Contribution of Enterococcus Faecalis to Urinary Tract Infection

Total Page:16

File Type:pdf, Size:1020Kb

Contribution of Enterococcus Faecalis to Urinary Tract Infection Western University Scholarship@Western Electronic Thesis and Dissertation Repository 3-29-2018 3:00 PM Contribution of Enterococcus faecalis to urinary tract infection Samantha Ann Whiteside The University of Western Ontario Supervisor Reid, Gregor The University of Western Ontario Co-Supervisor Burton, Jeremy P. The University of Western Ontario Graduate Program in Microbiology and Immunology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Samantha Ann Whiteside 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Bacterial Infections and Mycoses Commons Recommended Citation Whiteside, Samantha Ann, "Contribution of Enterococcus faecalis to urinary tract infection" (2018). Electronic Thesis and Dissertation Repository. 5270. https://ir.lib.uwo.ca/etd/5270 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The purpose of this thesis was to increase understanding of enterococcal urinary tract infection (UTI), in particular, the response of Enterococcus to antibiotic prophylaxis in vitro and in vivo and enterococcal communication with the bladder. We studied the in vitro effects of trimethoprim-sulfamethoxazole (TMP/SMX) and nitrofurantoin, two of the most commonly used antibiotic treatments for the management of both UTI and recurrent UTI (RUTI), on Enterococcus faecalis attachment to urothelial cells. In doing so, we documented increases in bacterial attachment at growth inhibitory concentrations of nitrofurantoin, but not TMP/SMX. This increased virulence did not correlate with increased expression of virulence factors but was correlated with increased expression of three putative genes. We then explored whether this corresponded to alterations in bacterial communities throughout antibiotic prophylaxis for paediatric patients with RUTI. Bacterial culture results indicated uropathogens were present in the urine of children with and without a history of RUTI and that antibiotic prophylaxis induced a transient decrease in uropathogen load. Interestingly, none of our patients were experiencing symptomatic UTI at the time of urine sample collection, yet a significant proportion of midstream urine samples met the clinical threshold for UTI, indicating these patients had asymptomatic bacteriuria (ABU). Further, E. faecalis bacterial load was positively correlated with non-E. coli uropathogens, suggesting some patients may be pre-disposed to polymicrobial UTI. To elucidate mechanisms by which enterococci can mask the host’s perception of UTI, which may also contribute to the polymicrobial nature of E. faecalis UTI, we completed targeted metabolomics of neuroactive molecules in vitro under conditions mimicking the bladder environment. Our results suggest Enterococcus may produce tyramine in the bladder at concentrations that are likely to have a physiological effect on both urothelial cells and cohabiting bacteria. Our data raises questions about the application of nitrofurantoin to enterococcal UTI and the efficacy of antibiotic prophylaxis for RUTI. Further, our clinical and in vitro data suggest E. faecalis may contribute more to polymicrobial UTI than previously thought. Indeed, ii enterococcal production of tyramine may explain the high incidence of enterococci in not only polymicrobial UTI but also other infections. Keywords Enterococcus faecalis, urinary tract infection, recurrent urinary tract infection, antibiotic prophylaxis, paediatric urology. iii Co-Authorship Statement Samantha Whiteside predominantly carried out the experiments and data analysis within this thesis with the supervision of Jeremy Burton and Gregor Reid. Samantha Whiteside primarily wrote the chapters presented herein; exceptions are listed below: Chapter 1: General introduction The section on the microbiome of the urinary tract (Section 1.2) was conceived by Samantha Whiteside, Jeremy Burton, and Gregor Reid. Hassan Razvi and Sumit Dave provided clinical input. Chapter 2: Nitrofurantoin increases bacterial attachment to urothelial cells Samantha Whiteside, Jeremy Burton, and Gregor Reid conceived the experiments. Aidan Shair completed the PCR screen and ibuprofen growth curves; Samantha Whiteside carried out the remainder of the assays and performed data anaylsis. Chapter 3: Longitudinal study of the bacterial communities in urine from children with RUTI Samantha Whiteside, Jeremy Burton, Gregor Reid, and Sumit Dave conceived and designed the study. Sample collection, urinalysis, and patient follow-up was completed by the paediatric urology clinic staff. Patient clinical files were reviewed by both Samantha Whiteside and Peter Wang. Urine sample processing, including bacteriological culture and DNA extraction were performed by Samantha Whiteside. Kait Al completed the DNA amplification and submitted samples for sequencing. Microbiota analysis was performed by Samantha Whiteside, using the pipeline designed by Gregory Gloor and Jean Macklaim, whom also provided input. Shannon Seney performed cytokine multiplex assays, which were subsequently analysed by Samantha Whiteside. Chapter 4: Enterococcal production of neuroactive substances Samantha Whiteside, Jeremy Burton, and Gregor Reid conceived the experiments. Fatemah Mousavi and Janusz Pawliszyn optimised the SPME-LC-MS/MS methodology for microbial iv metabolomics. Samantha Whiteside performed the GABase experiments, all sample preparation, and metabolite extraction for exploratory metabolomics. Fatemeh Mousavi completed the exploratory LC-MS/MS and Samantha Whiteside analysed the data. Extraction and identification of metabolites for quantitative metabolomics was performed by Sofia Lendor and Janusz Pawliszyn, data analysis was completed by Samantha Whiteside. v Acknowledgments To my supervisors, Jeremy and Gregor, thank you for your guidance and support over the years. Together you foster an environment of scientific creativity, friendship, and instill within each of us the desire to explore the unknown. You gave even my most outrageous theories consideration and I cannot thank you enough for the opportunities I have had within your research group. To Jean and Greg, it’s not an understatement to say I would be lost without your advice and guidance. You are my “Bioinformatics Gods,” converting what often seems impossible to comprehend into something my mortal brain can understand. Thank you for your patience and helping me to locate my misplaced periods, quotations, and commas. To Sumit, Sandra, and all the staff of the paediatric urology clinic of Children’s Hospital at London Health Sciences Centre. Thank you for taking the time to answer my questions, for your patience in answering what must have been hundreds of phone calls, for sharing your limited space with my clinical study materials, and finally for going above and beyond to help me make this clinical study happen. Sumit, you have been a wonderful teacher and mentor over these last few years. I am incredibly grateful that you were willing to give me the responsibility of running a clinical study over the course of my graduate studies. To the members of the Reid, Burton, and Gloor labs, I cannot begin to thank you all for the friendship and love I have felt from each of you over the years. I will always cherish the shenanigans we got into, even the ones that ended in near disaster, including reporting a “gas leak” to Union Gas and replacing our front door after we had to kick it in. You are the best friends I could have asked for and I cannot wait to see what the future brings for all of us. To my family, you don’t always understand what I do, or why I do it, yet seem to appreciate telling people that over my research career I have developed a fascination for faeces in undergrad and urine in grad school. I am incredibly grateful for the love within our family and the times we’ve shared together. There is no one else I would want to argue with about “North African Trade Oranges,” torpedo trajectories through islands, or whose turn it is to host the next Family Scotch Club. You keep me honest and grounded. vi Brandon; I’m not sure how I tricked you into it, but you’ve committed to spending the rest of your life with me and I cannot wait to see where we go. You remind me to breathe, appreciate the moment, and push me to be a better person. I would probably be living in a gutter, if it were not for your, love, patience, support, compassion, sense of adventure, and ability to laugh both at me and with me. And finally, although they’ll never read this, Baxter and Remus, who remind me on a daily basis to get moving, and can put a smile on my face at the worst of times. vii Table of Contents Abstract ............................................................................................................................... ii Acknowledgments .............................................................................................................. vi List of Tables .................................................................................................................... xii List of Figures .................................................................................................................. xiii Abbreviations .....................................................................................................................
Recommended publications
  • Olfactory Sulcus Morphology in Teenagers with First-Presentation
    Psychiatry Research: Neuroimaging 292 (2019) 1–4 Contents lists available at ScienceDirect Psychiatry Research: Neuroimaging journal homepage: www.elsevier.com/locate/psychresns Olfactory sulcus morphology in teenagers with first-presentation borderline personality disorder T ⁎ Tsutomu Takahashia, , Yumiko Nishikawaa, Dennis Velakoulisb, Michio Suzukia, Patrick D. McGorryc,d, Christos Pantelisb, Andrew M. Chanenc,d a Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan b Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Australia c Orygen, the National Centre of Excellence in Youth Mental Health, Melbourne, Australia d Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia ARTICLE INFO ABSTRACT Keywords: Gray matter reduction of the orbitofrontal cortex (OFC) has been reported in borderline personality disorder Neurodevelopment (BPD), but it remains unknown whether the BPD patients exhibit morphologic changes of the olfactory sulcus, a Orbitofrontal cortex potential marker of forebrain development located on the OFC. We used magnetic resonance imaging to in- Trauma vestigate the length and depth of the olfactory sulcus in 20 teenagers (15 females and 5 males) with first- Impulsivity presentation BPD and 20 healthy controls (15 females and 5 males). While there was no group difference in the Magnetic resonance imaging length of the sulcus, the BPD patients (especially those with a history of trauma) had a significantly shallower right olfactory sulcus compared with controls. In addition, sulcus depth was negatively correlated with the severity of impulsivity and affective instability in the BPD patients. These preliminary findings may suggest a significant role of environmental risk factors (i.e., trauma exposure) during childhood to adolescence in the neurobiology of BPD.
    [Show full text]
  • Trafficking and Signaling of Parkin-Associated
    Distribution Agreement In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in part in all forms of media, now or hereafter known, including display on the world wide web. I understand that I may select some access restrictions as part of the online submission of this thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. Signature: _____________________________ ______________ Jill Harley Dunham Date Trafficking and Signaling of Parkin-Associated Endothelin-Like Receptor GPR37 By Jill Harley Dunham B.S. The University of Georgia, 2003 Graduate Division of Biological and Biomedical Sciences Program in Molecular and Systems Pharmacology ________________________________ Randy Hall, Ph.D. Adviser _____________________________ Allan Levey, M.D., Ph.D. Committee Member _____________________________ John Hepler, Ph.D. Committee Member _____________________________ Lian Li, Ph.D. Committee Member Accepted: ________________________________ Lisa A. Tedesco, Ph.D. Dean of the Graduate School ________________________________ Date TRAFFICKING AND SIGNALING OF THE PARKIN-ASSOCIATED ENDOTHELIN-LIKE RECEPTOR GPR37 By Jill Harley Dunham B.S., University of Georgia,
    [Show full text]
  • Current Trends of Enterococci in Dairy Products: a Comprehensive Review of Their Multiple Roles
    foods Review Current Trends of Enterococci in Dairy Products: A Comprehensive Review of Their Multiple Roles Maria de Lurdes Enes Dapkevicius 1,2,* , Bruna Sgardioli 1,2 , Sandra P. A. Câmara 1,2, Patrícia Poeta 3,4 and Francisco Xavier Malcata 5,6,* 1 Faculty of Agricultural and Environmental Sciences, University of the Azores, 9700-042 Angra do Heroísmo, Portugal; [email protected] (B.S.); [email protected] (S.P.A.C.) 2 Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9700-042 Angra do Heroísmo, Portugal 3 Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; [email protected] 4 Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisboa, Portugal 5 LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 420-465 Porto, Portugal 6 FEUP—Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal * Correspondence: [email protected] (M.d.L.E.D.); [email protected] (F.X.M.) Abstract: As a genus that has evolved for resistance against adverse environmental factors and that readily exchanges genetic elements, enterococci are well adapted to the cheese environment and may reach high numbers in artisanal cheeses. Their metabolites impact cheese flavor, texture, Citation: Dapkevicius, M.d.L.E.; and rheological properties, thus contributing to the development of its typical sensorial properties. Sgardioli, B.; Câmara, S.P.A.; Poeta, P.; Due to their antimicrobial activity, enterococci modulate the cheese microbiota, stimulate autoly- Malcata, F.X.
    [Show full text]
  • Ficha Catalográfica
    Naiani Ferreira Marques Guanosina previne alterações mitocondriais, o efeito tipo- depressivo e o déficit olfatório induzido por modelos experimentais da doença de Parkinson Tese submetida ao Programa de Pós-graduação em Bioquímica do Centro de Ciências Biológicas da Universidade Federal de Santa Catarina como requisito parcial à obtenção do grau de doutora em Bioquímica. Orientadora: Profa. Dra. Carla Inês Tasca Florianópolis - SC 2019 Ficha de identificação da obra elaborada pelo autor, através do Programa de Geração Automática da Biblioteca Universitária da UFSC. Marques, Naiani Ferreira Guanosina previne alterações mitocondriais, o efeito tipo-depressivo e o déficit olfatório induzido por modelos experimentais da doença de Parkinson / Naiani Ferreira Marques ; orientadora, Carla Inês Tasca, 2019. 216 p. Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Programa de Pós-Graduação em Bioquímica, Florianópolis, 2019. Inclui referências. 1. Bioquímica. 2. Doença de Parkinson. 3. Guanosina. 4. 6-OHDA. 5. MPTP. I. Tasca, Carla Inês. II. Universidade Federal de Santa Catarina. Programa de Pós-Graduação em Bioquímica. III. Título. Dedico esse trabalho aos meus pais Jairo e Cleusa que sempre trabalharam muito para garantir a minha educação e sempre foram meus maiores apoiadores. AGRADECIMENTOS Agradeço primeiramente aos meus pais Jairo e Cleusa por toda a base, pelos ensinamentos e pelo apoio incondicional em todas as fases da minha educação e da minha vida. A sabedoria de vocês sempre será meu exemplo em todos os aspectos. Agradeço muito a minha orientadora Profa Dra Carla Tasca pela experiência, pelo conhecimento, pelo seu tempo dedicado ao meu trabalho, pela paciência e por todas as oportunidades que estar em seu laboratório me proporcionaram.
    [Show full text]
  • Effects of Lactobacillus Rhamnosus and Enterococcus Faecalis Supplementation As Direct-Fed Microbials on Rumen Microbiota of Boer and Speckled Goat Breeds
    veterinary sciences Article Effects of Lactobacillus rhamnosus and Enterococcus faecalis Supplementation as Direct-Fed Microbials on Rumen Microbiota of Boer and Speckled Goat Breeds Takalani Whitney Maake 1,2, Olayinka Ayobami Aiyegoro 2,3,* and Matthew Adekunle Adeleke 1 1 Discipline of Genetics, School of Life Sciences, College of Agricultural, Engineering and Science, University of Kwazulu-Natal, Westville Campus, Private Bag X 54001, Durban 4000, South Africa; [email protected] (T.W.M.); [email protected] (M.A.A.) 2 Gastrointestinal Microbiology and Biotechnology, Agricultural Research Council-Animal Production, Private Bag X 02, Irene 0062, South Africa 3 Research Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X 1290, Potchefstroom 2520, South Africa * Correspondence: [email protected] or [email protected]; Tel.: +27-126-729-368 Abstract: The effects on rumen microbial communities of direct-fed probiotics, Lactobacillus rhamnosus and Enterococcus faecalis, singly and in combination as feed supplements to both the Boer and Speckled goats were studied using the Illumina Miseq platform targeting the V3-V4 region of the 16S rRNA microbial genes from sampled rumen fluid. Thirty-six goats of both the Boer and Speckled were divided into five experimental groups: (T1) = diet + Lactobacillus rhamnosus; (T2) = diet + Enterococcus faecalis; (T3) = diet + Lactobacillus rhamnosus + Enterococcus faecalis; (T4, positive control) = diet + antibiotic and (T5, negative control) = diet without antibiotics and without probiotics. Our results revealed that Bacteroidetes, Firmicutes, TM7, Proteobacteria, and Euryarchaeota dominate Citation: Maake, T.W.; Aiyegoro, O.A.; Adeleke, M.A. Effects of the bacterial communities. In our observations, Lactobacillus rhamnosus and Enterococcus faecalis Lactobacillus rhamnosus and supplements reduced the archaeal population of Methanomassiliicocca in the T1, T2 and T3 groups, Enterococcus faecalis Supplementation and caused an increase in the T4 group.
    [Show full text]
  • The Multi-Dimensional Contributions of Prefrontal Circuits to Emotion Regulation During Adulthood and Critical Stages of Development
    brain sciences The Multi-Dimensional Contributions of Prefrontal Circuits to Emotion Regulation during Adulthood and Critical Stages of Development Edited by Angela Roberts Printed Edition of the Special Issue Published in Brain Sciences www.mdpi.com/journal/brainsci The Multi-Dimensional Contributions of Prefrontal Circuits to Emotion Regulation during Adulthood and Critical Stages of Development The Multi-Dimensional Contributions of Prefrontal Circuits to Emotion Regulation during Adulthood and Critical Stages of Development Special Issue Editor Angela Roberts MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Angela Roberts University of Cambridge UK Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Actuators (ISSN 2076-0825) from 2018 to 2019 (available at: https://www.mdpi.com/journal/brainsci/special issues/Neuro Emotion). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03921-702-1 (Pbk) ISBN 978-3-03921-703-8 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Methicillin-Resistant Staphylococcus Aureus (MRSA)
    Methicillin-Resistant Staphylococcus Aureus (MRSA) Over the past several decades, the incidence of resistant gram-positive organisms has risen in the United States. MRSA strains, first identified in the 1960s in England, were first observed in the U.S. in the mid 1980s.1 Resistance quickly developed, increasing from 2.4% in 1979 to 29% in 1991.2 The current prevalence for MRSA in hospitals and other facilities ranges from <10% to 65%. In 1999, MRSA accounted for more than 50% of all Staphylococcus aureus isolates within U.S. intensive care units.3, 4 The past years, however, outbreaks of MRSA have also been seen in the community setting, particularly among preschool-age children, some of whom have attended day-care centers.5, 6, 7 MRSA does not appear to be more virulent than methicillin-sensitive Staphylococcus aureus, but certainly poses a greater treatment challenge. MRSA also has been associated with higher hospital costs and mortality.8 Within a decade of its development, methicillin resistance to Staphylococcus aureus emerged.9 MRSA strains generally are now resistant to other antimicrobial classes including aminoglycosides, beta-lactams, carbapenems, cephalosporins, fluoroquinolones and macrolides.10,11 Most of the resistance was secondary to production of beta-lactamase enzymes or intrinsic resistance with alterations in penicillin-binding proteins. Staphylococcus aureus is the most frequent cause of nosocomial pneumonia and surgical- wound infections and the second most common cause of nosocomial bloodstream infections.12 Long-term care facilities (LTCFs) have developed rates of MRSA ranging from 25%-35%. MRSA rates may be higher in LTCFs if they are associated with hospitals that have higher rates.13 Transmission of MRSA generally occurs through direct or indirect contact with a reservoir.
    [Show full text]
  • On the Scent of Human Olfactory Orbitofrontal Cortex: Meta-Analysis and Comparison to Non-Human Primates
    Brain Research Reviews 50 (2005) 287 – 304 www.elsevier.com/locate/brainresrev Review On the scent of human olfactory orbitofrontal cortex: Meta-analysis and comparison to non-human primates Jay A. Gottfrieda,*, David H. Zaldb aDepartment of Neurology and the Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 11-453, Chicago, IL 60611, USA bDepartment of Psychology, Vanderbilt University, Nashville, TN 37240, USA Accepted 25 August 2005 Available online 6 October 2005 Abstract It is widely accepted that the orbitofrontal cortex (OFC) represents the main neocortical target of primary olfactory cortex. In non-human primates, the olfactory neocortex is situated along the basal surface of the caudal frontal lobes, encompassing agranular and dysgranular OFC medially and agranular insula laterally, where this latter structure wraps onto the posterior orbital surface. Direct afferent inputs arrive from most primary olfactory areas, including piriform cortex, amygdala, and entorhinal cortex, in the absence of an obligatory thalamic relay. While such findings are almost exclusively derived from animal data, recent cytoarchitectonic studies indicate a close anatomical correspondence between non-human primate and human OFC. Given this cross-species conservation of structure, it has generally been presumed that the olfactory projection area in human OFC occupies the same posterior portions of OFC as seen in non-human primates. This review questions this assumption by providing a critical survey of the localization of primate and human olfactory neocortex. Based on a meta-analysis of human functional neuroimaging studies, the region of human OFC showing the greatest olfactory responsivity appears substantially rostral and in a different cytoarchitectural area than the orbital olfactory regions as defined in the monkey.
    [Show full text]
  • Achems XLII April 19 – 23, 2021 Virtual Meeting Program & Abstracts
    AChemS XLII April 19 – 23, 2021 Virtual Meeting Program & Abstracts Monday, April 19, 2021 Monday, April 19, 2021 10:00 - 12:00 PM Welcome & Keynote Lecture Chair(s): Max Fletcher Welcome by AChemS 2021 President. Linda Barlow University of Colorado Anschutz Medical Campus Program Highlights. Max Fletcher The University of Tennessee Health Science Center Awards Ceremony. Nirupa Chaudhari University of Miami KEYNOTE: Mouse Facial Expressions Reflect Emotions and Reveal Subjective Value. Nadine Gogolla Max Planck Institute of Neurobiology Questions & Answers Monday, April 19, 2021 12:00 - 1:00 PM Graduate Students and Postdoc Member Meet & Greet (Graduate Students and Postdocs Only) Chair(s): Jess Kanwal, Kellie Hyde, Kara Fulton Monday, April 19, 2021 1:00 - 3:00 PM Cell Types in Taste Buds and Tentacles 1 Chair(s): Thomas Finger, Sue Kinnamon Cell Types in Taste Buds and Tentacles. Thomas Finger Rocky Mtn. Taste & Smell Ctr. / U. Colo Med Sch This symposium will discuss the current thinking about the diversity of cells within taste buds and chemotactile sensory organs of octopus suckers. While octopus suckers may seem an odd juxtaposition, both taste buds and sucker chemosensory receptor cells share the property of being contact chemosensory organs responsive to sapid chemical cues crucial for eliciting feeding. Both sucker chemotactile sensory organs and taste buds possess different morphological types of receptor cells that correlate with different functional properties. Vertebrate taste buds are classically described as possessing 3 types of elongate taste cells yet recent studies suggest additional cell types exist and raise the question of how to define cell types in any chemoreceptor system.
    [Show full text]
  • Purinergic Signaling in Cochlear Supporting Cells Reduces Hair
    RESEARCH ARTICLE Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space Travis A Babola1, Calvin J Kersbergen1, Han Chin Wang1†, Dwight E Bergles1,2,3* 1The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States; 2Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, United States; 3Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States Abstract Neurons in developing sensory pathways exhibit spontaneous bursts of electrical activity that are critical for survival, maturation and circuit refinement. In the auditory system, intrinsically generated activity arises within the cochlea, but the molecular mechanisms that initiate this activity remain poorly understood. We show that burst firing of mouse inner hair cells prior to hearing onset requires P2RY1 autoreceptors expressed by inner supporting cells. P2RY1 activation triggers K+ efflux and depolarization of hair cells, as well as osmotic shrinkage of supporting cells that dramatically increased the extracellular space and speed of K+ redistribution. Pharmacological inhibition or genetic disruption of P2RY1 suppressed neuronal burst firing by reducing K+ release, but unexpectedly enhanced their tonic firing, as water resorption by supporting cells reduced the extracellular space, leading to K+ accumulation. These studies indicate that purinergic signaling in *For correspondence: supporting cells regulates hair cell
    [Show full text]
  • Transfer of Streptococcus Faecalis and Streptococcus Faecium to the Genus Enterococcus Norn
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1984, p. 31-34 Vol. 34, No. 1 OO20-7713/84/010031-04$02.00/0 Copyright 0 1984, International Union of Microbiological Societies Transfer of Streptococcus faecalis and Streptococcus faecium to the Genus Enterococcus norn. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. KARL H. SCHLEIFER* AND RENATE KILPPER-BALZ Lehrstuhl fur Mikrobiologie, Technische Universitat Miinchen, D-8000 Miinchen 2, Federal Republic of Germany The results of deoxyribonucleic acid-deoxyribonucleic acid and deoxyribonucleic acid-ribosomal ribonu- cleic acid hybridization studies demonstrated that Streptococcus faecalis and Streptococcus faecium are distantly related to the non-enterococcal streptococci (Streptococcus hovis and Streptococcus equinus) of serological group D and to other streptococci. On the basis of our results and those of previous studies, we propose that S. faecalis and S. faecium be transferred to the genus Enterococcus (ex Thiercelin and Jouhaud) nom. rev. as Enterococcus faecalis (Andrewes and Horder) comb. nov. and Enterococcus faecium (Orla-Jensen) comb. nov., respectively. A description of the genus Enterococcus nom. rev. and emended descriptions of E. faecalis and E. faecium are given. The streptococci belonging to serological group D can be De Ley (4) and were corrected to the value for the reference divided into two physiologically different groups. Strepto- Escherichia coli K-12 DNA. coccus faecalis and Streptococcus faecium were placed in the enterococcus division of the streptococci, whereas RESULTS AND DISCUSSION Streptococcus bovis and Streptococcus equinus were placed in the viridans division by Sherman (21). Kalina proposed (9) The DNA base compositions, serological groups, and that Streptococcus faecalis and Streptococcus faecium peptidoglycan types of the test strains are shown in Table 1.
    [Show full text]
  • Identification, Properties, and Application of Enterocins Produced by Enterococcal Isolates from Foods
    IDENTIFICATION, PROPERTIES, AND APPLICATION OF ENTEROCINS PRODUCED BY ENTEROCOCCAL ISOLATES FROM FOODS THESIS Presented in Partial Fulfillment of the Requirement for the Degree Master of Science in the Graduate School of The Ohio State University By Xueying Zhang, B.S. ***** The Ohio State University 2008 Master Committee: Approved by Professor Ahmed E. Yousef, Advisor Professor Hua Wang __________________________ Professor Luis Rodriguez-Saona Advisor Food Science and Nutrition ABSTRACT Bacteriocins produced by lactic acid bacteria have gained great attention because they have potentials for use as natural preservatives to improve food safety and stability. The objectives of the present study were to (1) screen foods and food products for lactic acid bacteria with antimicrobial activity against Gram-positive bacteria, (2) investigate virulence factors and antibiotic resistance among bacteriocin-producing enterooccal isolates, (3) characterize the antimicrobial agents and their structural gene, and (4) explore the feasibility of using these bacteriocins as food preservatives. In search for food-grade bacteriocin-producing bacteria that are active against spoilage and pathogenic microorganisms, various commercial food products were screened and fifty-one promising Gram-positive isolates were studied. Among them, fourteen food isolates with antimicrobial activity against food-borne pathogenic bacteria, Listeria monocytogenes and Bacillus cereus, were chosen for further study. Based on 16S ribosomal RNA gene sequence analysis, fourteen food isolates were identified as Enterococcus faecalis, and these enterococcal isolates were investigated for the presence of virulence factors and antibiotic resistance through genotypic and phenotypic screening. Results indicated that isolates encoded some combination of virulence factors. The esp gene, encoding extracellular surface protein, was not detected in any of the isolates.
    [Show full text]