion at a micro or molecular level) Medical, rehabilitative, prosthetic Self-replication of machinery, machines design machines Machines become more biological in nature (compliant, biological muscles, intelligent). ME 3610 Course Notes – S. Canfield Part II -3 2. Kinematics within Mechanics Kinematics and the theory behind machines have a long history. Kinematics has evolved to become a unique component within Mechanics as demonstrated in this figure Mechanics Statics Dynamics Mechanics of materials Kinematics Kinetics 3. A few key definitions: Kinematics Dynamics Kinematic Chain Mechanism Machine Crank Rocker Coupler Degrees of freedom Constraint Mobility ME 3610 Course Notes – S. -
"Introduction to Robotics: Mechanics, Planning, and Control," F. C. Park and K. M. Lynch
INTRODUCTION TO ROBOTICS MECHANICS, PLANNING, AND CONTROL F. C. Park and K. M. Lynch Contents 1Preview 1 2 Configuration Space 9 2.1DegreesofFreedomofaRigidBody................ 10 2.2DegreesofFreedomofaRobot................... 13 2.2.1 RobotJoints......................... 13 2.2.2 Gr¨ubler’sFormula...................... 14 2.3 Configuration Space: Topology and Representation ........ 19 2.3.1 ConfigurationSpaceTopology................ 19 2.3.2 Configuration Space Representation ............ 21 2.4ConfigurationandVelocityConstraints............... 25 2.5TaskSpaceandWorkspace..................... 28 2.6Summary............................... 31 2.7Exercises............................... 33 3 Rigid-Body Motions 51 3.1Rigid-BodyMotionsinthePlane.................. 53 3.2RotationsandAngularVelocities.................. 59 3.2.1 RotationMatrices...................... 59 3.2.2 AngularVelocity....................... 65 3.2.3 Exponential Coordinate Representation of Rotation . 68 3.3Rigid-BodyMotionsandTwists................... 77 3.3.1 HomogeneousTransformationMatrices.......... 77 3.3.2 Twists............................. 83 3.3.3 Exponential Coordinate Representation of Rigid-Body Mo- tions.............................. 90 3.4Wrenches............................... 93 3.5Summary............................... 95 3.6Software................................ 97 3.7NotesandReferences......................... 98 3.8Exercises............................... 99 i CONTENTS 4 Forward Kinematics 117 4.1ProductofExponentialsFormula..................120 4.1.1